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NUMERICAL ANALYSIS OF A TIME-STEPPING METHOD FOR

THE WESTERVELT EQUATION WITH TIME-FRACTIONAL

DAMPING

KATHERINE BAKER, LEHEL BANJAI, AND MARIYA PTASHNYK

Abstract. We develop a numerical method for the Westervelt equation, an
important equation in nonlinear acoustics, in the form where the attenuation

is represented by a class of nonlocal in time operators. A semi-discretisation
in time based on the trapezoidal rule and A-stable convolution quadrature
is stated and analysed. Existence and regularity analysis of the continuous
equations informs the stability and error analysis of the semi-discrete system.
The error analysis includes the consideration of the singularity at t = 0 which
is addressed by the use of a correction in the numerical scheme. Extensive
numerical experiments confirm the theory.

1. Introduction

We consider the attenuated Westervelt equation modelling wave propagation
through lossy media in cases where the wave propagation is poorly approximated
by linear wave models. A typical application is in medical ultrasound, where the
attenuation depends on a fractional power of the frequency with the fractional
exponent determined by the type of tissue; see [32, Chapter 4]. This leads to
models of the form

∂2
t u−Δu+ aLu = k∂2

t (u
2),

where a, k are positive constants and the attenuation is represented by a nonlocal

differential operator L. In this paper we consider Lv(t) = −
∫ t

0
β(t − s)∂tΔv(s)ds

with β chosen as either

βA(t) :=
1

Γ(μ)
tμ−1e−rt, μ ∈ (0, 1), r ≥ 0

or

βB(t) := −ėμ(t), eμ(t) := Eμ,1(−tμ),

where, see [24], Eμ,γ is the Mittag-Leffler function

(1.1) Eμ,γ(z) :=
∞∑
k=0

zk

Γ(μk + γ)
.
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Note that, for β = βA and r = 0, L = −∂1−μ
t Δ, where ∂1−μ

t is the Caputo
fractional derivative of order 1−μ. The value of μ depends on the tissue [10, Chapter
4.3] and is used to model the frequency dependence of attenuation [2, Chapter
3]. See also the recent [18], which includes other choices of nonlocal attenuation
operators L. The case β = βB is of interest in modelling viscoelastic materials
[19, 28]. In [33] a similar system is investigated under trapezoidal disretisation,
where the operator L does not contain a time-derivative.

In this work we develop and analyse a numerical method for the time-discretisation
of the attenuated Westervelt equation stated above. The time-discretisation of the
nonlocal operator is done by convolution quadrature [20,21] whose ability to trans-
late a positivity property of the continuous operator to the discrete case allows a
full stability and convergence analysis. It further allows for fast and memory effi-
cient implementation [4] that is not addressed further in this paper. The full time
discretisation is a variation of the discretisation used in [3] for a related linear model
and is based on the trapezoidal (Newmark with γ = 1/2, β = 1/4 [16]) scheme.

There are several results on the well-posedness and regularity for quasilinear
wave equations and for the Westervelt equations, see e.g. [9, 17, 26]. In [19, 30],
semigroup techniques and the Galerkin method are used to prove well-posedness
results for linear integro-differential equations modelling dynamics of fractional or-
der viscoelasticity. For equations with fractional integrals the semigroup techniques
can be applied in the same way as in the case of equations of linear viscoelasticity
[11, 12]. However similar approach cannot be used to prove existence results for
equations with nonlocal differential operators, which include fractional time deriv-
ative as a special case, considered in this work. The Galerkin method, together
with the fixed point argument, is applied in [18] for the well-posedness analysis of
fractional Westervelt equations. Galerkin approximation, together with the energy
estimates, is also used in [28] to prove existence of weak solutions to the fractional
Zener wave equations for heterogeneous viscoelastic materials. In the proof of ex-
istence and uniqueness results for the nonlocally attenuated Westervelt equation
considered here we follow similar ideas as in [18], and hence include only the main
steps of the proof.

The literature on the numerical methods for the case of local strong damping, i.e.,
L = −Δ∂t includes the semi-discretisation by continuous [27] and discontinuous [1]
Galerkin finite element methods. Let us also mention the recent approach via semi-
groups to the analysis of the spatial discretisation of a large class of quasilinear wave
equations [15]. Analysis of a fully discrete scheme for nonlinear elastic waves with
the finite element method in space and rational approximation in time is presented
in [25].

In the linear case (k = 0), the literature also includes the numerical analysis
of full discretisations of nonlocal attenuations. Namely a weaker form of nonlocal

attenuation than we are interested in (Lv(t) = −
∫ t

0
β(t−s)Δv(s)ds) is investigated

in [19] where a continuous Galerkin semi-discretisation is analysed. In the already
mentioned work [3] a fully discrete scheme is investigated with again weaker atten-
uation L = ∂γ

t , γ ∈ (0, 1). The fully discrete scheme in [3] consists of continuous
Galerkin method in space and leapfrog combined with convolution quadrature in
time. This was extended to the strongly damped nonlocal case (still with k = 0) in
the thesis [2, Chapter 6] with the explicit leapfrog scheme replaced by the implicit
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TIME-FRACTIONAL WESTERVELT EQUATION 2713

trapezoidal time-stepping. This numerical approach we now extend to the non-
linear case to give what we believe to be the first analysis of a time-discretisation
of the nonlocally attenuated Westervelt equation. The analysis also includes re-
alistic assumptions on the regularity of the solution including the possible lack of
smoothness at t = 0.

The paper consists of six sections, the first being this introduction. In the next
section we give the formulation of the mathematical model and prove an important
property of L. Section 3 briefly gives the well-posedness of the nonlinear system
with some of the technical details of the proof relegated to the appendix. In Section
4 we state the numerical scheme and show its stability. This leads to the proof of
convergence estimates in Section 5. Finally, the results are illustrated by numerical
experiments in one and two spatial dimensions in Section 6.

2. Formulation of mathematical model

We start with the formulation of the mathematical model. In the damping
term we shall consider a class of convolution kernels which includes fractional time
derivative as a special case.

Let Ω ⊂ R
d, with d ≤ 3, be a C1,1 domain, or for d = 2 a polygon with edge

opening angles ω < π and for d = 3 a polyhedron with ω ≤ π/2. We consider

(2.1) ∂2
t u−Δu− aβ ∗Δ∂tu = k∂2

t (u
2),

where a, k > 0 are constants,

f ∗ g(t) :=
∫ t

0

f(t− τ )g(τ )dτ

denotes the one sided convolution, and β is chosen as either

(2.2) βA(t) :=
1

Γ(μ)
tμ−1e−rt, r ≥ 0, μ ∈ (0, 1),

or

(2.3) βB(t) := −ėμ(t), eμ(t) = Eμ,1(−tμ), μ ∈ (0, 1),

with Eμ,γ the Mittag-Leffler function (1.1). In both cases

β(t) ∼ 1

Γ(μ)
tμ−1 as t → 0+.

When a result holds for both kernels, we will use β to denote either of the kernels.
Note that for βA and r = 0,

βA ∗ f = Iμt f and βA ∗ ∂tf = ∂1−μ
t f,

where Iμt denotes the Riemann-Liouville fractional integral of order μ ∈ (0, 1) and

∂1−μ
t the Caputo derivative of order 1− μ ∈ (0, 1) [29].

We will need two properties of β. First of all, denoting by β̂ := L {β} the
Laplace transform of β we have that

(2.4) β̂A(z) = (z + r)−μ, β̂B(z) =
1

zμ + 1
.
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The expression for β̂B(z) is obtained from the fact that the Laplace transform of

eμ is given by zμ−1

zμ+1 , see [24], and the calculation

L {−ėμ}(z) = −
(

zμ

zμ + 1
− 1

)
=

1

zμ + 1
,

where we used that eμ(0) = 1.
Thus, a property we will require later, follows:

(2.5) Re
1

β̂A(z)
≥ (σ + r)μ, Re

1

β̂B(z)
≥ 1 ∀Re z ≥ σ > 0.

The second property we need is stated as a lemma.

Lemma 2.1. For any v ∈ L2(0, T ) we have∫ t

0

[β ∗ v](s) v(s)ds ≥ 1

2
min
s∈[0,t]

(γ(t− s) + γ(s))

∫ t

0

|β ∗ v(s)|2 ds, t ∈ (0, T ),

where for β = βA

γ(t) =
1

Γ(1− μ)
e−rtt−μ +

r

Γ(1− μ)

∫ t

0

τ−μe−rτdτ

and for β = βB

γ(t) =
1

Γ(1− μ)
t−μ + 1.

Proof. Note that γ is chosen so that 1
z = γ̂(z)β̂(z) and hence

(2.6)

∫ t

0

v(s)ds =

∫ t

0

γ(t− τ )

∫ τ

0

β(τ − η)v(η)dηdτ,

for any sufficiently smooth v.
Denoting w = β ∗ v, we have, by differentiating (2.6), multiplying by w and

integrating, that∫ t

0

w(s)v(s)ds =

∫ t

0

w(s)
d

ds

∫ s

0

γ(s− τ )w(τ )dτds.

We complete the proof by noticing that γ satisfies the conditions of the kernel k in
[28, Lemma 3.1] with the lemma thus implying∫ t

0

d

ds

[∫ s

0

γ(s− τ )w(τ )dτ

]
w(s)ds ≥ 1

2

∫ t

0

[γ(t− s) + γ(s)] |w(s)|2ds

≥ 1

2
min
s∈[0,t]

[γ(t− s) + γ(s)]

∫ t

0

|w(s)|2ds.

Finally note that since β ∈ L1(0, T ), Young’s inequality for convolutions implies
that both sides of the above inequality are well-defined for v ∈ L2(0, T ) thus com-
pleting the proof. �

Remark 2.2. An application of Plancherel’s formula as in [5, Lemma 2.2] shows
that from (2.5) it follows that∫ ∞

0

e−2σs[β ∗ v](s)v(s)ds ≥ C(σ)

∫ ∞

0

e−2σs|β ∗ v(s)|2ds
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TIME-FRACTIONAL WESTERVELT EQUATION 2715

for σ > 0 and C(σ) = (σ+r)μ for β = βA and C(σ) = 1 for β = βB. While it would
be possible to develop the theory in the next section based on this inequality, it is
easier to use Lemma 2.1.

We rewrite equation (2.1) as

(2.7)

(1− 2ku)∂2
t u−Δu− aβ ∗ ∂tΔu = 2k(∂tu)

2 in (0, T )× Ω,

u = uD on (0, T )× ∂Ω,

u(0) = u0, ∂tu(0) = v0 in Ω

and make the following assumptions on the smoothness of the data:

(2.8)
u0 − uD(0) ∈ Ḣ3(Ω) ∩H1

0 (Ω), v0 ∈ H2(Ω) ∩H1
0 (Ω),

uD ∈ H2(0, T ;H2(Ω)) ∩ L∞(0, T ;H3(Ω)),

where Ḣ3 = D((−ΔD)3/2u) with the norm ‖w‖Ḣ3 = ‖(−ΔD)3/2w‖L2 and ΔD is
the Laplace operator in L2(Ω) with the zero Dirichlet boundary conditions, i.e. with
domain D(ΔD) = H2(Ω) ∩H1

0 (Ω).

Definition 2.3. A weak solution of (2.7) is function u ∈ uD + H1(0, T ;H1
0 (Ω)),

with u ∈ L∞((0, T )× Ω) and ∂2
t u ∈ L2((0, T )× Ω), satisfying

(2.9)

∫ T

0

[
〈(1− 2ku)∂2

t u, φ〉+ 〈∇u+ aβ ∗ ∂t∇u,∇φ〉
]
dt =

∫ T

0

〈2k(∂tu)2, φ〉dt,

for φ ∈ L2(0, T ;H1
0 (Ω)), and initial conditions are satisfied in the L2-sense.

For the simplification of the presentation, we shall consider uD = 0, however all
results hold for non-zero Dirichlet boundary conditions by considering û = u− uD,
resulting in

(2.10)
((1− 2kuD)− 2kû)∂2

t û−Δû− aβ ∗ ∂tΔû = 2k(∂tû)
2 + f(t, x)

+4k∂tû∂tuD + 2kû∂2
t uD,

where f(t, x) = 2k(∂tuD)2 + (2kuD − 1)∂2
t uD +ΔuD + aβ ∗ ∂tΔuD. For uD inde-

pendent of t, the difference between (2.7) and (2.10) is in the presence of function
f(t, x), which is regular for regular uD and the analysis below holds for all suffi-
ciently regular uD with ‖uD‖L∞(Ω) < 1/(2k). In case uD depends on t we obtain
additional linear terms, which can be treated in the same way as in the case uD = 0.

3. Existence and uniqueness results

We shall apply the Banach fixed-point theorem and the Galerkin method to show
existence and uniqueness of solutions of (2.7). Similar approach was considered
in [18], however for completeness we present here the short outline of the main ideas.
Also we have a more general convolution kernel, compared to the one considered
in [18].

For Ω ∈ C1,1 the elliptic regularity theory, see e.g. [13, Theorem 9.15, Lemma
9.17], ensures

(3.1) ‖w‖W 2,p(Ω) ≤ CΩ‖Δw‖Lp(Ω),

for w ∈ H1
0 (Ω) with Δw ∈ Lp(Ω) and p ∈ (1,∞), and some positive constant

CΩ, depending on the domain Ω. For polygons estimate (3.1) holds for 1 < p <
2ω/(2ω−π), see e.g. [14, Theorem 4.3.2.4, Remark 4.3.2.5]. For polyhedral domains
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we have estimate (3.1) for p = 2 and convex domains or for p ≥ 6/5, with p �= 2
and satisfying

(3.2) 2− 2/p < π/ω, 2− 3/p < λ,

where λ = min{−1/2 +
√
λ1 + 1/4, 2}, with λ1 the smallest positive eigenvalue

of the Laplace-Beltrami operator on the spherical caps spanning the corners; see
e.g. [8, Theorem 3.2, Corollary 3.7]. For polyhedra with ω ≤ π/2 conditions (3.2)
are satisfied for any 3 < p < ∞, [8, Corollary 3.12, Corollary 3.13].

Thus, the assumptions we made on Ω ensure that (3.1) is satisfied for p > d. We
shall also use the Sobolev embeddings, combined with (3.1) for p = 2,

(3.3)
‖w‖L∞(Ω) ≤ CΩ‖w‖H2(Ω) ≤ CΩ‖Δw‖L2(Ω),

‖∇w‖L4(Ω) ≤ CΩ‖w‖H2(Ω) ≤ CΩ‖Δw‖L2(Ω),

where by CΩ we denote the generic constant in the embedding inequalities, and

(3.4) ‖∇u‖L∞ ≤ CΩ‖u‖W 2,p ≤ CΩ‖Δu‖Lp ≤ CΩ‖Δu‖H1 ,

for d < p ≤ 6. The first and the last inequalities in (3.4) follow from the Sobolev
embeddings, whereas the second inequality is ensured by (3.1).

By C we shall denote a generic constant that is allowed to change from line to
line. For shortness of notation we denote ‖·‖Lp(Ω) by ‖·‖Lp and ‖·‖Hk(Ω) by ‖·‖Hk ,

with 2 ≤ p ≤ ∞ and k = 1, 2, 3, and the L2-inner product is denoted by 〈·, ·〉. The
semi-norm ‖∇ · ‖L2 is denoted by | · |H1 .

Consider

K=
{
u ∈ L∞(0, T ;H2(Ω)) ∩W 1,∞(0, T ;H1

0 (Ω)) :

u ∈ L∞(0, T ; Ḣ3(Ω)), ∂tu ∈ L∞(0, T ;H2(Ω)), ∂2
t u ∈ L2(0, T ;H1(Ω)),

‖Δu‖L∞(0,T ;L2(Ω)) ≤ b, ‖∇Δu‖2L∞(0,T ;L2(Ω)) + κ‖Δ∂tu‖2L∞(0,T ;L2(Ω)) ≤ R2
}
,

for some fixed 0 < CΩb ≤ (1− κ)/2k, with 0 < κ < 1 and CΩ being the constant in
the embedding inequality of H2(Ω) in L∞(Ω), and R2 = CR

[
(1+2kCΩb)‖Δv0‖2L2 +

‖∇Δu0‖2L2

]
for some constant CR > 1.

The map T : ũ �→ u = T (ũ), for ũ ∈ K, is defined via the solution of the following
linear problem

(3.5)

(1− 2kũ)∂2
t u−Δu− aβ ∗ ∂tΔu = 2k∂tu∂tũ in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u(0) = u0, ∂tu(0) = v0 in Ω.

First we show the existence of a unique solution of (3.5). Then by showing that
the map T , for some T > 0, is a contraction we obtain the existence of a unique
solution of (2.7).

Theorem 3.1. For u0 ∈ Ḣ3(Ω), v0 ∈ H2(Ω) ∩ H1
0 (Ω) and ũ ∈ K there exists a

unique solution u ∈ L∞(0, T ;H1
0 (Ω)) of (3.5), with u ∈ L∞(0, T ; Ḣ3(Ω)), ∂tu ∈

L∞(0, T ;H2(Ω)) and ∂2
t u ∈ L2(0, T ;H1(Ω)).

Proof. The existence of a unique solution of (3.5) can be shown using the Galerkin
approximation

u�(t, x) =
�∑

j=1

c�j(t)qj(x),
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TIME-FRACTIONAL WESTERVELT EQUATION 2717

where {qj}j∈N is a basis of eigenfunctions of −Δ on H1
0 (Ω), orthonormal in L2

and orthogonal in H1, with eigenvalues {λj}. The coefficient vector c� = (c�j)
�
j=1

satisfies the following system of ODEs

(3.6)
d2

dt2
c� + Λ(t)c� + aΛ(t)β ∗ d

dt
c� −A(t)

d

dt
c� = 0,

where

(Λ(t))ij = λj

〈
1

1− 2kũ(·, t)qj(·), qi(·)
〉
, (A(t))ij =

〈
2k∂tũ(·, t)
1− 2kũ(·, t)qj(·), qi(·)

〉
.

Writing v� = d2

dt2 c
� we have that

(3.7) c�(t) =

∫ t

0

(t− s)v�(s)ds+ t
d

dt
c�(0) + c�(0)

and

d

dt
c�(t) =

∫ t

0

v�(s)ds+
d

dt
c�(0),

with the initial data c�(0) and d
dtc

�(0) given by the orthogonal projections onto
the basis {qj} of the initial data u0 and v0 respectively. Thus the original problem
(3.6) is transformed to the Volterra integral equation

v�(t) + Λ(t)

∫ t

0

(t− s)v�(s)ds+ aΛ(t)β1 ∗ v�(t)− A(t)

∫ t

0

v�(s)ds = g(t),

where β1 is the inverse Laplace transform of

β̂1(z) := z−1β̂(z)

and

g(t) := −Λ(t)c�(0) +A(t)
d

dt
c�(0)−

(
t+ a

∫ t

0

β(s)ds

)
Λ(t)

d

dt
c�(0).

Thus the Volterra integral equation can be written as

v�(t) +

∫ t

0

K(t, s)v�(s)ds = g(t)

with

K(t, s) = Λ(t)(t− s+ aβ1(t− s))−A(t).

From the behaviour of its Laplace transform, we know that β1 is analytic for t > 0
with a singularity of the type tμ at t = 0, thus the kernel K(t, s) is continuous and
so is the right-hand side g. The existence of a unique continuous solution follows
from [7, Theorem 2.1.7]. The C2[0, T ]-solution c� of the original problem (3.6) is
then obtained from v� and (3.7).

The existence of a solution of (3.5) is obtained by taking the limit as 
 → ∞ in
the Galerkin approximation and using a priori estimates, uniformly in 
, similar to
the ones in Lemma 3.2. �
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Lemma 3.2. For solution of (3.5) we have the following a priori estimates

(3.8)

‖Δu‖2L∞(0,T ;L2(Ω)) + κ‖∂t∇u‖2L∞(0,T ;L2(Ω)) ≤
[
‖Δu0‖2L2(Ω) + ξ‖∇v0‖2L2(Ω)

]
× exp

{
T
CΩ

κ

[
‖∂tũ‖L∞(ΩT ) + ‖∂tΔũ‖L∞(0,T ;L2(Ω))

+
1

κ
‖∇ũ‖L∞(ΩT )

(
‖∇ũ‖L∞(ΩT ) + ‖∂t∇ũ‖L∞(0,T ;L2(Ω))

)]}
,

‖∇Δu‖2L∞(0,T ;L2(Ω)) + κ‖∂tΔu‖2L∞(0,T ;L2(Ω)) ≤
[
‖∇Δu0‖2L2(Ω)

+ ξ‖Δv0‖2L2(Ω)

]
exp

{
T
CΩ

κ

[
‖∂tΔũ‖L∞(0,T ;L2(Ω)) +

1

κ

[
‖Δ∇ũ‖L∞(0,T ;L2(Ω))

+ ‖∇ũ‖L∞(ΩT )(1 + ‖Δũ‖L∞(0,T ;L2(Ω)))
](
1 + ‖∂t∇ũ‖L∞(0,T ;L2(Ω))

)
+

1

κ2
‖Δ∇ũ‖2L∞(0,T ;L2(Ω))

(
1 + ‖Δũ‖2L∞(0,T ;L2(Ω))

)]}
,

together with

(3.9)

‖β ∗Δ∂tu‖2L2(ΩT ) ≤
[
‖Δu0‖2L2(Ω) + ξ‖∇v0‖2L2(Ω)

](
T
CΩ

κ

[ 1
κ
‖∇ũ‖L∞(ΩT )

+‖∂tΔũ‖L∞(0,T ;L2(Ω))

][
1 +

1

κ
‖∇ũ‖L∞(ΩT )

]
exp

{
T
CΩ

κ

[ 1
κ
‖∇ũ‖L∞(ΩT )

+‖∂tΔũ‖L∞(0,T ;L2(Ω))

][
1 +

1

κ
‖∇ũ‖L∞(ΩT )

]}
+

1

a

)
,

and

κ2‖∂2
t∇u‖2L2(ΩT ) + ‖β ∗Δ∇∂tu‖2L2(ΩT ) ≤

[
‖∇Δu0‖2L2(Ω) + ξ‖Δv0‖2L2(Ω)

]
×

[
TCΩ

(
1 +

1

κ

[
‖∂tΔũ‖L∞(0,T ;L2(Ω)) +

1

κ

[
‖∇ũ‖L∞(ΩT )(1 + ‖Δũ‖L∞(0,T ;L2(Ω)))

+ ‖Δ∇ũ‖L∞(0,T ;L2(Ω))

][
1 + ‖∂t∇ũ‖L∞(0,T ;L2(Ω))

]
+

1

κ2
‖Δ∇ũ‖2L∞(0,T ;L2(Ω))

[
1

+ ‖Δũ‖2L∞(0,T ;L2(Ω))

]])
exp

{
T
CΩ

κ

[
‖∂tΔũ‖L∞(0,T ;L2(Ω)) +

1

κ

[
‖Δ∇ũ‖L∞(0,T ;L2(Ω))

+ ‖∇ũ‖L∞(ΩT )

(
1 + ‖Δũ‖L∞(0,T ;L2(Ω))

)](
1 + ‖∂t∇ũ‖L∞(0,T ;L2(Ω))

)
+

1

κ2
‖Δ∇ũ‖2L∞(0,T ;L2(Ω))

(
1 + ‖Δũ‖2L∞(0,T ;L2(Ω))

)]}
+

1

a

]
,

where ξ = 1 + 2kCΩb, ũ ∈ K, b and κ as in the definition of K, ΩT = (0, T )× Ω,
and the constant CΩ > 0 includes constants from the embedding inequalities and
hence depends on the domain Ω.

Proof. Considering ∂tu as a test function in the weak formulation of (3.5) yields

κ‖∂tu‖2L∞(0,T ;L2(Ω)) + ‖∇u‖2L∞(0,T ;L2(Ω))

≤
[
(1 + 2kCΩb)‖v0‖2L2(Ω) + ‖∇u0‖2L2(Ω)

]
exp

{
T
2k

κ
‖∂tũ‖L∞(ΩT )

}
,

where 1 − 2k‖ũ‖L∞((0,T )×Ω)) ≥ 1 − 2kCΩb ≥ κ and we used Lemma 2.1 in the

simpler form
∫ t

0
β ∗ ∂t∇u · ∂t∇u dτ ≥ 0.
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Considering −Δ∂tu as a test function for (3.5) and using estimates in Lemma 2.1
we obtain

κ‖∂t∇u‖2L∞(0,T ;L2(Ω)) + ‖Δu‖2L∞(0,T ;L2(Ω)) ≤
[
ξ‖∇v0‖2L2(Ω) + ‖Δu0‖2L2(Ω)

]
× exp

{
T
CΩ

κ

[
‖∂tũ‖L∞(ΩT ) + ‖∂t∇ũ‖L∞(0,T ;L4(Ω))

+
1

κ
‖∇ũ‖L∞(ΩT )

(
1 + ‖∂tũ‖L∞(0,T ;L4(Ω)) +

1

κ
‖∇ũ‖L∞(ΩT )

)]}
and

‖β ∗Δ∂tu‖2L2(ΩT ) ≤
[
ξ‖∇v0‖2L2(Ω) + ‖Δu0‖2L2(Ω)

][
T
CΩ

κ

(
‖∂t∇ũ‖L∞(0,T ;L4(Ω))

+ ‖∂tũ‖L∞(ΩT ) +
1

κ
‖∇ũ‖L∞(ΩT )

[
1 + ‖∂tũ‖L∞(0,T ;L4(Ω)) +

1

κ
‖∇ũ‖L∞(ΩT )

])
× exp

{
T
CΩ

κ

(
‖∂tũ‖L∞(ΩT ) + ‖∂t∇ũ‖L∞(0,T ;L4(Ω))

+
1

κ
‖∇ũ‖L∞(ΩT )

[
1 + ‖∂tũ‖L∞(0,T ;L4(Ω)) +

1

κ
‖∇ũ‖L∞(ΩT )

])}
+

1

a

]
.

Applying Δ to (3.5) and taking Δ∂tu as a test function in the weak formulation of
the problem implies

κ‖∂tΔu‖2L∞(0,T ;L2(Ω)) + ‖Δ∇u‖2L∞(0,T ;L2(Ω)) ≤
[
ξ‖Δv0‖2L2(Ω) + ‖Δ∇u0‖2L2(Ω)

]
× exp

{
T
CΩ

κ

(
‖∂tΔũ‖L∞(0,T ;L2(Ω)) +

1

κ

[
‖Δũ‖L∞(0,T ;L4(Ω))

(
‖∂t∇ũ‖L∞(0,T ;L2(Ω))

+ 1
)
+ ‖∇ũ‖L∞(ΩT )

(
‖∇ũ‖L∞(0,T ;L4(Ω)) + 1

)(
‖∂t∇ũ‖L∞(0,T ;L2(Ω)) + 1

)]
+

1

κ2

[
‖Δũ‖2L∞(0,T ;L4(Ω)) + ‖∇ũ‖2L∞(ΩT )

(
1 + ‖∇ũ‖2L∞(0,T ;L4(Ω))

)])}
.

Using the Sobolev embedding inequality yields the second estimate in (3.8). From
those estimates, using the weak formulation of the problem, we also obtain the
estimate for β ∗ Δ∇∂tu in L2((0, T ) × Ω). The strong formulation of the equa-
tion in (3.5), see (6.9) in Appendix, together with the estimates for ∇Δu in
L∞(0, T ;L2(Ω)), ∂tu in L∞(0, T ;H2(Ω)), and β ∗ Δ∇∂tu in L2((0, T ) × Ω), im-
plies the estimate for ∂2

t∇u in L2((0, T )×Ω). See appendix for more details on the
derivation of a priori estimates. �
Remark 3.3. For simplicity of presentation we have skipped the Galerkin approxi-
mation step in the above proof. Note that in the Galerkin approximation, using the
notation from Theorem 3.1, ∂tΔu� satisfies the zero Dirichlet boundary condition
and hence boundary integrals vanish when integrating by parts. Notice that the
limit as 
 → ∞ in H1-norm of the Galerkin approximation Δu� yields Δu = 0 on
∂Ω and in the estimates in Lemma 3.2 the equivalence between the H1-norm of Δu
and the semi-norm ‖∇Δu‖L2 is used.

Using a priori estimates proven in Lemma 3.2 and applying the Banach fixed
point theorem yield local existence of a unique solution of nonlinear problem (2.7).

Theorem 3.4. For u0 ∈ Ḣ3(Ω) and v0 ∈ H2(Ω) ∩H1
0 (Ω), with

‖Δu0‖2L2(Ω) + (1 + 2kCΩb)‖∇v0‖2L2(Ω) ≤ ηb2,

for any η ∈ (0, 1), there exists time interval T = T (R, b, η) > 0 such that u ∈ K is
a unique solution of (2.7).
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Proof. For R2 = CR

[
‖∇Δu0‖2L2(Ω) + (1 + 2kCΩb)‖Δv0‖2L2(Ω)

]
and T = T (R, b, η)

such that

exp{TCΩ(R+R2)} ≤ 1/η and exp{TCΩ(R+R2 +R3 +R4)} ≤ CR,

estimates in (3.8) imply u = T (ũ) ∈ K for ũ ∈ K.
To show that T : K → K is a contraction we consider (3.5) for ũ1 and ũ2 in K

and, taking −Δ∂t(u1−u2) as a test function for the difference of the corresponding
equations, obtain

κ‖∇∂t(u1 − u2)‖2L∞(0,T ;L2(Ω)) + ‖Δ(u1 − u2)‖2L∞(0,T ;L2(Ω))

≤ CΩ

([
‖∂tΔu2‖2L2(ΩT ) +

1

κ
‖∂t∇u2‖2L2(ΩT )

]
‖∇∂t(ũ1 − ũ2)‖2L∞(0,T ;L2(Ω))

+
1

κ

[
‖Δ∇u2‖2L2(ΩT ) + ‖∂t∇ũ2‖2L2(0,T ;H1(Ω)) + ‖Δu2‖2H1(0,T ;L2(Ω))

+ ‖β ∗Δ∂tu2‖L1(0,T ;H1(Ω))

(
1 + ‖∇ũ2‖L∞(ΩT )

)]
‖ũ1 − ũ2‖2L∞(0,T ;H2(Ω))

)
× exp

{CΩ

κ

(
‖∂tΔũ1‖L1(0,T ;L2(Ω)) +

1

κ

[
‖∇ũ2‖2L∞(ΩT )‖∂t∇u2‖2L2(ΩT )

+ ‖β ∗Δ∂tu2‖L1(0,T ;H1(Ω))(1 + ‖∇ũ2‖L∞(ΩT )) + T
(
1 + ‖∇ũ1‖2L∞(ΩT )

+ ‖ũ2‖2W 1,∞(ΩT ) + ‖∂tu2‖2L∞(ΩT )

)
+ ‖∇ũ1‖L∞(ΩT )‖∂t∇ũ1‖L1(0,T ;L2(Ω))

]
+

1

κ2
‖∇ũ1‖2L2(0,T ;L∞(Ω))

)}
≤ CΩ[TR

2 + T
1
2 (R+R2)]

× exp
{
CΩ

[
T (1 +R+R2 +R4) + T

1
2 (R3 +R4) exp{CΩT (R+R2)}

]}
×

(
κ‖∇∂t(ũ1 − ũ2)‖2L∞(0,T ;L2(Ω)) + ‖Δ(ũ1 − ũ2)‖2L∞(0,T ;L2(Ω))

)
.

Then for T such that CΩ[TR
2+T

1
2 (R+R2)] exp

{
CΩ

[
T (1+R+R2+R4)+T

1
2 (R3+

R4) exp{CΩT (R + R2)}
]}

< 1 we have that T : K → K is a contraction. Thus
applying the Banach fixed point theorem, and iterating over time, yields existence
of a unique solution of the nonlinear problem (2.7). �

4. Trapezoidal discretization

In this section we present analysis for the numerical scheme for problem (2.7).
The time semi-discretization considered here is based on trapezoidal time-stepping
with uniform time-step Δt > 0 and n = 1, 2 . . . , N , with T = NΔt,

(4.1) (1− 2k{u}n)D2un −Δ{u}n − aβ ∗Δt DΔun = 2k(Dun)
2,

where un ∈ H1
0 (Ω) ∩H2(Ω) and

Dun =
1

2Δt
(un+1 − un−1), D2un =

1

Δt2
(un+1 − 2un + un−1),

{u}n =
1

4
(un+1 + 2un + un−1), D̃un =

1

Δt
(un+1 − un),

with Du0 := v0, and [β ∗Δt g]n (with the square brackets in most places left-

out) a convolution quadrature approximation of
∫ tn
0

β(tn − τ )g(τ )dτ . We will use
convolution quadrature based on the second order backward difference formula
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(BDF2) [20–22] which results in the discrete convolution

[β ∗Δt v]n =
n∑

j=0

ωn−jvj ,

with convolution weights ωj given by the generating function

β̂

(
δ(ζ)

Δt

)
=

∞∑
j=0

ωjζ
j , δ(ζ) = (1− ζ) +

1

2
(1− ζ)2.

For v that is sufficiently smooth and with sufficiently many zero derivatives at t = 0,
we have that [β ∗Δt v]n = β ∗v(tn)+O(Δt2), whereas for v(t) = tα and real α > −1

(4.2)
∣∣∣[β ∗Δt v]n − β ∗ v(tn)

∣∣∣ ≤
{
Ctμ−1

n Δtα+1 for − 1 < α ≤ 1,

Ctμ+α−2
n Δt2 for α ≥ 1,

for n = 1, . . . ; see [23, Theorem 2.2].
Alternatively, we can use the corrected CQ formula

(4.3) [β∗̃Δtv]n := [β ∗Δt v]n + ωn,0v0,

where ωn,0 is chosen so that the formula is exact for constant function, i.e.,

ωn,0 :=

∫ tn

0

β(τ )dτ − [β ∗Δt 1]n =

∫ tn

0

β(τ )dτ −
n∑

j=0

ωj .

Note the trivial but useful fact that β∗̃Δtv ≡ β ∗Δt v if v0 = 0. From (4.2) and the
definition of ωn,0 it follows that we have the stability bound

(4.4) |ωn,0| ≤ Ctμ−1
n Δt

for n ≥ 1. The first correction weight is ω0,0 = −ω0, where ω0 = β̂(δ(0)/Δt) =

β̂
(

3
2Δt

)
∼ (2/3)μΔtμ as Δt → 0. In the estimates below, we will only require the

fact that ωn,0 are bounded by a constant independent of Δt for all n ≥ 0. The
semi-discretisation with the corrected CQ formula reads

(4.5) (1− 2k{u}n)D2un −Δ{u}n − aβ∗̃ΔtDΔun = 2k(Dun)
2.

When using the corrected scheme, we will further assume that v0 ∈ H3(Ω).
A crucial property of (the non-corrected) convolution quadrature, see [5,

Lemma 2.1] and [6, Theorem 2.25], is that (2.5) implies

(4.6)
∞∑
j=0

�2j 〈vj , [β ∗Δt v]j〉 ≥ Cβ

∞∑
j=0

�2j‖[β ∗Δt v]j‖2L2 ,

for � = e−σΔt, with σ > 0, and

Cβ := (σ̃ + r)μ (if β = βA), Cβ := 1 (if β = βB),

where σ̃ = C2 min(1, σ). Thus, if β = βA with r > 0 or β = βB, we can set σ = 0
(i.e., � = 1 and σ̃ = 0) and still obtain positivity of the left-hand side in (4.6).

For the corrected version, all we can say is that

(4.7)
∞∑
j=0

�2j 〈vj , [β∗̃Δtv]j〉 ≥ Cβ

∞∑
j=0

�2j‖[β ∗Δt v]j‖2L2 +
∞∑
j=0

�2jωj,0 〈vj , v0〉 .
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To initiate the iterations in (4.1) we set

(4.8) u1 = u0 +Δtv0 +
1

2
Δt2∂2

t u(0),

where we can determine ∂2
t u(0) from the equation (2.7)

(4.9) ∂2
t u(0) =

1

1− 2ku0

(
Δu0 + 2k(v0)

2
)
.

Lemma 4.1. Under the assumptions on the initial data (2.8), along with u0 ∈
H4(Ω) and ∥∥∥Δu0 + u1

2

∥∥∥2

L2(Ω)
+ (1 + 2kCΩb)

∥∥∥∇u1 − u0

Δt

∥∥∥2

L2(Ω)
≤ ηb2,

where 0 < CΩb ≤ (1− κ)/2k, with 0 < κ < 1, and the constant CΩ is the constant
in (3.1) and (3.3), we have the following stability estimates for the scheme (4.1)

(4.10)

κ sup
1≤n≤N−1

‖D̃∇un‖2L2(Ω) + sup
1≤n≤N−1

‖Δ(u)n‖2L2(Ω) ≤ b2,

κ sup
1≤n≤N−1

‖D̃Δun‖2L2(Ω) + sup
1≤n≤N−1

‖∇Δ(u)n‖2L2(Ω) ≤ R2,

where (u)n = (un+1 + un)/2 and R2 = CR

[
‖Δ∇(u)0‖2L2 + (1 + 2kCΩb)‖D̃Δu0‖2L2

]
with CR > 1.

Proof. In order to analyse the system we need that 1 − 2k{u}n ≥ κ > 0 for some
(fixed) κ ∈ (0, 1). Thus similarly to the continuous case, we consider the fixed-point
iteration

(4.11) (1− 2kdn)D
2un −Δ{u}n − aβ ∗Δt DΔun = 2kvnDun,

where dn = {ũ}n and vn = Dũn for ũn ∈ Ḣ3(Ω) ∩ H1
0 (Ω) satisfying (4.10) (with

un replaced by ũn).
To derive the stability estimates we first test (4.11) with �2nDun, � = e−Δt/T ,

and estimate each term separately. For the first term we have

Δt

N−1∑
n=1

�2n
〈
(1− 2kdn)D

2un, Dun

〉

≥1

2

∫
Ω

�2(N−1)(1− 2kdN−1)

(
uN − uN−1

Δt

)2

dx− 1

2

∫
Ω

(1− 2kd1)

(
u1 − u0

Δt

)2

dx

+ k

∫
Ω

N−2∑
n=1

�2(n+1)(dn+1 − dn)
(un+1 − un

Δt

)2

dx

=
1

2

∫
Ω

�2(N−1)(1− 2kdN−1)
(uN − uN−1

Δt

)2

dx− 1

2

∫
Ω

(1− 2kd1)
(u1 − u0

Δt

)2

dx

+ kΔt

∫
Ω

N−2∑
n=1

�2(n+1)

(
(ũ)n+1 − (ũ)n−1

2Δt

) (
D̃un

)2
dx.

The last term in the estimate above can be bounded by

kΔt

N−2∑
n=1

�2(n+1)
∥∥D(ũ)n

∥∥
L∞

∥∥D̃un

∥∥2

L2 .

Licensed to Heriot-Watt University. Prepared on Mon Oct 21 09:45:19 EDT 2024 for download from IP 137.195.27.23.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TIME-FRACTIONAL WESTERVELT EQUATION 2723

Using 1−2kdn ≥ κ > 0, together with the estimates for the convolution quadrature,
yields

EN−1

≤ E0 − CβΔt

N−1∑
n=1

�2n
∣∣β ∗Δt Dun

∣∣2
H1

+ kΔt
N−2∑
n=1

�2(n+1)
∥∥D(ũ)n

∥∥
L∞

∥∥D̃un

∥∥2

L2 + 2kΔt
N−1∑
n=1

�2n
∥∥Dũn

∥∥
L∞

∥∥Dun

∥∥2

L2

≤ E0 − CβΔt

N−1∑
n=1

�2n
∣∣β ∗Δt Dun

∣∣2
H1 + C sup

0≤n≤N−1

∥∥D̃ũn

∥∥
L∞Δt

N−1∑
n=0

�2n
∥∥D̃un

∥∥2

L2 ,

where for n ≥ 1

En =
1

2
�2n

∣∣∣∣un+1 + un

2

∣∣∣∣
2

H1

+
1

2

∫
Ω

�2n(1− 2kdn)
∣∣D̃un

∣∣2dx
and

E0 =
1

2

∣∣∣∣u1 + u0

2

∣∣∣∣
2

H1

+
1

2

∫
Ω

(1− 2kd1)
∣∣D̃u0

∣∣2dx.
Then the discrete Grönwall inequality ensures

EN−1 ≤ E0 exp
{
C sup

0≤n≤N−1

∥∥D̃ũn

∥∥
L∞Δt

N−1∑
n=0

�2n
∥∥∥∥ 1

1− 2kdn

∥∥∥∥
L∞

}
.

When considering the corrected convolution quadrature, we will have the adi-
tional term

(4.12)

Δt

N−1∑
n=1

�2n
∣∣ωn,0〈∇Dun,∇Du0〉

∣∣
≤ CΔt

N−1∑
n=1

�2n
[δ
2

(
‖∇(u)n+1‖2L2 + ‖∇(u)n‖2L2

)
+ Cδ‖v0‖2H1

]
≤ δ sup

n
‖∇(u)n‖2L2 + C,

for any fixed δ > 0. Then the first term can be subtracted from the corresponding
term on the left-hand side.

Taking −�2nΔDun as a test function in (4.11) and integrating by parts in the
first term on the left-hand side and in the right-hand side yield

(4.13)

Δt
N−1∑
n=1

�2n
[〈
(1− 2kdn)D

2∇un, D∇un

〉
+

〈
Δ{u}n,ΔDun

〉
+

〈
aβ ∗Δt DΔun, DΔun

〉]

= 2kΔt

N−1∑
n=1

�2n
〈
Dun∇vn +D∇unvn +∇dnD

2un, D∇un

〉
.
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Using equation (4.11) we rewrite the last term on the right-hand side as

〈
∇dnD

2un, D∇un

〉
=

〈 1

1− 2kdn
∇dn

(
Δ{u}n + aβ ∗Δt DΔun

)
, D∇un

〉
+2k

〈 1

1− 2kdn
∇dnDunvn, D∇un

〉
.

Similar as above for the first term in (4.13) we have

Δt
N−1∑
n=1

�2n
[〈
(1− 2kdn)D

2∇un, D∇un

〉

≥ 1

2
�2(N−1)

∫
Ω

(
1− 2kdN−1

)∣∣∇D̃uN−1

∣∣2dx− 1

2

∫
Ω

(
1− 2kd1

)∣∣∇D̃u0

∣∣2dx
+ kΔt

N−2∑
n=1

�2(n+1)

∫
Ω

D(ũ)n
∣∣∇D̃un

∣∣2dx.
For the second and third terms in (4.13) we have

Δt

N−1∑
n=1

�2n
[〈
Δ{u}n,ΔDun

〉
+

〈
aβ ∗Δt DΔun, DΔun

〉]

≥ 1

2
�2(N−1)

∥∥∥Δ(uN + uN−1)

2

∥∥∥2

L2
− 1

2

∥∥∥Δ(u1 + u0)

2

∥∥∥2

L2

+ CβΔt

N−1∑
n=1

�2n
∥∥β ∗Δt DΔun

∥∥2

L2 .

The terms on the right-hand side are estimated as

Δt
N−1∑
n=1

�2n
[〈 ∇dn

1− 2kdn
Δ{u}n, D∇un

〉

+ a
〈 ∇dn
1− 2kdn

β ∗Δt DΔun, D∇un

〉
+ 2k

〈 ∇dn
1− 2kdn

Dunvn, D∇un

〉]

≤ ςΔt
N−1∑
n=1

�2n‖β ∗Δt DΔun‖2L2 + CΔt
N−1∑
n=1

�2n
∥∥∥ 1

1− 2kdn

∥∥∥
L∞

‖∇dn‖L∞

×
[
‖Δ{u}n‖2L2 + ‖D∇un‖2L2

(
1 + ‖vn‖L4 + C

∥∥∥ 1

1− 2kdn

∥∥∥
L∞

‖∇dn‖L∞

)]
,

where we assume ς ≤ Cβ/2, and

2kΔt

N−1∑
n=1

�2n
[〈
Dun∇vn, D∇un

〉
+

〈
D∇unvn, D∇un

〉]

≤ CΔt

N−1∑
n=1

�2n
(
‖vn‖L∞ + ‖∇vn‖L4

)
‖D∇un‖2L2 .
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Applying the discrete Grönwall inequality we obtain

(4.14)

∫
Ω

�2(N−1)(1− 2kdN−1)|D̃∇uN−1|2dx+ �2(N−1)‖Δ(u)N−1‖2L2

+ CβΔt

N−1∑
n=1

�2n ‖β ∗Δt DΔun‖2L2 ≤
[
ν‖D̃u0‖2L2 +

∥∥Δ(u)0
∥∥2

L2

]

× exp
{
CΔt

N−1∑
n=1

∥∥∥ 1

1− 2kdn

∥∥∥
L∞

[
‖∇vn‖L4 + ‖vn‖∞

+

∥∥∇dn
∥∥
L∞∥∥1− 2kdn
∥∥
L∞

(∥∥∥ 1

1− 2kdn

∥∥∥
L∞

∥∥∇dn
∥∥
L∞ + 1 + ‖vn‖L4

)]

≤
[
ν‖∇D̃u0‖2L2 + ‖Δ(u0 + u1)/2‖2L2

]
exp

{CΩ

κ
Δt

N−1∑
n=1

[
‖Δvn‖L2

+
1

κ2
‖∇Δdn‖2L2 +

1

κ

(
‖∇Δdn‖L2 + ‖∇Δdn‖2L2 + ‖∇vn‖2L2

)]}
,

where ν = 1 + k(‖ũ0‖L∞ + 2‖ũ1‖L∞ + ‖ũ2‖L∞)/2. Here we used (3.4) and that
Δdn = 0 on ∂Ω. Thus for

κ sup
1≤n≤N−1

‖Δvn‖2L2 + sup
1≤n≤N−1

‖∇Δdn‖2L2 ≤ R2,

and initial conditions

‖Δ(u)0‖2L2 + (1 + 2kCΩb)‖∇v0 + (1/2)Δt∇∂2
t u(0)‖2L2 ≤ ηb2,

and appropriate T > 0, such that

exp
{
CΩT (R/κ+ (R+ 2R2)/κ2 +R2/κ3)

}
≤ minn ρ

2(n−1)

η
,

we obtain

κ sup
1≤n≤N−1

‖D̃∇un‖2L2 + sup
1≤n≤N−1

‖Δ(u)n‖2L2 ≤ b2,

where 0 < κ ≤ 1− 2kCΩb and CΩ is the constant in (3.1) and (3.3). This ensures

‖{u}n‖L∞ ≤ 1

2
CΩ

(
‖(u)n‖H2 + ‖(u)n−1‖H2

)
≤ 1

2
CΩ

(
‖Δ(u)n‖L2 + ‖Δ(u)n−1‖L2

)
≤ CΩb for 1 ≤ n ≤ N − 1.

In the case of the corrected convolution quadrature the additional term is esti-
mated in the same way as in (4.12), with ΔDun and Δv0 instead of ∇Dun and
∇v0.

Applying the Laplace operator to (4.11) yields

(4.15)

(
1− 2kdn

)
D2Δun − 2kΔdnD

2un − 4k∇dnD
2∇un −Δ2{u}n

−aβ ∗Δt DΔ2un = 2k
(
DunΔvn +DΔunvn

)
+ 4k∇Dun∇vn.
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Considering �2nDΔun as a test function in (4.15), see Remark 3.3, we obtain

(4.16)

Δt
N−1∑
n=1

�2n
[〈(

1− 2kdn
)
D2Δun, DΔun

〉
+

〈
Δ∇{u}n,Δ∇Dun

〉
+a

〈
β ∗Δt DΔ∇un,Δ∇Dun

〉]

= 2kΔt
N−1∑
n=1

�2n
〈
ΔdnD

2un + 2∇dnD
2∇un, DΔun

〉

+2kΔt

N−1∑
n=1

�2n
〈
DunΔvn +DΔunvn + 2∇Dun∇vn, DΔun

〉
.

For the first term in the same way as above we obtain

Δt

N−1∑
n=1

�2n
〈
(1− 2kdn)D

2Δun, DΔun

〉
≥ kΔt

∫
Ω

N−2∑
n=1

�2(n+1)D(ũ)n|D̃Δun|2dx

+
1

2

∫
Ω

�2(N−1)
(
1− 2kdN−1

)
|D̃ΔuN−1|2dx− 1

2

∫
Ω

(
1− 2kd1

)
|D̃Δu0|2dx.

The second and third terms in (4.16) are estimates in the same way as above and
we have

Δt
N−1∑
n=1

�2n
[〈
Δ∇{u}n,Δ∇Dun

〉
+

〈
β ∗Δt DΔ∇Dun,Δ∇Dun

〉]

≥ 1

2
�2(N−1)

∥∥∥Δ∇(uN + uN−1)

2

∥∥∥2

L2
− 1

2

∥∥∥Δ∇(u1 + u0)

2

∥∥∥2

L2

+ CβΔt
N−1∑
n=1

�2n
∥∥β ∗Δt DΔ∇un

∥∥2

L2 .

For the last term on the right-hand side of (4.16) we obtain

Δt

N−1∑
n=1

�2n
∣∣∣〈DunΔvn +DΔunvn + 2∇Dun∇vn, DΔun

〉∣∣∣
≤ CΩΔt

N−1∑
n=1

�2n
(
‖Δvn‖L2 + ‖vn‖L∞ + ‖∇vn‖L4

)
‖ΔDun‖2L2 .

Here we used estimates (3.1) and (3.3). To estimate the first term on the right-hand
side of (4.16) we first use the equation (4.11) to write

D2un =
1

(1− 2kdn)

(
Δ{u}n + β ∗Δt DΔun + 2kDunvn

)
and

D2∇un =
1

(1− 2kdn)

(
Δ∇{u}n + β ∗Δt DΔ∇un + 2k

(
Dun∇vn +D∇unvn

))

+2k∇dn
1

(1− 2kdn)2

(
Δ{u}n + β ∗Δt DΔun + 2kDunvn

)
.
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Then, using the Sobolev embedding theorem, yields

Δt

N−1∑
n=1

�2n2k
〈
ΔdnD

2un, DΔun

〉

≤ CΔt
N−1∑
n=1

�2n
‖Δdn‖L4∥∥1− 2kdn

∥∥
L∞

[
‖vn‖L8‖Dun‖L8 + ‖Δ{u}n‖L4

]
‖DΔun‖L2

+Δt

N−1∑
n=1

�2n
[
C

∥∥∥ 1

1− 2kdn

∥∥∥2

L∞
‖Δdn‖2L4‖DΔun‖2L2 + ς‖β ∗Δt DΔun‖2L4

]

≤ CΔt
N−1∑
n=1

�2n
∥∥∥ 1

1− 2kdn

∥∥∥2

L∞

(
‖Δdn‖2L4 + ‖vn‖2L8

)
‖DΔun‖2L2

+ CΔt

N−1∑
n=1

�2n‖∇Δ{u}n‖2L2 + ςΔt

N−1∑
n=1

�2n‖β ∗Δt D∇Δun‖2L2

and

Δt

N−1∑
n=1

�2n
∣∣〈∇dnD

2∇un, DΔun〉
∣∣ ≤ CΔt

N−1∑
n=1

�2n
[

‖∇dn‖L∞∥∥1− 2kdn
∥∥
L∞

[
‖Δ∇{u}n‖L2

+ ‖Dun‖L∞‖∇vn‖L2 + ‖D∇un‖L4‖vn‖L4 + ‖β ∗Δt DΔ∇un‖L2

]

+
‖∇dn‖2L6∥∥1− 2kdn

∥∥2

L∞

[
‖Δ{u}n‖L6 + ‖β ∗Δt DΔun‖L6 + ‖Dun‖L∞‖vn‖L6

]]
‖DΔun‖L2

≤ CΩΔt

N−1∑
n=1

�2n
∥∥∥ 1

1− 2kdn

∥∥∥2

L∞

(∥∥∥ 1

1− 2kdn

∥∥∥2

L∞
‖∇dn‖4L6 + ‖∇dn‖4L6 + ‖∇dn‖2L∞

+ ‖∇vn‖2L2

)
‖DΔun‖2L2 +Δt

N−1∑
n=1

�2n
(
‖∇Δ{u}n‖2L2 + ς‖β ∗Δt D∇Δun‖2L2

)
.

Here we used (3.1), (3.4), and

‖Δw‖Lp ≤ CΩ‖Δw‖H1 ≤ CΩ‖∇Δw‖L2 , for 1 < p ≤ 6,

where Δw = 0 on ∂Ω. Choosing ς > 0 sufficiently small yields

�2(N−1)κ‖D̃ΔuN−1‖2L2 + �2(N−1)‖Δ∇(u)N−1‖2L2

+ CβΔt
N−1∑
n=1

�2n‖β ∗Δt DΔ∇un‖2L2 ≤ ν‖D̃Δu0‖2L2 + ‖Δ∇(u)0‖2L2

+ CΩΔt

N−1∑
n=1

�2n
(
‖Δ∇{u}n‖2L2 +

∥∥∥ 1

1− 2kdn

∥∥∥2

L∞

[
‖Δvn‖2L2 + ‖∇Δdn‖2L2

+
(
1 +

∥∥∥ 1

1− 2kdn

∥∥∥2

L∞

)
‖Δdn‖4L2

]
‖DΔun‖2L2

)
.

Considering T such that[
ν‖D̃Δu0‖2L2 + ‖Δ∇(u)0‖2L2

]
exp

{
CΩT max

{
1,

R2 +R4

κ3
+

R4

κ5

}}
≤ min

n
�2(n−1)R2,
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and using the discrete Grönwall inequality, we obtain

�2nκ‖D̃Δun‖2L2 + �2n‖Δ∇(u)n‖2L2 ≤ �2nR2 for all n = 1, . . . , N − 1,

and then also

Δt
N−1∑
n=1

�2n‖β ∗Δt DΔ∇un‖2L2 ≤ C.

In the case of the corrected convolution quadrature the additional term is esti-
mated in the same way as in (4.12), with ∇ΔDun and ∇Δv0 instead of ∇Dun and
∇v0.

As next we have to show the contraction property for the map ũn → un. Consid-
ering the equation for wn = u1

n−u2
n, where u

j
n satisfies (4.11) for ũj

n, with j = 1, 2,
taking −�2nΔDwn as a test function and summing over n, yields

(4.17)

Δt
N−1∑
n=1

�2n
[〈
(1− 2kd1n)D

2∇wn, D∇wn

〉
+

〈
Δ{w}n,ΔDwn

〉
+

〈
aβ ∗Δt DΔwn, DΔwn

〉]

= 2kΔt
N−1∑
n=1

[
�2n

〈
Dwn∇v1n +D∇wnv

1
n +∇d1nD

2wn, D∇wn

〉
+ �2n

〈
(d1n − d2n)D

2∇u2
n +∇(d1n − d2n)D

2u2
n, D∇wn

〉
+ �2n

〈
(v1n − v2n)D∇u2

n +∇(v1n − v2n)Du2
n, D∇wn

〉]
,

where djn = {ũj}n and vjn = Dũj
n for j = 1, 2. Performing estimates similar as

above we obtain

ρ2(N−1)κ‖∇D̃(u1
N−1 − u2

N−1)‖2L2 + ρ2(N−1)‖Δ
(
u1 − u2

)
N−1

‖2L2

+ (2Cβ − ς)Δt

N−1∑
n=1

�2n‖β ∗Δt DΔ
(
u1
n − u2

n

)
‖2L2

≤ CΩΔt
N−1∑
n=1

�2n
[
‖DΔu2

n‖2L2 + ‖D2∇u2
n‖L2

][
‖Δ(d1n − d2n)‖2L2 + ‖∇(v1n − v2n)‖2L2

]

+ CΩΔt

N−1∑
n=1

�2n
(
‖Δ

(
u1 − u2

)
n
‖2L2 +

[
1 + ‖Δv1n‖L2 +

1

κ
‖∇d1n‖L∞‖∇v1n‖L2

+
1

κ2
‖∇d1n‖2L∞

(
1 + ‖D2∇u2

n‖L2

)
+ ‖D2∇u2

n‖L2

]
‖∇D̃(u1

n − u2
n)‖2L2

)

+ CΔt

N−2∑
n=1

�2(n+1)‖D(ũ1)n‖L∞‖∇D̃(u1
n − u2

n)‖2L2 .

Applying the discrete Grönwall inequality we obtain the contraction property for an
appropriate τ = NΔt. Iterating over the time interval we obtain that there exists
a fixed point of the map given by equation (4.11) and the corresponding stability
conditions. �

5. Error estimate

As next we derive the error estimates for the time-discretization scheme (4.11).
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5.1. Expected smoothness at t = 0. Consider first the linear equation

(5.1)
1

c2
∂2
t u−Δu− aβ ∗Δ∂tu = f,

with smooth f . The choice of β (either βA or βB) implies that for k ∈ N0∫ t

0

β(t− τ )τkdτ ∼ 1

Γ(μ)

∫ t

0

(t− τ )μ−1τkdτ =
Γ(k + 1)

Γ(k + 1 + μ)
tk+μ as t → 0+.

Considering similar arguments as in [3, Remark 2.10], we thus expect that the
behaviour at t = 0 of the solution to the linear problem to be given by

∂2
t u(t) = c2

(
f +Δu0 +

1

Γ(1 + μ)
tμΔv0 + o(tμ)

)
.

In the nonlinear case, as long as no singularity develops and 2ku < 1 continues
to hold, we expect the singularity at t = 0 to be of the same type

∂2
t u(t) ∼ w0 + z0t

μ + o(tμ),

where μ ∈ (0, 1). This motivates the following assumption on the smoothness of
the solution that will allow us to develop realistic error estimates.

Assumption 5.1. Assume that

u ∈ C2([0, T ];H2(Ω)) ∩ C3((0, T ];H2(Ω)) ∩ C4((0, T ];L2(Ω))

and that there exist constants ck ≥ 0, for k = 1, . . . , 4, such that

‖∂k
t u‖H2(Ω) ≤ C(1 + ckt

2+μ−k) for t ∈ (0, T ] and k = 1, 2, 3,

‖∂4
t u‖L2(Ω) ≤ C(1 + c4t

μ−2) for t ∈ (0, T ].

In what follows, for u ∈ C[0, T ] we shall use the following notation

Du(tn) =
u(tn+1)− u(tn−1)

2Δt
, D̃u(tn) =

u(tn+1)− u(tn)

Δt
,

D2u(tn) =
u(tn+1)− 2u(tn) + u(tn−1)

Δt2
, for tn ∈ [Δt, T −Δt],

{u}(tn) =
1

4
(u(tn+1) + 2u(tn) + u(tn−1)) , for tn ∈ [Δt, T −Δt].

We will require Lemma 5.2 proved in [3] for β = βA and r = 0.

Lemma 5.2. For u ∈ C3(0, T ] and any tn ∈ [Δt, T ]

(a)

|β ∗ ∂tu(tn)− β ∗Δt Du(tn)|

≤ C

{
tμ−1
n ∂tu(Δt)Δt+Δt2

(
∂2
t u(Δt)tμ−1

n +

∫ tn

Δt

(tn − τ )μ−1|∂3
t u(τ )|dτ

)}
.

(b)

|β ∗ ∂tu(tn)− β∗̃ΔtDu(tn)| ≤ CΔt2
(
∂2
t u(Δt)tμ−1

n +

∫ tn

Δt

(tn − τ )μ−1|∂3
t u(τ )|dτ

)
.

Proof. The result for β = βA and r = 0, i.e., β = 1
Γ(μ) t

μ−1, is shown in [3,

Lemma 4.4] and [3, Lemma 4.5] respectively. Looking closely at the proof as well
as [3, Lemma 4.2] and [23, Theorem 2.1], it can be seen that the only property of
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the kernel used is |β̂(z)| ≤ C|z|−μ, z /∈ C \ (−∞, 0], which holds for both βA and
βB; see (2.4). �

Theorem 5.3. Let u be the solution of (4.1) satisfying Assumption 5.1 and with
initial data satisfying the conditions of Lemma 4.1. Let un be the solution of the
semi-discrete scheme. If the uncorrected CQ is used, the error wn = un − u(tn)
satisfies the estimate

(5.2) sup
1≤n≤N−1

‖D̃wn‖L2(Ω) + sup
1≤n≤N−1

‖∇(w)n‖L2(Ω) = O(Δt).

If the corrected CQ is used the error bound becomes

(5.3) sup
1≤n≤N−1

‖D̃wn‖L2(Ω) + sup
1≤n≤N−1

‖∇(w)n‖L2(Ω) = O(Δt1+μ).

Proof. Consider the difference between the solution and approximation denoted by
wn = un − u(tn) to obtain

(5.4)

(
1− 2k{u}n

)
D2wn −Δ{wn}n − β ∗Δt ΔDwn = 2kDwn

(
Dun +Du(tn)

)
+2k{w}nD2u(tn) + εn + σn + δn + κn + θn,

where

εn = (1− 2ku(tn))
(
D2u(tn)− ∂2

t u(tn)
)

σn = 2k
(
{u}(tn)− u(tn)

)
D2u(tn),

δn = β ∗Δt ΔDu(tn)− β ∗Δ∂tu(tn),

κn = Δ
(
{u}(tn)− u(tn)

)
,

θn = 2k[(Du(tn))
2 − (∂tu(tn))

2].

Considering Dwn as a test function in a weak formulation of (5.4) and summing
over n = 1, . . . , N − 1 yield
(5.5)

Δt

N−1∑
n=1

[〈(
1− 2k{u}n

)
D2wn, Dwn

〉
+

〈
∇{wn}n,∇Dwn

〉]

+Δt
N−1∑
n=1

a
〈
β ∗Δt ∇Dwn,∇Dwn

〉
= 2kΔt

N−1∑
n=1

〈
Dwn

[
Dun +Du(tn)

]
, Dwn

〉

+ 2kΔt

N−1∑
n=1

〈
{w}nD2u(tn), Dwn

〉
+Δt

N−1∑
n=1

〈
εn + σn + δn + κn + θn, Dwn

〉
.

Using the boundedness of Dun and Du(tn) we obtain〈
Dwn

(
Dun +Du(tn)

)
, Dwn

〉
≤ C

(
‖Dun‖L∞ + ‖∂tu‖L∞

)
‖Dwn‖2L2 .

Similarly using that D2u(tn) ∈ L4(Ω), together with the Sobolev embedding in-
equality, we have〈

{w}nD2u(tn), Dwn

〉
≤ C‖D2u(tn)‖L4

(
‖{w}n‖2L4 + ‖Dwn‖2L2

)
≤ C‖∂2

t u‖L4

(
‖∇(w)n‖2L2 + ‖∇(w)n−1‖2L2 + ‖Dwn‖2L2

)
.
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The last term in (5.5) we can write as

Δt

N−1∑
n=1

∣∣∣〈εn + σn + δn + κn + θn, Dwn

〉∣∣∣ ≤ C
[(

Δt

N−1∑
n=1

‖εn‖L2

)2

+
(
Δt

N−1∑
n=1

‖σn‖L2

)2

+
(
Δt

N−1∑
n=1

‖δn‖L2

)2

+
(
Δt

N−1∑
n=1

‖κn‖L2

)2

+
(
Δt

N−1∑
n=1

‖θn‖L2

)2]
+ ς sup

1≤n≤N−1
‖Dwn‖2L2 .

Assumption 5.1 allows us to bound the perturbation terms as in [3] by

Δt

N−1∑
n=1

‖εn‖L2 =Δt

N−1∑
n=1

∥∥(1−2ku(tn))
[
D2u(tn)−∂2

t u(tn)
]∥∥

L2

≤ CΔt

∫ 2Δt

0

‖∂3
t u‖L2dt+CΔt2

∫ T

Δt

‖∂4
t u‖L2dt≤CΔt2(1+(c3+c4)Δtμ−1),

Δt

N−1∑
n=1

‖σn‖L2 =Δt

N−1∑
n=1

∥∥[
{u}(tn)−u(tn)

]
D2u(tn)

∥∥
L2 =Δt

N−1∑
n=1

Δt2

4
‖D2u(tn)‖2L4

≤ CΔt2‖∂2
t u‖2L2(0,T ;L4(Ω)) ≤ CΔt2,

where we used that ∂2
t u ∈ L2(0, T ;H1(Ω)). Using the assumption that

‖Δ∂2
t u‖L1(0,T ;L2(Ω))

is bounded yields

Δt
N−1∑
n=1

‖κn‖L2 = Δt
N−1∑
n=1

‖Δ({u}(tn)− u(tn))‖L2

≤ CΔt2‖Δ∂2
t u‖L1(0,T ;L2(Ω)) ≤ CΔt2.

Notice that estimate for ‖Δ∂2
t u‖L2((0,T )×Ω) can be shown for initial data u0 ∈

H4(Ω), v0 ∈ H3(Ω) in the similar way as the estimate for ‖∇∂2
t u‖L2((0,T )×Ω) in

Lemma 3.2.
To bound the CQ approximation error we use Lemma 5.2 and [3, Lemma 4.1] to

conclude

(5.6) Δt

N−1∑
n=1

‖δn‖L2 = Δt

N−1∑
n=1

∥∥Δ(
β ∗Δt Du(tn)− β ∗ ∂tu(tn)

)∥∥
L2 ≤ CΔt.

Instead if we are using the correction, then

(5.7) Δt

N−1∑
n=1

‖δn‖L2 = Δt

N−1∑
n=1

∥∥Δ(
β∗̃ΔtDu(tn)− β ∗ ∂tu(tn)

)∥∥
L2 ≤ CΔt2.

The last error term is estimated as

(5.8)

Δt

N−1∑
n=1

‖θn‖L2 = 2kΔt

N−1∑
n=1

‖(Du(tn))
2 − (∂tu(tn))

2‖L2

≤ CΔt

N−1∑
n=1

‖Du(tn)− ∂tu(tn)‖L2

(
‖∂tu(tn)‖L∞ + ‖Du(tn)‖L∞

)

≤ CΔt

N−1∑
n=1

Δt2

(
1 + c3

∫ T

0

tμ−1dt

)
≤ CΔt2.
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Hence combining all estimates and applying Grönwall inequality yields

(5.9)

κ̃ sup
1≤n≤N−1

‖D̃wn‖2L2 + sup
1≤n≤N−1

∥∥∇(w)n
∥∥2

L2 ≤
(∥∥∇(w)0

∥∥2

L2

+ (1 + 2kCΩb)‖D̃w0‖2L2 + CΔt4
[
1 + (c3 + c4)Δt2(μ−1)

]
+ C1Δt2

)
× exp

{
C

(
‖∂tu‖L∞ + ‖∂2

t u‖L4 + sup
1<n<N−1

‖Dun‖L∞
)}

,

where 0 < κ̃ < 1− 2k‖u‖L∞ , the constant C may depend on the final time T , and
C1 = 0 when using the corrected CQ scheme.

As w0 = 0, it remains to estimate ‖∇w1‖ and ‖D̃w0‖L2 = Δt−1‖u1 − u(t1)‖L2 .
The choice of u1 in (4.8), Taylor expansion and Assumption 5.1 ensure that the
two terms are of size O(Δt2+μ) and O(Δt1+μ) respectively. �

Remark 5.4. Notice that Dw0 = 0, thus we do not have any additional contribution
for corrected CQ.

Remark 5.5. In Theorem 5.3 we obtained the estimate in the natural discrete energy

norm. If instead of testing by Dwn, we test with Δt
∑N−1

j=n (w)j we can obtain an
estimate on

‖wN‖2L2 +

∥∥∥∥∥Δt
N−1∑
n=1

∇(w)n

∥∥∥∥∥
2

L2

.

In doing this, lower regularity assumption in space of the solution could be made
in Assumption 5.1, namely H1(Ω) instead of H2(Ω).

6. Numerical Experiments

Coupling the time discretization (4.1) with the piecewise linear Galerkin finite
element space discretization we obtain a fully discrete scheme. Denoting by V h ⊂
H1

0 (Ω) the space of piecewise linear finite element functions we have that the fully
discrete solution uh

n ∈ V h satisfies〈(
1− 2k{uh}n

)
D2uh

n, v
〉
+

〈
∇{uh}n,∇v

〉
+ a

〈
β ∗Δt D∇uh

n,∇v
〉

= 2k
〈(
Duh

n

)2
, v

〉
,

(6.1)

for all v ∈ V h, n = 1, . . . . The initial data is set to

uh
0 = Phu0, uh

1 = uh
0 +ΔtPhv0 +

1

2
Δt2Ph∂

2
t u(0),

where Ph : L
2(Ω) → Vh is the L2 orthogonal projection and Ph∂

2
t u(0) is obtained

from (4.9). Throughout the numerical experiments we set β = βA.

6.1. 1D Experiments. We first report on a series of experiments in 1D. To solve
(6.1) at each time step for un+1 we use a Newton iteration as described in [2,
Chapter 7.1.2]. In space we use a uniform mesh with spatial meshwidth h > 0.
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10-3 10-2
10-3

10-2

10-1

100

Figure 1. Convergence of the maximum energy error for the nu-
merical scheme without the correction term for μ = 0.25 and
μ = 0.75. Predicted convergence order of O(Δt) is also shown.

6.1.1. Test 1: Convergence. In this numerical experiment we solve (2.1) on Ω =
(−1, 1) with initial data given by

u0 = sin(πx) and v0 = sin(πx),

choose the parameters k = 0.09, r = 0 and a = 30 and set the final time to T = 1/2.
As error measure we use the maximum over time of the discrete energy error:

error = max
1≤n≤N

∥∥∥∥uex
n − uex

n−1

Δt
−

uh
n − uh

n−1

Δt

∥∥∥∥
L2

+ max
1≤n≤N

∥∥∥∥∇uex
n + uex

n−1

2
−∇

uh
n + uh

n−1

2

∥∥∥∥
L2

.

(6.2)

As the exact solution is not available, for uex we use a numerical solution on a fine
mesh with spatial mesh-width h = 1.7 × 10−3 and Δtex = 3.1 × 10−4. The same
spatial-mesh is used for uh

n with a range of time-steps Δt. Theorem 5.3 predicts
O(Δt) convergence of the error if no correction is used and O(Δt1+μ) for the scheme
with the correction.

The numerical results for the version without the correction are shown in Fig-
ure 1. We see that similar rate of convergence is seen for both values of μ shown
and that it is close to the predicted linear convergence. In Figure 2, where the
convergence of the corrected scheme is shown, we see better convergence for larger
μ closely following the predicted order O(Δt1+μ).

6.1.2. Test 2: Changing k. For the remaining 1D experiments we solve (2.1) on
Ω = (0, 20) and, unless otherwise stated, consider the example with initial data
given by a Gaussian

(6.3) u0 = 5e−
(x−10)2

2 and v0 = 0.

Note that while strictly speaking u0 /∈ H1
0 (Ω), u0 is zero close to machine precision

on the boundary of Ω.
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10-3 10-2
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10-2

10-1

100

Figure 2. Convergence of the maximum energy error for the nu-
merical scheme with the correction term included for μ = 0.25 and
μ = 0.75. Predicted convergence order of O(Δt1+μ) is also shown.

In Figure 3 we show the solution of (2.1) without the fractional derivative (a = 0)
at time T = 4 for various choices of k. This figure shows that as k gets larger and
(1− 2ku) → 0 the nonlinearity has a stronger effect on the wave form, resulting in
the formation of a sawtooth shape.

0

0.5

1

1.5

2

2.5

3

Figure 3. Solution of (2.1) at T = 4 approximated with the
scheme (6.1) with a = 0 for various values of k

When we reincorporate the fractional derivative, choosing a = 1, r = 0 and
μ = 0.5, we still see the damping from the nonlinearity but no longer observe the
sawtooth formation. Instead the strong fractional damping term controls the form
of the solution, causing more parabolic-like behaviour, i.e, the solution is trying to
disperse rather than form a travelling wave; see Figure 4.

6.1.3. Test 3: Changing a. This test investigates how changing the size of the
coefficient scaling the fractional derivative, with μ = 0.5 and r = 0, affects the form
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Figure 4. Solution of (2.1) at T = 4 approximated using the
scheme (6.1) with a = 1, β = βA, μ = 0.5, and r = 0, for various
values of k

of the solution over time. We let k = 0.09, since the previous experiment has shown
that this will give a strong effect from the nonlinearity without causing shocks to
form, at least up to time T = 4.

In these experiments we consider Ω = (0, 40) and the initial data

u0 = 5e−
(x−20)2

2 and v0 = 0.

Figure 5 shows the progression of the wave up to time T = 4 over regular
intervals for different values of a. For a = 10 a travelling wave does not form,
rather the solution attempts to disperse, and after the initial damping from tn = 0
to tn = 0.8 the solution is minimally damped. For a = 0.1 the nonlinearity has
more control, since it appears almost identical to the solution with no involvement
of the fractional derivative (a = 0). Lastly, the case a = 1 shows a balance of
effects from the strong damping and nonlinear terms. Finally, for a = 0, letting the
experiment run until T = 8, a shock seems to begin to form; see Figure 6.

6.1.4. Test 4: Changing μ. These experiments demonstrate the effect the order of
the fractional operator has on the solution over time. In Figure 7 we show the
solution at T = 4 with different values of μ, with and without the nonlinearity.

6.1.5. Test 5: Changing r. In this experiment we vary the value of r, recalling that

we choose β = βA and that β̂A(z) = (z + r)−μ.
Considering the previously stated initial conditions (6.3) and fixing a = 1, μ =

0.5, we compute the approximate solution up to final time T = 4. The solutions for
various values of r at the final time T for the nonlinear (k = 0.09) and linear (k = 0)
cases are presented in Figure 8 where we see that as r gets larger the fractional
operator displays weaker dispersive behaviour and the solution looks more like a
travelling wave solution.
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Figure 5. Solution of (2.1) at various time points up to T = 4
approximated with the scheme (6.1) with k = 0.09, μ = 0.5, and
r = 0, for various values of constant a

0 5 10 15 20 25 30 35 40
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1

1.5

2

2.5

Figure 6. Solution of (2.1) at T = 8 approximated with the
scheme (6.1) with k = 0.09 and fixing a = 0 to remove the frac-
tional derivative
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(a) Nonlinear k = 0.09
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(b) Linear k = 0

Figure 7. Solution of (2.1) at the end time T = 4 approximated
with the scheme (6.1) with a = 1, r = 0 and varying values of
μ ∈ (0, 1)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(a) Nonlinear k = 0.09
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(b) Linear k = 0

Figure 8. Solution of (2.1) at the end time T = 4 approximated
with the scheme (6.1) with a = 1, μ = 0.5 and varying values of r

6.2. 2D Experiments. In this section we present results of numerical simulations
for (2.1) in 2D, where Ω = (−1, 1)2 is a square. We let the exact solution be

(6.4) u(x, t) = (sin(24t) + cos(12t)) sin(πx) sin(πy),

and choose a corresponding source term f so as to obtain the fully discrete system〈(
1− 2k{uh}n

)
D2uh

n, v
〉
+

〈
∇{uh}n,∇v

〉
+a

〈
β ∗Δt D∇uh

n,∇v
〉

= 2k
〈(
Duh

n

)2
, v

〉
+

〈
fh, v

〉
,

(6.5)

where standard CQ without the correction term is used. We again use β = βA and
the various parameters are set to

a = 1, k = 0.09, μ = 0.5, r = 0.

The experiments were performed using the finite element library Netgen/NGSolve
package [31]. In Figure 9, we show the projection of the initial data u0 onto the
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finite element space, as well as the underlying automatically constructed triangular
mesh.

Figure 9. Projection of the initial data on the space of piece-
wise linear finite elements. The triangulation constructed by Net-
gen/NGSolve [31] is also seen.

To examine the convergence rate we compute the maximum L2-error, given by

(6.6) max
1≤n≤N

‖un − u(tn)‖L2

on increasingly finer meshes. In Figure 10 we see, as expected, O(Δt) convergence.

Figure 10. Maximum L2-error of the approximated solution to
(2.1) generated using the scheme (6.5)
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Appendix: Estimation details for the well-possedness proof

To derive the first estimate in Lemma 3.2, we consider ∂tu as a test function in
in the weak formulation of (3.5) to obtain∫

Ωτ

[
∂t

(
(1− 2kũ)|∂tu|2

)
+ ∂t|∇u|2 + 2aβ ∗ ∂t∇u∂t∇u

]
dxdt

≤
∫
Ωτ

2k|∂tũ||∂tu|2dxdt,

for τ ∈ (0, T ], where Ωτ = (0, τ )×Ω. Using the nonnegativity of the third term on
the left-hand side and the regularity of ũ, and applying the Grönwall inequality we
obtain the first estimate in the proof of the lemma.

Considering −Δ∂tu as a test function for (3.5) and integrating by parts in the
first term and in the term on the right-hand side we obtain∫

Ωτ

[
∂t

(
(1− 2kũ)|∂t∇u|2

)
+ ∂t|Δu|2 + 2aβ ∗ ∂tΔu∂tΔu

]
dxdt

=

∫
Ωτ

[
4k∇ũ∂2

t u∂t∇u+ 2k∂tũ|∂t∇u|2 + 4k∂t∇ũ∂tu∂t∇u
]
dxdt, for τ ∈ (0, T ].

Using that

(6.7) ∂2
t u =

1

1− 2kũ

(
Δu+ aβ ∗ ∂tΔu+ 2k∂tũ∂tu

)
,

we can estimate the terms on the right-hand side as∫
Ωτ

|∇ũ∂2
t u∂t∇u|dxdt ≤ 1

2κ

∫
Ωτ

|∇ũ|
(
|Δu|2 + |∂t∇u|2 + 4k|∂tũ||∂tu||∂t∇u|

)
dxdt

+
1

2κ2

1

ς

∫
Ωτ

|∇ũ|2|∂t∇u|2dxdt+ ςa2

2

∫
Ωτ

|β ∗ ∂tΔu|2dxdt

≤ 1

2κ

∫ τ

0

‖∇ũ‖L∞

(
‖Δu‖2L2 +

[
1 +

1

κς
‖∇ũ‖L∞ + 4kCΩ‖∇∂tũ‖2L2

]
‖∂t∇u‖2L2

)
dt

+
ςa2

2

∫
Ωτ

|β ∗ ∂tΔu|2dxdt

and∫
Ωτ

[
2k∂tũ|∂t∇u|2 + 4k∂t∇ũ∂tu∂t∇u

]
dxdt ≤ 2k

∫ τ

0

[
‖∂tũ‖L∞‖∂t∇u‖2L2

+2CΩ‖∇∂tũ‖L4‖∇∂tu‖2L2

]
dt.

Then using estimate in Lemma 2.1 and applying the Grönwall inequalities yields
the second estimate in the proof of Lemma 3.2.

Applying Δ to (3.5) and taking Δ∂tu as a test function in the weak formulation
of the problem imply

(6.8)

∫
Ωτ

(
∂t

(
(1− 2kũ)|∂tΔu|2

)
+ ∂t|Δ∇u|2 + 2a β ∗ ∂tΔ∇u∂tΔ∇u

)
dxdt

=

∫
Ωτ

[
4kΔũ∂2

t u∂tΔu+ 8k∇ũ∂2
t∇u∂tΔu+ 2k∂tũ|∂tΔu|2

+ 4k∂tΔũ∂tu∂tΔu+ 8k∂t∇ũ∂t∇u∂tΔu
]
dxdt = I1 + I2 + I3.
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Using (6.7) together with

(6.9)

∂2
t∇u =

1

1− 2kũ

(
Δ∇u+ aβ ∗ ∂tΔ∇u+ 2k∂t∇ũ∂tu+ 2k∂tũ∂t∇u

)
+

2k∇ũ

(1− 2kũ)2

(
Δu+ aβ ∗ ∂tΔu+ 2k∂tũ∂tu

)
,

the terms on the right-hand side in (6.8) can be estimated as

|I1| ≤
2k

κ

∫
Ωτ

(
2|Δũ||Δu||∂tΔu|+ 4k|Δũ||∂tũ||∂tu||∂tΔu|

)
dxdt

+ 2k2/(κ2ς)

∫ τ

0

‖Δũ‖2L4‖∂tΔu‖2L2dt+ 2ςa2
∫ τ

0

‖β ∗ ∂tΔu‖2L4dt

≤ 2k

κ

∫ τ

0

[
‖Δũ‖L4

(
CΩ‖Δ∇u‖2L2 + ‖∂tΔu‖2L2

)
+ 2k

(
4CΩ‖Δũ‖L4‖∂t∇ũ‖L2

+
1

κς
‖Δũ‖2L4

)
‖∂tΔu‖2L2

]
dt+ 2ςa2CΩ

∫ τ

0

‖β ∗ ∂tΔ∇u‖2L2dt

and

|I2| ≤
4k

κ

∫
Ωτ

|∇ũ|
[
|Δ∇u|2 + 4k

(
|∇∂tũ||∂tu|+ |∂tũ||∇∂tu|+ |∂tΔu|

)
|∂tΔu|

]
dxdt

+
8k2

κ2ς

∫ τ

0

‖∇ũ‖2L∞‖∂tΔu‖2L2dt+ ςa2
∫
Ωτ

|β ∗ ∂tΔ∇u|2dxdt

+
16k2

κ

∫
Ωτ

(
|∇ũ|2|Δu||∂tΔu|+ 2k|∇ũ|2|∂tũ||∂tu||∂tΔu|

)
dxdt

+
16k2

κ
a

∫
Ωτ

|∇ũ|2|β ∗ ∂tΔu||∂tΔu|dxdt ≤ 8ςa2
∫ τ

0

‖β ∗ ∂tΔ∇u‖2L2dt

+
4k

κ

∫ τ

0

‖∇ũ‖L∞

[(
1 + 2kCΩ‖∇ũ‖L4

)
‖Δ∇u‖2L2 +

(
1 + 8k‖∇∂tũ‖L2

+
2k

κς
‖∇ũ‖L∞ + 2kCΩ‖∇ũ‖L4(1 + 8k‖∂t∇ũ‖L2) +

2k3

κς
‖∇ũ‖3L4

)
‖∂tΔu‖2L2

]
dt.

The last three terms on the right-hand side in (6.8) are estimated as

|I3| ≤ 2k

∫ τ

0

[
‖∂tũ‖L∞‖∂tΔu‖2L2 + 2‖∂tΔũ‖L2‖∂tu‖L∞‖∂tΔu‖L2

+ 4‖∂t∇ũ‖L4‖∂t∇u‖L4‖∂tΔu‖L2

]
dt ≤ 2k CΩ

∫ τ

0

‖∂tΔũ‖L2‖∂tΔu‖2L2dt.

Collecting the estimates from above and applying the Grönwall inequality yields
the third estimate in the proof of Lemma 3.2.

To show that T : K → K is a contraction in the proof of Theorem 3.4 we consider
(3.5) for ũ1 and ũ2 in K and, taking −Δ∂t(u1 − u2) as a test function for the
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difference of the corresponding equations, obtain∫
ΩT

[
∂t

[
(1− 2kũ1)|∇∂t(u1 − u2)|2

]
+ ∂t|Δ(u1 − u2)|2

+ 2aβ ∗Δ∂t(u1 − u2)Δ∂t(u1 − u2)
]
dxdt

= 4k

∫
ΩT

[
∇(ũ1 − ũ2)∂

2
t u2∇∂t(u1 − u2) + (ũ1 − ũ2)∂

2
t∇u2∇∂t(u1 − u2)

+∇ũ1∂
2
t (u1 − u2)∇∂t(u1 − u2)

]
dxdt

+ 2k

∫
ΩT

[
∂tũ1|∇∂t(u1 − u2)|2 + 2∂t∇ũ1∂t(u1 − u2)∇∂t(u1 − u2)

+ 2∂t(ũ1 − ũ2)∇∂tu2∇∂t(u1 − u2) + 2∂t∇(ũ1 − ũ2)∂tu2∇∂t(u1 − u2)
]
dxdt,

where ΩT = (0, T )× Ω. Using (6.7) and (6.9), the terms on the righ-hand side of
the last equality are estimated as

|I1| ≤
∫
ΩT

|∇(ũ1 − ũ2)∂
2
t u2∇∂t(u1 − u2)|dxdt ≤

1

κ

∫ T

0

‖∇(ũ1 − ũ2)‖L4

(
‖Δu2‖L4

+ a‖β ∗ ∂tΔu2‖L4 + 2k‖∂tu2‖L8‖∂tũ2‖L8

)
‖∇∂t(u1 − u2)‖L2dt,

|I2| ≤
∫
ΩT

|(ũ1 − ũ2)∂
2
t∇u2∇∂t(u1 − u2)|dxdt ≤

1

κ

∫ T

0

‖ũ1,2‖L∞

(
a‖β ∗Δ∇∂tu2‖L2

+ ‖Δ∇u2‖L2 + 2k‖∇ũ2‖L∞

[
a‖β ∗Δ∂tu2‖L2 + 2k‖∂tu2‖L4‖∂tũ2‖L4 + ‖Δu2‖L2

]
+ 2k‖∂t∇ũ2‖L4‖∂tu2‖L4 + 2k‖∂t∇u2‖L4‖∂tũ2‖L4

)
‖∇∂t(u1 − u2)‖L2dt,

where ũ1,2 := ũ1 − ũ2,

|I3| ≤
∫
ΩT

|∇ũ1∂
2
t (u1 − u2)∇∂t(u1 − u2)|dxdt

≤ 1

κ

∫ T

0

‖∇ũ1‖L∞

([
2k‖∂tu2‖L4‖∇∂t(ũ1 − ũ2)‖L2 + a‖β ∗ ∂tΔ(u1 − u2)‖L2

+ ‖Δ(u1 − u2)‖L2

]
‖∇∂t(u1 − u2)‖L2 + 2k‖∂tũ1‖L4‖∇∂t(u1 − u2)‖2L2

+ 2k‖∇(ũ1 − ũ2)‖L2‖∂2
t u2‖L4‖∇∂t(u1 − u2)‖L2

)
dt,

where ‖∂2
t u2‖L4 is estimated as in I1, and

|I4| ≤ 2k

∫ T

0

[(
‖∂tũ1‖L∞ + 2‖∇∂tũ1‖L4

)
‖∇∂t(u1 − u2)‖2L2

+ 2
(
‖∇∂tu2‖L4 + ‖∂tu2‖L∞

)
‖∇∂t(ũ1 − ũ2)‖L2‖∇∂t(u1 − u2)‖L2

]
dt.

Then using that ũj ∈ K, for j = 1, 2, and estimates for uj in Lemma 3.2 we obtain
the contraction inequality in Theorem 3.4, which, by applying the Banach fixed
point theorem, ensures the existence of a unique fixed point of the map T and
hence the existence of a unique solution of the nonlinear problem (2.7).
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[27] V. Nikolić and B. Wohlmuth, A priori error estimates for the finite element approximation
of Westervelt’s quasi-linear acoustic wave equation, SIAM J. Numer. Anal. 57 (2019), no. 4,
1897–1918, DOI 10.1137/19M1240873. MR3987529
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