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Abstract

When exposed to increased mechanical resistance from the soil, plant roots display non-lin-

ear growth responses that cannot be solely explained by mechanical principles. Here, we

aim to investigate how changes in tissue mechanical properties are biologically regulated in

response to soil strength. A particle-based model was developed to solve root-soil mechani-

cal interactions at the cellular scale, and a detailed numerical study explored factors that

affect root responses to soil resistance. Results showed how softening of root tissues at the

tip may contribute to root responses to soil impedance, a mechanism likely linked to soil cav-

ity expansion. The model also predicted the shortening and decreased anisotropy of the

zone where growth occurs, which may improve the mechanical stability of the root against

axial forces. The study demonstrates the potential of advanced modeling tools to help iden-

tify traits that confer plant resistance to abiotic stress.

Author summary

The lack of suitable approaches for studying how plant roots adapt to mechanical resistance

from soils is limiting our ability to adapt cropping system to climate change. Drought resis-

tance for example is enhanced both by deep rooting and the ability to grow through dry

layers of soil. In this study, we overcome experimental limitations to measure tissue

mechanics in-situ with a computational model able to solve simultaneously the physical

process of growth macroscopically and the behavior of individual cells in the meristem.

The study reveals that complex rearrangement of tissues mechanical properties may occurs

in response to increased mechanical resistance from the soil. Results show the potential of

particle-based models to compute the growth of an entire organ at cellular resolution and

that such models could significantly advance the studies of plant morphogenesis.
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1 Introduction

Root growth results from two opposing biophysical forces (Fig 1). On the one hand, gradients

in osmotic potential drive water into the cytoplasm and cause a build-up of turgor pressure

[1]. On the other hand, tension in cell walls [2], friction forces at root surfaces [3] and com-

pression from the soil [4] oppose the turgor pressure and determine how the tissue grows. Tur-

gor pressure is also affected by factors such as soil matric potential and the hydraulic

conductivity of the tissue [5]. The biophysical mechanisms of root-soil interaction are now

well formalized. Turgor pressure in cells and tissues increases as a result of water and ion trans-

port through cell membranes [6], whilst the stretching of the cell wall is defined classically

using viscoplastic models [7]. The soil water content is described by soil mechanical and

hydraulic models such as Mohr Coulomb and Richard’s equations [8].

Yet, root responses to soil mechanical resistance are not well explained by models. Experi-

ments consistently record maximum pressures exerted by a growing root at approximately 1

MPa [10], but roots are observed growing in soils whose mechanical resistance is measured

well over 5 MPa [11]. Models developed from first principles [12] concluded that an osmoreg-

ulation against the soil resistance or the matric potential was needed to predict adequate root

growth rate but, since then experiments by [13,14,15] showed turgor pressure increased by no

more than 0.2 MPa when roots are arrested or strongly impeded. It has been suggested that

gaps between turgor and soil pressures are due to an overestimation of the friction coefficient

of root-soil interfaces from penetrometer resistance tests [3]. However, roots exhibit non-lin-

ear growth responses to soil resistance [15,16] that are incompatible with linear responses

expected from a friction process.

Fig 1. Biophysics of root growth in soil. (A) Roots grow when turgor pressure exceeds the mechanical resistance of cell

walls and the friction and compression from the soil. (B) In cellular models of plant tissues (top), cells are divided into cell

wall segments and the balance of forces is computed on each vertex [9]. A simplifying approach is to represent the cell as a

point in space (particle) and to define the interactions between other cells as a function of the size of the cell, its distance to

neighbors and its shape (bottom). Mathematically, a kernel function is defined to interpolate field variables such as

mechanical stress (turgor pressure or tensile stress in cell walls) or velocity, and numerical approximation of particle

dynamics reduces to the weighted sum of variables attached to each particle, with the weight given by a kernel function.

https://doi.org/10.1371/journal.pcbi.1010916.g001

PLOS COMPUTATIONAL BIOLOGY Particle-based model of root response to soil strength

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010916 March 7, 2023 2 / 23

Spanish Ministry of Science and Innovation under

de project MICROCROWD PID2020-112950RR-

I00 (LXD). The James Hutton Institute received

support from the Scottish Government Rural and

Environment Science and Analytical Services

Division (RESAS), Work package

1.1.1,2.1.6,2.1.7,2.3.4 (MM). The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1010916.g001
https://doi.org/10.1371/journal.pcbi.1010916


Current limitations in modeling are due to a lack of understanding on how developmental

or morphological responses link to adaptation to mechanical impedance from the soil. In hard

soils, the growth zone is reduced in size [15]. The root diameter increases significantly with

soil strength, supposedly to reduce axial mechanical stress and prevent buckling [17]. The

shape of root tips has also been associated with the ability to overcome mechanical resistance

of soils [4]. But to date, it has not been possible to model interactions between root traits and

increased mechanical resistance from the soil. Soils are granular media and particles exert

forces that are discrete and heterogeneous. They create opportunities for plant roots to exploit

paths of least resistance [1] and it is difficult to quantify how roots can exploit them to over-

come macroscopic pressure from the soil.

A main challenge is to develop models able to grasp the complex relations between root

traits and soil properties. A suitable model must describe interactions at the microscopic scale

(cells, soil particles) but resolve emerging processes at the macroscopic scale, across entire root

system and under changing soil conditions [18]. In this study we have developed a simple and

efficient computational framework based on the Smooth Particle Hydrodynamics method

(SPH) to model the root response to mechanical resistance of the soil. The model associates

the SPH particle to a single cell and can compute entire root meristems. The study explores the

relationships between soil strength and the softening of the tissue as one of the plausible mech-

anisms involved in root responses to mechanical forces [2]. Simulations then identify the mod-

ification of mechanical properties required to explain observed root elongation rates.

2 Results

2.1 SPH computations enable modelling of entire root meristem at cellular

resolution

The SPH model derived here represents each cell i within the root tip as a particle with center

of mass xi and with cell shape represented as an ellipsoid with the shape matrix Qi, see Method

A in S1 Text for a full description. The particles do not bear topological relation to one

another, but state variables such as the velocity field and tissue density across the root contin-

uum can be computed from kernel-based interpolation between particles which divide as a

result of tissue growth (Fig 2). The interpolation relies on a kernel function, a function

Fig 2. The particle model. (A) The interaction between cells is described through the kernel function (blue) associated with the particle (see

Method A in S1 Text), which is a function that decreases with the distance from the particle center with the smoothing length. �H�. It can be used to

recover various field quantities, here the wall potential which indicates the likeliness of the position of the cell wall. (B) Ellipsoids define the size

and shape of the cell. An ellipsoid is defined by its principal axes (here long in green, short in red) and used to generate the wall potential

(background color, yellow being the most probable location of a wall and orange being the ridge). (C) The cell division occurs along the longest

axis and split the mother cell into equally sized daughter cells.

https://doi.org/10.1371/journal.pcbi.1010916.g002
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decreasing with the distance from the center of the particle, to weight the effect of a particle

onto its neighbors and compute the value of the state variables [19]. Kernel-based interpolation

is used in the SPH method to integrate constitutive equations from the continuum mechanics

and to determine an approximation of the evolution of state variables (see Method A in

S1 Text).

The model we propose represents growth as a source of mass in the conservation equation

(Eq 1). The source of mass is a function of the stretching of the tissue and is controlled by the

softening coefficient λi defined at each cell i. To maintain the cellular architecture of the tissue

during growth, the shape of a cell is represented as an ellipsoid matrix Qi (Fig 2B and 2C). The

model triggers a cell division when the principal axis characterized by the matrix Qi reaches a

division threshold �‘I , with the division oriented perpendicularly to it. An anisotropic defini-

tion of mechanical properties of the tissue, defined through the compliance tensor Si, enables

the model to represent a broad range of morphogenetic processes.

To keep computations tractable, the representation of the root was simplified in various

ways. First, we did not explicitly represent the soil as a solid structure interacting with the cells

and growing tissues. Instead, we applied a uniform pressure on the tissue, termed pressure dif-

ferential p, which represents the difference between turgor pressure in plant cells, and the per-

ceived resistance from the soil. To facilitate the parameterization of the model, we also chose

to focus on the process of root axial and radial growth and ignored several anatomical features

important to root functions, including the root cap or the formation of specialized cells such as

root hairs. We also assumed root properties vary only as a function of the distance along the

root and the pressure differential.

With these assumptions, the model could be easily parameterized using experimental data

available from the literature. One main difficulty of this task was to establish how coefficients

in constitutive equations, e.g., λI, Qi and li, vary along the root and as a function of external

forces. Because of the computational complexity of the model, the approach employed was to

determine spatial variation in each coefficient using bell-shaped or sigmoid functions that are

estimated independently from each other. Coarse estimates of parameters in these functions

were determined by trial and error, before a final adjustment was made using observed rela-

tionships between the model parameters and features of the growth curves obtained experi-

mentally (e.g., inflection points, asymptotic values, size of transition).

2.2 Coordination of radial and axial growth is needed to maintain the

shape of the tip of growing tissues

To understand the factors that determine the maintenance of root tip properties through time,

we first examined how tissue anisotropy links to root morphology. Simulations examined how

the radial Young modulus ER in Eq 4 affects the shape of a growing tissue. Results showed (Fig

3) that when ER was equal to the axial Young modulus EA, isotropic expansion was observed at

the tip, which results in a spherical outgrowth (Fig 3A, left). On the other hand, when ER was

significantly larger than EA, uni-axial expansion was observed, transforming the parabolic

shape of the tissue into an increasingly sharp structure (Fig 3A, right). Therefore, we con-

cluded that parameters that maintain stable diameter and tip shape for at least 8 hours repre-

sent biologically acceptable description of the root. In our simulations we found sigmoid-

shaped functions adequately describe the transition from isotropic growth at the tip to aniso-

tropic growth in the root elongation zone.

We use a sigmoid function to describe how the radial modulus ER vary along the root (Eq 6

and Figure A in S1 text), and these variations enabled the model to produce a root tip with par-

abolic shape, specifying the transition from the cell division zone to the root elongation zone
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Fig 3. Impact of anisotropy of mechanical properties on the morphology of a growing tissue. (A) Three cases were used to test the ability of

the model to describe tissue morphogenesis. The isotropic case (A, left) was modeled using a radial Young modulus ER equal to the axial Young

modulus EA. The anisotropic case (A, right) was modeled using ER equal to the maximal radial Young modulus EH. The balanced case (A,

center) was modeled using a ER increasing smoothly from EA at the tip to EH at the base, using parameters shown in Table 1. Arrows describe

the resulting strain rates in the growing tissue with the axial strain εA shown in red and radial strain εR shown in green. Simulations were

initiated with particles distributed on a 2D cartesian lattice. (B) Comparison of SPH predictions with analytical solutions for the isotropic,

anisotropic, and balanced cases for axial strain (B, left) and radial strain (B, right). Dashed curves represent analytical solutions and solid curve

numerical results. The isotropic, balanced, and anisotropic cases are represented in blue, green, and orange, respectively. Analytical solutions

are computed from Eq 8.

https://doi.org/10.1371/journal.pcbi.1010916.g003
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(Fig 3A, center). The inflection point of the sigmoid curve xe was found to be 0.6 mm so that

the transition occurred within half a mm from the growing tip. The slope se was found to be 5

and the baseline constant ce was 0.

The accuracy of the numerical solutions was tested against three study cases, an isotropic,

an anisotropic, and a configuration where mechanical properties vary along the tissue (bal-

anced Fig 3B). In all cases, the axial strain computed analytically was constant along the tissue.

The SPH model predicted well the axial component of the strain close to the tip (RE~10%,

x<1.5mm). The accuracy of predictions for the axial strain reduced slightly at x = 2 mm,

which is the location of boundary particles. Since particles are fixed at the boundary, the move-

ment of the neighboring particles was constrained. The SPH model predicted well the radial

strain in the isotropic case (RE~5%). The accuracy of the prediction in the balanced case was

reduced due to the smaller number of particles at the tip (RE~33%). The accuracy in the aniso-

tropic case was lower because growth was small, and the model was more sensitive to numeri-

cal errors (RE~24%).

2.3 Root development in unimpeded conditions

We identified parameters that fitted experimental data from Arabidopsis thaliana roots, 6 days

after planting, using axial strain rate data, cell length data and cell division rate data derived

from [20]. The fitting of the model was achieved following the method detailed in section 4.5

of the material and methods where the softening coefficient λ is adjusted first to fit the strain

rate data, the anisotropy of the tissue ER is then fitted to root diameter data and the critical cell

length �‘ is adjusted to the cell division rate. The cell division was fitted only on the first 500 μm

from the root tip. At distance larger than 500 μm, the cell division threshold �‘ was kept con-

stant to avoid excessively large cells which were more prone to instability. Consequently, the

model overestimated the cell division rate in the more distal regions of the root. Another

observation was that cell division in the outer layer of the tissue occurred earlier. This was due

to the radial expansion of the tissue, which stretch more in the cells in outer layers than in the

inner layers.

The cell division rate was better predicted in the root elongation zone than at the tip of the

root (Fig 4B, left). Along the first 0.2 mm of root tissue, the simulated division rate was higher

than in experimental observations. This could be due to the stochasticity of the data or an

inadequate mathematical relationship between the cell division threshold �‘ and the distance

from the root tip. Our model also could have generated undesired cell divisions in the radial

direction. All such deviations could be prevented in future version of the model using more

detailed experimental data on cell divisions in the radial, tangential and axial directions [21].

In the root elongation zone, at a distance between 0.2 mm to 0.5 mm from the tip, the model

showed better agreement with observation. The predicted division matched experimental data

with R2~18%, RMSE~1.3×10−3. The variations of axial strain rate and cell length were pre-

dicted with higher accuracy (Fig 4, center and right) with R2 coefficient above 99% for both

and RMSE being equal to 6.2×10−7 and 0.35, respectively.

The fitting of model to experimental strain rate data required the softening of tissues to

increase from the root tip following a bell-shaped function described in Eq 6, second, with a

maximum located at xg = 0.32 mm, a slope sg = 0.25, and constant cg = 0.4. We found that the

cell division threshold �‘ followed a quadratic function described in Eq 6, third, with slope sd =

45, a minimum located at xd = 0.12 mm, and scaling coefficient cd = 1. To maintain stable root

diameter and tip shape, we found that the radial modulus ER must increase smoothly following

the sigmoid described in Eq 6, first, with an inflection point located at xe = 0.32 mm, with

slope se = 6, and constant ce = 0.2 (Figure B in S1 text). The size of cells varied greatly along the
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first 0.6 mm of the root tip. The model used a smoothing length coefficient �H ¼ 8, which pro-

vided sufficient stability and computational efficiency to cover a ten-fold extension of cells.

Larger cells were more difficult to include in a computationally efficient way because larger �H
values required for numerical stability would over-smooth dynamics at smaller scales.

Using these parameters, stability was obtained for simulations of long durations (S1 Video).

For example, it was possible to predict the growth of roots for 50 hours. During this time, the

root volume increased by a factor of 10 (Eq 4). 2D computations were performed in 12 min-

utes using a computer with 32 cores.

Fig 4. Simulation of unimpeded growth of Arabidopsis thaliana roots using axial strain rate data, cell length data and cell division rate data derived

from [20]. (A) Simulations of the growth of a root for 50 hours. Colors indicate the number of cell divisions from the beginning of the simulation. Blue cells

have not divided during the simulation. Red cells have divided three times. Simulations were initiated with particles distributed on a 2D cartesian lattice. (B)

Comparison between model and experimental data. Comparison between experimental and SPH predictions for cell division rate (Left). Comparison between

experimental and SPH predictions for axial strain rate (Center). Comparison between experimental and SPH predictions for cell lengths (Right). Symbols are

mean ± SE over 40 consecutive time steps. Experimental observations are represented by orange dashed lines and numerical simulations by blue solid lines.

https://doi.org/10.1371/journal.pcbi.1010916.g004

PLOS COMPUTATIONAL BIOLOGY Particle-based model of root response to soil strength

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010916 March 7, 2023 7 / 23

https://doi.org/10.1371/journal.pcbi.1010916.g004
https://doi.org/10.1371/journal.pcbi.1010916


2.4 Root response to soil mechanical resistance

The final series of simulations were performed to explain how the mechanical properties of the

roots of Pisum sativum (pea) change in response to increase of soil strength, using strain rate

data from [15] and root radius data from [16]. The fitting of the model was achieved following

the method detailed in section 4.5 of the material and methods where the softening coefficient

(λ) is adjusted first to fit the strain rate data, the anisotropy of the tissue ER is then fitted to

root diameter data. There was no cell size data provided in these publications, so the critical

cell length was adjusted arbitrarily (Table 1).

The model predicted well the 20% increase in root diameter in the mature part of the root

in response to the change in pressure differential (R2>98%, RMSE<0.004 for p = 0.5 and 0.825

and R2>97%, RMSE<0.007 for p = 0.75). Strain rates from [15] were well predicted by the

model (R2~86%, RMSE~1.6 for p = 0.987 and R2>97%, RMSE<0.78 for p = 0625). Discrepan-

cies between experimental observations and model predictions occurred in the mature region

of the root. These were due to the model accounting for changes in mechanical properties only

at the root apical meristem and no softening was allowed beyond that point of the root.

Along the first millimeter of root, the strain rate remained identical across the range of

studied pressure differentials. The size of the root elongation zone however varied with soil

strength. In loose soils, the size of the root elongation zone was larger, and the root axial strain

rate was higher. The maximum axial strain rate was observed at larger distances from the root

tip. In hard soils, the softening coefficient was found to increase closer to the tip and have a tail

that declines faster with the distance from the tip (Fig 5A, top left). Growth parameters in Eq 6

depend on the pressure differential p using Eq 7 with parameters xg = −0.4 mm, sg = 4.5 and cg
= −1 for pg = 0.987 MPa, and xg = −0.1 mm, sg = 2.5 and cg = 0.9 for pg = 0.625 MPa. Results of

simulations showed the increased softening at the root tip was sufficient to predict accurately

Table 1. Description of model parameters. When cases involve more than one set of parameters, differing parameters are listed into brackets.

Name Description Case 1 Case 2 Case 3 Units

p Pressure differential 1 1 [0.5, 1] MPa

EA Axial Young modulus 1020 1020 1020 MPa

EH Maximal radial Young modulus 15000 15000 15000 MPa

νA Axial Poisson modulus 0.06 0.06 0.06

νR Radial Poisson modulus 0.3 0.3 0.3

xe Position of state transition 0.6 0.51 [2.5, 3] mm

se Slope of sigmoid function [0,0,5] 6 [1.3, 4] mm-1

ce Scale coefficient [−1, 1, 0] 0.2 [0.26, 0.34]

ρ0 Equilibrium density 1000 1000 1000 μg mm−3

λ0 Reference softening coefficient 0 4×106 1.8×106 μg mm3h−1

xg Inflection of bell-shape function − 0.32 [−0.4, −0.1] mm

sg Slope of bell-shape function − 0.25 [2.5, 4.5] mm

cg Scale coefficient − 0.1 [−1, 0.9]

ℓ0 Reference cell size 0.01 0.01 0.08 mm

xd Position of minimal division threshold − 0.12 0 mm

sd Slope of quadratic function − 45 0 mm-2

cd Scale coefficient − 1.0 1.5

T Final time 8 100 100 h

�H� Smoothing length coefficient 2 8 4.5

https://doi.org/10.1371/journal.pcbi.1010916.t001
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Fig 5. Simulation showing how the softening and anisotropy coefficients vary in the roots of Pisum sativum in response to

increases in soil strength using strain rate data from [15] and root radius data from [16]. (A) Results of SPH simulation for a

pressure differential of 1 (top) and 0.4 (bottom). Simulations were initiated with particles distributed on a 2D cartesian lattice.

Only the mechanical parameters of the model were adjusted to data. The cell division rate was set to a constant threshold of

120 μm which produced reasonable average cell sizes and numerical stability. (B) To match experimental data, the softening

coefficient λ was found to reach a maximum closer to the tip and tail off quicker for harder soils (top left). Such variations in the

softening coefficient along the root allowed the SPH model to match the axial strain rate observed experimentally (top right).

The radial modulus ER was found to take smaller values at the tip but increased quicker to reach its maximum for harder soils

(bottom left). These variations of radial modulus along the root allowed the SPH model to match the variations of root radius

observed experimentally (bottom right). Experimental observations are represented by dashed lines and numerical solutions by

solid lines. Increase in the pressure differential is represented from light blue to dark blue.

https://doi.org/10.1371/journal.pcbi.1010916.g005
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the growth of the tissue and the corresponding experimentally observed strain rates (Fig 5B,

top right) where p = 0.4 MPa correspond to a hard soil and p = 1.0 MPa to a soft soil.

To predict the increase in root radius, the radial modulus ER must also vary with the pres-

sure differential p. The model fitted experimental data with parameters in Eq 6 with xe = 3

mm, se = 1.3 and ce = 0.34 for p = 0.825 MPa, and xe = 2.5 mm, se = 4.0 and ce = 0.26 for p = 0.5

MPa. These parameters resulted in a shift of the anisotropic transition closer to the root tip

and a smoother transition through the root elongation zone. Close to the tip, the root tissue

was also more isotropic in hard soil (Fig 5B, bottom left). Using these parameters, the SPH

model could predict accurately the increase in root diameter observed experimentally (Fig 5B,

bottom right, S2 Video).

3 Discussion

3.1 New framework for modeling root meristems at cell scale

There are only a handful of modeling approaches able to resolve biophysical interactions

within a growing root at the cell scale. Early models for plant root tissue considered 1D contin-

uous description [12,22] and have exposed the balance of forces acting on growing roots. Since

then, models have included more detailed endogenous [23] and exogenous processes [24], but

the use of one-dimensional descriptions remains limiting. For example, it is not easy to

describe bending and buckling caused by rigid obstacles, or growth through paths of least

resistance in soil [1]. The extension to higher dimensions proposed by [25] was met with lim-

ited success because the use of growth tensors requires many analytical calculations. Numerical

techniques such as the Finite Element Method (FEM) have overcome these limitations and

applications now include predictions of mechanical stress and failure zone in soil, water trans-

port in roots, or studies of root gravitropic responses [16,26,24].

Cellular models have emerged subsequently as a mean to account for morphogenetic pro-

cesses. The use of vertex-based approaches has proven particularly powerful to simulate com-

plex developmental processes, including phyllotaxis, lateral root formation, cell differentiation

patterns on leaves, and cell-cell communication [9]. Recent computational techniques couple

vertex dynamics to cell volume and implement quasi-static approximations to improve the sta-

bility of computations. However, because each cell in the system must be described through a

large number of vertices, computations are slow and difficult to parametrize and applications

have largely focused on problems with reduced physical dimensions, e.g. outermost layers of

cells, or using two-dimensional descriptions [26,27,28].

Particle-based approaches are relatively recent alternatives. Numerical approximations are less

well characterized than finite element methods, and the calibration of numerical algorithms

remains complex [29]. The approximations computed by the Smoothed Particle Hydrodynamics

(SPH) method depend strongly on the particle distribution and the averaging domain defined by

the smoothing length. When axial and radial strains are large, the distribution of particles becomes

too heterogeneous, numerical errors increase and SPH simulations can result in undesired clog-

ging, detachment of particles or cracks. Such effects could occasionally be observed in our simula-

tions, e.g. Fig 5A, but their impact could be controlled to not affect model predictions.

This work presented a first-generation model which cannot predict all biological process

that are observed experimentally. Associating the SPH particle with the cell brings constraints

because the size of particles cannot be used to increase accuracy of numerical solutions, which

in turn depends only on the kernel function. Also, large variations in cell sizes occur between

the different parts of the root tip, which require a fine tuning of the smoothing length. The

smoothing length required for stability is often determined by the region of the domain with

the lowest density of particles, making simulations across the entire domain less accurate.
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Here we used simplified cell division rules that limited cell length in the growing roots. In the

case of Arabidopsis roots, we fit the model of cell division rate to experimentally observed data

on the first 500 μm from the tip but kept the cell division threshold �‘ constant beyond 500 μm.

This reduced the appearance of cracks but also overestimated the cell division rate in elongat-

ing cells further away from the root tip. The cell division rule was also simplistic in other

aspects. The cell division was always symmetric, it did not account for cell types, and it was

solely determined by cell position and size. The model was therefore unable to predict the root

anatomy. A universal cell division rule has yet to be discovered [30,31,32,33], which limits cur-

rent prospects of predicting accurately the root cellular architecture.

Since the first publication of the SPH method in 1977 [34,35] the field of research has pro-

gressed at a considerable pace with, for example, the introduction of anisotropic kernels to

compute large strain, implicit and incompressible schemes to stabilize long-term simulations,

corrected and symmetric formulations to manage numerical errors, and improved neighbor

search for better efficiency [19]. Finally, communities are pushing for development of unified

SPH framework using open Application programming interfaces [36]. This makes SPH meth-

ods very promising for application to plant morphogenesis. The SPH method proved amena-

ble to high dimensional and multi-physics problems because kernel functions can easily be

formulated in n-dimensions. Tests performed on two-dimensional domains can therefore be

ported to three dimensional problems without the need for a new interpolation scheme. Also,

higher spatial dimensions and unstructured grids increase the number of neighbors and

reduces the occurrence of cracks and cell detachment, the latter being also an interesting fea-

ture when modelling cell detachment in the root cap, for example.

Here, using SPH we have demonstrated the feasibility of computing root-soil interactions

at cell scale across the entire organ. The technique allowed us to associate numerical particles

with biological cells, preserving the shape, size, and cellular architecture of the root with a min-

imal number of degrees of freedom (Fig 1B). Particles describe the interior of the cell, and cell

walls can be reconstructed from the kernel function. Flexible numerical schemes allowed com-

putation of thousands of cells using a modern workstation [37], and the method could com-

pute whole root meristems in three dimensions (Fig 6, S3 and S4 Videos). Simulations could

be performed using images of the root anatomy with limited image processing because only

basic shape descriptions for the cells are needed as an input [7].

3.2 Root strategies to overcome mechanical resistance from the soil

Using our SPH model, we could predict the growth of a root from its biophysical parameters (Fig

4). The model did not include turgor pressure in the response because data shows only limited

increases in turgor pressure are observed in response to increased impedance from the soil

[13,14,15]. The model focused on the softening of the tissue and assumed a constant turgor pres-

sure. However, recent studies using Atomic Force Microscopy have revealed that turgor pressure

in plant tissues is heterogeneous [38]. Such variations have been attributed to cell size and growth

rate but may also play a role to overcome external forces from the soil. Future model development

could include a complete poromechanical description of the tissue to include the regulation of

turgor pressure in the tissue. To explain growth rates observed in soils which penetrometer resis-

tance exceed turgor pressure, we also chose the simplifying assumption proposed in [39] that the

pressure perceived by the plant is a fraction of the penetrometer resistance of the soil.

The model revealed how tissue mechanical properties may be rearranged when soil strength

is increased. We first observed that pressure from the soil alone was not able to predict the

morphology of roots growing in hard soil. Plant roots are known to reduce the size of their

meristem but also to maintain the axial strain rate at the root apex. In soft soil, the root
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elongation zone is large and the root radius rather thin whilst in hard soil, it is the reverse situ-

ation, with roots showing increased diameter and axial strain rate concentrated at the tip. The

observation was made in response to mechanical impedance from the soil but is also observed

during water stress [40]. To predict such responses, tissue softening must reach a maximum

closer to the root tip to overcome soil resistance, likely with an increase in softening at the tip

of the root but increased turgor pressure may cause the actual softening of tissue to be lower

than predicted. This occurs in a small region of the root tip, because excessive softening could

lead to mechanical weakness, as was observed for example when roots were exposed to axial

forces [1]. The softening of tissue in the root tip is also associated with the shortening of the

zone where softening occurs, and an increase in anisotropy of the tissue. Such response may

reduce the susceptibility of the root to buckling [10]. Realistic growth responses were obtained

without the need for the maximum of the softening coefficient to increase. This could indicate

that excessive softening of the tissue may be detrimental. For example, it could affect the

mechanical stability of the root tissue [41].

Root diameter was also observed to increase by 20% to 60% when penetrometer resistance

is doubled [16]. Axial forces alone can explain radial growth of the root due to

Fig 6. Future applications for SPH models in root developmental biology. Image processing pipelines currently available to analyze 3D live microscopy data

can extract the geometrical properties of cells (top left). These were used to compute the shape matrix of particles Qi and were used as input for SPH simulation

(top right). The model then could compute the growth of plant roots, including cell size (bottom left, colored ellipsoids) and strain rate (bottom left, arrows

show radial velocity). Kernel functions could then be used to compute cell walls (bottom right). Here, the root is represented either as a whole (top) or

following a cross section (bottom).

https://doi.org/10.1371/journal.pcbi.1010916.g006
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incompressibility. For example, an axial mechanical stress of 1 MPa with a Young’s modulus

of 100 MPa and a Poisson coefficient of 0.3 explains a radial strain of 0.3%. To match observa-

tions, the model also requires a change in the radial modulus. The tissue must become more

mechanically isotropic at the root tip and more anisotropic in the root elongation zone. This

response is also consistent with requirements for mechanical stability when external pressures

increase. Increased isotropy and cell wall softening at the root tip generates soil cavity expan-

sion, a process which has been shown to reduce the axial load on the root tip [3], and results in

the larger diameter measured experimentally. In the root elongation zone however, the

strengthening of the tissue in the radial direction may reinforce the root against axial mechani-

cal stress, and together with the increase in diameter may prevent the root from buckling.

3.3 Models for the next generation of root microscopy data

Data available to quantitatively characterize root processes is growing rapidly. Live microscopy in

soil-like conditions has greatly improved with the development of artificial soils [42,43]. Micro-

fabrication techniques now facilitate the construction of microcosms with a high degree of con-

trol on growth conditions [44], and this proved a particularly promising approach to acquire root

kinematics and cell division data suitable for the calibration of models [21]. The emergence of

light sheet microscopy is democratizing the use of instruments built in-house for larger living

samples [45], and techniques such as Brillouin scattering are beginning to reveal how cell wall

mechanical properties and cell wall softening vary across plant root tissues [46]. Available tech-

niques to quantify growth, morphology and anatomy from roots grown in natural soils has also

improved drastically with techniques such as X-ray tomography, MRI and neutron tomography,

and Laser Ablation Tomography [47]. Microfluidics and robotics [48] now enable fast three-

dimensional reconstruction of the root architectures at anatomical and whole plant level. Like-

wise, algorithms for processing of image data are improving. Software enables larger samples to

be reconstructed from a myriad of views [49] and the automated extraction and classification of

features [50]. The availability of software resources to analyze and process root microscopy data is

also greatly expanding thanks to repositories for open-source software [51] and microscopy data

[52]. The emergence of standards for data formats stimulates portability and communication

between software with reduced efforts needed in software development [53,54].

Biophysical models are becoming a critical component of these software pipelines. Models

could help forecast root performance in field conditions from quantitative traits now delivered

by modern microscopes and live imaging facilities. Currently, mathematical models able to

exploit information contained in large imaging data sets are limited, and this paper has dem-

onstrated the potential for particle-based approaches to bridge this gap. The technique requires

minimal description of the anatomic structure of the roots. It is computationally efficient (we

could compute three-dimensional simulation of a root during a period of 55 hours, increasing

the number of cells from 45,000 to 200,000 for an increase in length of 25 mm), and can easily

be integrated into pipelines for the simulation of realistic and complex scenarios (Fig 6).

Results presented here showed that the model and simulation pipeline can reveal the complex

responses of roots to the strengthening of soils. The next step now is to confirm the results

with a broad range of root anatomy and adequate field validation. This would further consoli-

date the potential of image-based modeling to assist experimental research.

4 Material and methods

4.1 Tissue level dynamics

Tissue dynamics are modeled using the framework of continuum mechanics for finite strain.

This framework describes the conservation of mass and momentum such that, in the absence
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of external forces,

Dr
Dt

¼ � rr � uþ gðrÞ;

Du
Dt

¼ �
rðPðrÞ þ tÞ

r
;

Dt
Dt

¼ ΛS� 1 _ε;

ð1Þ

where D
Dt denotes the material derivative. The model equations link the particle velocity u (mm

h−1) to the tissue density ρ (μg mm−3) and to the Cauchy stress tensor σ (MPa), also referred to

as mechanical stress, given by the sum of the isostatic pressure P and a deviatoric component τ
(shear stress). The strain rate _ε ¼ 1

2
ruþruTð Þ characterizes the growth of the tissue. The

matrix Λ selects the deviatoric contribution of the mechanical stress and is given by

Λ ¼ I � 1

3
ð1; 1; 1; 0; 0; 0Þ

T
1; 1; 1; 0; 0; 0ð Þ.

Growth is modeled through the source term γ in the Eq 1 given by

g rð Þ ¼ l
r0

r
� 1

� �þ

: ð2Þ

Here γ (μg mm−3 h−1) is expressed as a function of the difference between the equilibrium

density ρ0 and the actual density ρ. Hence, the model incorporates a softening mechanism

assuming that the deposition of the tissue material is instantaneous. The coefficient λ (μg

mm−3 h−1) controls the tissue softening. Only the positive part is used in Eq 2 to represent the

irreversibility of the extension of the cells. A constitutive equation relating the volumetric

strain to isostatic pressure is given in a weakly compressible setting [19],

P rð Þ ¼ K
r

r0

� 1

� �

; ð3Þ

with K (MPa) being the bulk modulus. Eqs 2 and 3 describe an irreversible growth process

with a densification-relaxation process, similar to the Lockhart and Ortega models [7,22].

To account for the anisotropic growth of root tissues, the material is assumed to be trans-

versely isotropic in the axial direction, and the compliance tensor S is defined using the Voigt

notation,

S ¼

1

EL
�
nL
EL
�
nL
EL

0 0 0

�
nL
EL

1

ER
�
nR
ER

0 0 0

�
nL
EL
�
nR
ER

1

ER
0 0 0

0 0 0
2ð1þ nRÞ

ER
0 0

0 0 0 0 G 0

0 0 0 0 0 G

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; ð4Þ

where EL and ER are axial and radial moduli, respectively, νL and νR are the Poisson moduli in

the tangential and radial planes, respectively, and G is the shear modulus in the axial direction.
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Finally, using Eq 4, we obtain the expression for the bulk modulus

K ¼
1

S11 þ S12 þ S13 þ S21 þ S22 þ S23 þ S31 þ S32 þ S33

:

4.2 Cell level dynamics

The individual cells in the tissue are described by particles carrying state variables such as

mass, physical dimensions, and velocity. The cells are described as ellipsoids (Fig 1B, bottom),

by a symmetric positive definite matrix Q = (Qij)i,j = 1,2,3

The length of the cell’s main axes is obtained through the computation of Q’s eigenvalues

and eigenvectors,

Q ¼ V

z1 0 0

0 z2 0

0 0 z3

0

B
@

1

C
AVT;

where zi are the eigenvalues and V is the matrix composed of the corresponding eigenvectors

(Fig 2B). By convention, zi are ordered such that z1>0 is the smallest eigenvalue.

To determine the growth and division of a cell, the shape of the ellipsoid is evaluated at dis-

crete time steps noted tn. The growth of the ellipsoid is updated at every time step tn+1, based

on the velocity gradientru so that the deformed ellipsoid is defined by

Qnþ1 ¼ ðI � DtruTÞQnðI � DtruÞ;

where Δt = tn+1 −tn. A cell division occurs when one axis of the ellipsoid reaches the cell divi-

sion threshold �‘. The cell length ℓ is expressed as a function of the length of the principal cell

axis ‘ ¼ 2
ffiffiffi
1

z1

q
and division occurs when ‘ > �‘. Cell division generates two equal particles on

each side of the division plane along the longest axis of the mother particle, at half radius dis-

tance (Fig 2C). Following division at t = tn, the shape of the divided cell is given by

Qn ¼ V

4z
n
1

0 0

0 z
n
2

0

0 0 z
n
3

0

B
@

1

C
AVT:

Since the division plane occurs perpendicular to the longest axis, it is consistent with energy

minimization principles used in cell division models [30]. This same division rule was applied

across all cell types within the tissue. The cell division threshold �‘ was kept sufficiently low to

avoid large cells producing cracks. This is a simplification of the growth processes observed

experimentally in plant roots with deviations from experimental data occurring also due to cell

division rules changing as a function of the plane where the division occurs, the type of cell, or

due to root interactions with the surrounding environment.

4.3 Mechanical impedance by soil

To simplify computations, mechanical resistance from the soil is modelled through application

of a uniform pressure on the root tissue. The pressure applied on the root is introduced in the

equation for momentum conservation (Eq 1, second) and is modified as

Du
Dt
¼ �
rðPðrÞ þ pþ tÞ

r
: ð5Þ
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Here p is the difference between turgor pressure and soil pressure perceived by the root.

Roots have been shown to perceive only a fraction of the mechanical resistance of the soil that

is measured by penetrometer test. Explaining factors are reduced friction and growth through

path of least resistance [1]. Here, the mechanical resistance of the soil was assumed to be a

fourth of the pressure recorded by penetrometer test [39].

4.4 Smoothed Particle Hydrodynamics implementation

Unlike classical Finite Element or Finite Volume Methods, mesh-free methods use particles

without a predefined topology of neighbors. The SPH approximation of a variable, denoted by

h�i, is calculated from the weighted interactions between neighboring particles. The weighting

is obtained with the kernel function (Fig 2). The kernel function is related to the cell size

through the smoothing length coefficient �H , see Method A in S1 Text. The time evolution of

state variables is computed with a prediction-correction algorithm [55]. It computes first a pre-

diction of the evolution at the half time step, and then corrects the estimation at the complete

time step. The state variables of particle i at half time step t ¼ tnþ1
2 are computed as

r
nþ1=2

i ¼ rni þ
Dt
2

Drni
Dt

� �

;

unþ1=2

i ¼ uni þ
Dt
2

Duni
Dt

� �

;

xnþ1=2

i ¼ xni þ
Dt
2
uni ;

t
nþ1=2

i ¼ tni þ
Dt
2

Dtni
Dt

� �

:

Then at the complete time step t = tn+1, state variables are computed as

rnþ1
i ¼ rni

2 � d
nþ1=2

2þ d
nþ1=2

; with dnþ1=2
¼ �

Dt
r
nþ1=2

i

Drnþ1=2

i

Dt

� �

;

unþ1
i ¼ uni þ Dt

Dunþ1=2

i

Dt

� �

;

xnþ1
i ¼ xni þ Dt

unþ1
i þ uni

2
;

tnþ1
i ¼ tni þ Dt

Dtnþ1=2

i

Dt

� �

;

Qnþ1
i ¼ ðI � Dt ðrunþ1=2

i Þ
T

D E

ÞQn
i ðI � Dt ru

nþ1=2

i

� �
Þ:

Details on SPH approximation for
Drni
Dt

D E

;
Duni
Dt

D E

;
Dtni
Dt

D E

, and hruni i are specified in Method

A in S1 text. In short, the operator h�i is a weighted sum over a set of neighboring particles,

with the weight given by the kernel function evaluated on the particle of interest. The kernel

function must therefore bring more weight to close particles than to the particles further away.

For this reason, the kernel is a strictly decreasing function with the distance from its particle,

and the smoothing length �H is used to determine the distance over which it can affect its

neighbors. Several functions exists and lately, the Wendland kernel is preferred for its intrinsic

stability properties [19].
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In contrary to a vertex-based model, field variables are defined only once for each cell. This

reduces the number of unknown in the system and make the approach computationally effi-

cient. It is impossible however to compute subcellular processes explicitly, especially those tak-

ing place in the cell wall. Modelling the growth of a root hair cell with a SPH approach would

therefore not be feasible.

Computations were performed using initial particle distributions either extracted from

microscopy data or generated on a Cartesian lattice. The initial geometries consisted of a rect-

angle (2D) or cylinder (3D), merged with a half disk, or half sphere, respectively. In the

absence of specific hypotheses on cell size distribution, particles were initiated as spheres with

initial diameter ℓ = ℓ0. At the base of the domain, particles were fixed and prevented from

moving to represent the connection with the plant body. Particle velocity and mechanical

stress were assumed to be zero as initial conditions. Duration of computational time was deter-

mined so that the model has reached a steady state. The Courant-Friedrichs-Lewy condition

controlled the stability and the time step Δt was set to 0.9.

The code was implemented in C++ (compiled with v140 tool set on Windows and gcc 8.4 in

Linux) and source files are available at https://github.com/MatthiasMimault/RootSPHysicsV2_DB.

4.5 Parameterization of the model

To adjust the model parameters to fit experimental data, we considered three types of parame-

ters. The parameters that affect the anisotropy of the tissue along the root are denoted with a

subscript e and affect the radial modulus ER. The parameters that affect growth are denoted

with the subscript g and affect the softening coefficient λ. The parameters that affect cell divi-

sion are denoted with the subscript d and affect the cell division threshold �‘. ER, λ and �‘ were

also assumed to depend on the soil resistance and the axial position x along the root:

ER xð Þ ¼ EA þ EH � EAð Þ ce þ
1 � ce

1þ e� seðx� xeÞ

� �

;

l xð Þ ¼ l0

1þ cg
2
þ
ð1 � cgÞ

2

ðx � xgÞ
sg

e
0:5 �

ðx � xgÞ
2

2s2g

2

6
4

3

7
5;

�‘ðxÞ ¼ ‘0ðcd þ sdðx � xdÞ
2
Þ:

ð6Þ

The first relationship in Eq 6 defines the variations of the radial modulus ER along the root

and causes growth to be isotropic at the tip and anisotropic at the base of the root with EH
being the maximal radial modulus. The second relationship describes the variations of the soft-

ening coefficient λ along the root and affects the size and kinematics of the growth zone.

Finally, the third relationship describes the variations of the cell division threshold �‘ along the

axial direction of the root and defines the kinematics of the cell division zone. Model parame-

ters used in numerical simulations are specified in Table 1. The development of the root is

therefore fully determined by the set of parameters x ¼ ðce; xe; se; cg ; sg ; xg ; cd; sd; xdÞ.
Model parameters ξ were estimated to fit experimental data for the strain rate, the cell

length, and the root diameter. Using optimization algorithm was challenging computationally,

therefore, we made several assumptions to estimate model parameters. First, the softening

coefficient and Young’s modulus are both linked to growth of the tissue through Eqs 2 and 3,

but because only data on growth was provided in experimental studies the focus is first on fit-

ting the softening coefficient. Therefore, we first fixed the axial Young’s modulus to a
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reasonable value appropriate for a biological tissue, and we focused on identifying growth

parameters from data.

To obtain a crude estimate for the parameters EH, λ0, and l0, which control the magnitude

of the variations in strain rate, radius, and cell length in the root meristem, we made trial and

error simulations with root tissues having constant properties along the growth zone. For the

critical length at division, we observed for example that the critical length is approximately 1.5

the mean cell length. In the next step, to make the model fit more closely the experimental

data, we used the geometrical features of the functions in Eq 6, which link directly to features

in experimental curves and are independent from one another (Figure B in S1 text). In all

three functions in Eq 6, the parameter x represents the location of the transition from the tip

to the mature part of the root (inflection point in the root diameter xe, maximum axial strain

rate xg, and minimum of the cell length xd), the parameter s represents the slope or stiffness of

the transition and the parameter c controlled the minimum value of the curve. Once the func-

tions were adequately centered, a fine adjustment of EH, λ0 and l0 was made. In this case, we

observed the relationship between the parameters and the magnitude of the model output and

changed the parameter proportionally to the deviations observed between experiments and

model predictions. On occasion, the last steps were repeated to correct for small deviations

between model outputs and experimental data.

To determine how root growth adapts to soil conditions, we examined whether the radial

modulus and the softening coefficient functions vary as a function of the pressure differential

p (Eq 5). To test this hypothesis, the parameters ξ were assumed to vary with the pressure dif-

ferential using the following linear interpolation,

xðpÞ ¼ yðpÞx1 þ ð1 � yðpÞÞx2: ð7Þ

Here, θ is a linear function such that θ(p1) = 1 and θ(p2) = 0. To parameterize the model, it

is therefore sufficient to estimate the parameter vector ξ1 for growth in soft soil conditions p =

p1, and the parameter vector ξ2 for growth in hard soil when p = p2.

4.6 Case 1—Tissue anisotropy and the morphology of the root tip

A remarkable property of developing roots is their ability to maintain their shape and size dur-

ing growth. To investigate the ability of our model to exhibit such behavior, we performed sim-

ulations considering three possible expressions for the radial modulus ER in Eq 6. Constant

isotropic properties were modeled using ce = −1 and se = 0. Constant anisotropic properties

were modeled using ce =1 and se = 0. Balanced properties were modeled using parameters

shown in Table 1. To assess the ability of the model to correctly predict anisotropy, we consid-

ered the case of constant mechanical stress in an anisotropic material so that the axial and

radial strain components can be determined analytically.

εA xð Þ ¼
1 � nA
EA

; εR xð Þ ¼
1

ERðxÞ
�
nA
EA
: ð8Þ

The analytical solutions of the model can then be compared to numerical solutions with

strain components estimated as the difference between the size of the tissue at equilibrium and

the size of the tissue at the start of the simulation.

4.7 Case 2—Growth in unimpeded conditions

In the second study case, we examined the ability of the model to predict the unimpeded

growth of the root. The model was adjusted to the data proposed by [20] that were extracted

using WebPlotDigitizer (https://automeris.io/WebPlotDigitizer/). The study focuses on the
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growth of the roots of Arabidopsis thaliana 6 days after planting. The data available consist of

cell length, axial strain rate and division rates, and how these variables vary as a function of the

distance from the root tip. The data were obtained by live microscopy and image analysis fol-

lowed by kinematics analysis [56].

For the model to accurately predict growth kinematics parameters, we adjusted the radial

modulus, the softening parameter, and the cell division threshold in Eq 6. We considered the

first 0.5 mm of the root tip because it is where most cell division occurs. All simulations here

were performed in a 2D setting with particles initially distributed on a Cartesian lattice.

4.8 Case 3—Growth in impeded conditions

In the final study case, we examined how the root biophysical parameters vary as a function of

soil resistance. The model was adjusted to the data from two different studies on Pisum sati-
vum plants (Pea). First, the axial strain rate of growing tissues was obtained from plants grow-

ing in soils of different mechanical resistance [15]. The data available consist of the axial strain

rate as a function of the distance from the tip for roots grown in soil at two different mechani-

cal resistance. The data were obtained by live microscopy and image analysis, followed by kine-

matics analysis [56]. A different study was used to obtain data on the changes in root diameter

as a function of soil resistance [16]. Data points were extracted using WebPlotDigitizer. In our

studies, the pressure differential p was determined as the difference between a turgor pressure

of 1 MPa and one fourth of the measured penetrometer resistance, so that p varied from 1 (soft

soil) to 0.5 (hard soil). In this case, only the mechanical parameters of the model were adjusted

to data. The cell division rate was set to a constant threshold of 120 μm and ensured uniform

distribution of particle across the root tissue (Table 1). All simulations here were performed in

a 2D setting with particles initiated on a 2D cartesian lattice.

4.9 Data processing and segmentation

To compute statistics from SPH simulations, particle data were aggregated into bins of equal

lengths. For a given time step, particles located in the same bin were used to compute the

mean and the standard error (SE). The division rate was computed as the ratio between new

particles and old particles during the time step. Mean and standard error were computed for

each bin at 40 different time steps. The fit between simulations and experimental data was eval-

uated with the Relative error (RE), the Pearson coefficient of determination (R2) and the

Rounded mean square error (RMSE), computed with the sklearn package version 0.24.1 [57]

in python (version 3.8.8).

To perform computations on a realistic cellular architecture we used volume datasets

acquired with confocal laser scanning microscopy and processed with MorphoGraphX soft-

ware [54]. Results of the image analysis (.csv files) were used as input for SPH computations.

The files contained a unique cell identifier, spatial position, and ellipsoid approximation for

each cell. Results of SPH computations are exported as.vtk and.csv files to be visualized using

Paraview [58]. Cell walls were rendered using local minima search algorithm (find_peaks,

SciPy, version 1.6.2 [59]) applied to the kernel function potential (Fig 2).

Supporting information

S1 text. Method A. Detailed description of SPH theory. Figure A. Anisotropy coefficient dis-

tribution for the study of tissue anisotropy and the morphology of the root tip (Case 1).

Figure B. Division threshold, softening coefficient, and anisotropy coefficient for the simula-

tion of the development of Arabidopsis thaliana roots in unimpeded conditions (Case 2).

(PDF)
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S1 Video. Unimpeded root growth with a Cartesian lattice of cells as initial condition. Col-

ors here and in the following videos indicate the number of cell divisions.

(MP4)

S2 Video. Effect of soil impedance on growth with two different pressures differentials

applied to a root with a Cartesian lattice of cells as initial condition.

(MP4)

S3 Video. Three-dimensional simulation of root growth with a Cartesian lattice of cells as

initial condition. Computation predicted root elongation for a duration of 55 hours. The

computation initiated with 45 000 cells and finished with 200 000 cells, modeled an elongation

of 25mm and eight generations of cell division.

(MP4)

S4 Video. Root growth against an obstacle with a Cartesian lattice of cells as initial condi-

tion. Computation predicted root elongation and subsequent buckling against a tilted rectan-

gular obstacle for a duration of 30 hours against. The computation initiated with 2000 cells

and finished with 4 500 cells, modeled an elongation of 15mm and three generations of cell

division.

(MP4)
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