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Abstract. How morphogenesis depends on cell properties is an active direction of research. Here,
we focus on mechanical models of growing plant tissues, where microscopic (sub)cellular structure is
taken into account. In order to establish links between microscopic and macroscopic tissue properties,
we perform a multiscale analysis of a model of growing plant tissue with subcellular resolution. We
use homogenization to rigorously derive the corresponding macroscopic tissue-scale model. Tissue-
scale mechanical properties are computed from microscopic structural and material properties, taking
into account deformation by the growth field. We then consider case studies and numerically compare
the detailed microscopic model and the tissue-scale model, both implemented using the finite element
method. We find that the macroscopic model can be used to efficiently make predictions about several
configurations of interest. Our work will help making links between microscopic measurements and
macroscopic observations in growing tissues.
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1. Introduction. Modeling plant growth and morphogenesis is an active area of
research [53]. A major difficulty in this area is that growth is “inherently a multiscale
process” [53], bridging subcellular to organ scales. Each plant cell is surrounded
by a thin layer of polysaccharides, known as the cell wall, and exerts on this wall
a hydrodynamic pressure, termed turgor pressure. Plant cell growth is driven by
turgor pressure and restrained by the cell wall. Organ morphogenesis results from
specific spatial distributions of growth rates across cells and tissues. As a consequence,
the form of an organ is dependent on all processes occurring from subwall scale to
supracellular scale, raising the need for multiscale modeling approaches.

Most previous modeling effort focused on one scale or one process at a time. For
instance, several studies have addressed how cell wall rheology emerges from its com-
position, microstructure, and/or synthesis [7, 19, 20, 28, 44]. These studies adopted
approaches from continuum mechanics and used partial differential equations (PDEs)
to describe the cell wall as an anisotropic material, with different assumptions on
the rheology—viscous [19, 20], elastic [7, 8, 44, 47], or viscoelastoplastic [28]; growth
then corresponds to flow of the viscous material or to remodeling of the elastic ma-
terial, combined with synthesis of new material. Other studies represented tissues as
tessellations by polygons of two-dimensional (2D) space or of surfaces embedded in
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three dimensions that describe the position of vertices, relying on high-dimensional
systems of ordinary differential equations [7, 15, 24, 31, 35]. The authors investigated
how tissue shape changes according to cell wall rheology, assuming, for instance, each
edge to be a viscoelastoplastic element, or according to how mechanical stress in tis-
sues feeds back on cell wall dynamics. Other studies used continuous, PDE-based
approaches for modeling tissue dynamics and investigated how patterns of tissue me-
chanical properties or of growth potential yield organ morphogenesis [26, 54]; see the
comprehensive overview in [22].

In this context, a systematic derivation of macroscopic (supracellular) tissue rhe-
ology from (sub)wall rheology is still lacking. Here we try to address this issue using
multiscale modeling and homogenization techniques. There are many results on ho-
mogenization of equations of linear elasticity, e.g., [4, 14, 29, 43, 45, 50]; however, to
our knowledge the multiscale analysis of the two-way coupling between elastic defor-
mation and growth presented here is novel.

In the derivation of the microscopic model we start from the framework of mor-
phoelasticity [23, 49]. Following [49], we consider the multiplicative decomposition of
the deformation gradient into elastic and growth part and model elastic deformations
of plant cell walls using equations of linearized elasticity. To describe the growth we
use Lockhart’s law [32] that relates plant cell wall growth with deformation gradient
and accounts for microscopic subwall properties. Along with modeling growth pro-
cesses, the multiplicative decomposition approach is also used in multiscale modeling
and analysis of plastic deformations, where the decomposition corresponds to the elas-
tic and plastic deformations respectively, e.g., [16, 36, 39]. Rigorous well-posedness
results were recently obtained for a model combining multiplicative decomposition
and nonlinear elasticity [17].

Applying homogenization techniques, the two-scale convergence [3, 41] and pe-
riodic unfolding [11, 13] methods, we rigorously derive macroscopic equations that
describe elastic deformations and growth at the tissue scale. In particular, we pro-
vide explicit formulae for macroscopic elastic properties as a function of microscopic
parameters and microscopic structure. An important step in the rigorous derivation
of the macroscopic problem is the proof of the strong convergence of the sequence of
growth and strain tensors as the small parameter, representing a ratio between the
size of the microstructure and the size of the tissue, converges to zero. We illustrate
our results by solving numerically the corresponding microscopic and macroscopic
equations and analyze the degree of agreement between solutions of the macroscopic
problem and solutions of the original microscopic model defined at the cell wall scale.
An important contribution to the numerical simulation of the macroscopic two-scale
problem is the development of a two-scale numerical algorithm that allows an efficient
coupling between macroscopic and microscopic properties and processes. Along with
numerical efficiency, the advantage of the derivation of macroscopic tissue level mod-
els for plant growth allows us to study different biological settings which are difficult
or even impossible to formulate and simulate at the cell-scale level.

The paper is organized as follows. In section 2 we formulate and analyze the
microscopic model for plant tissue growth. The macroscopic model is derived in
section 3 using both formal asymptotic expansion and rigorous derivation applying
the two-scale convergence and the periodic unfolding methods. Description of the
numerical simulation algorithm and implementation of the numerical methods is given
in section 4. In section 5 we present numerical simulation results, followed by a short
conclusion and an appendix.
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2. Derivation of microscopic model for plant tissue growth. In our math-
ematical model for the growth of plant tissue we consider a microscopic geometry of a
plant tissue composed of cells surrounded by cell walls, connected by middle lamella;
see the specific geometry in Figure 1(a)—(b). In modeling the dynamics of plant tissue
we consider the elastic deformations and growth of these cell walls and middle lamella.

By Q; C R¢, with t >0 and d =2 or 3, we shall represent a part of a plant tissue
in the current configuration at time ¢ and 9€); denotes the external boundary of the
tissue. We shall consider the growth and elastic deformation of a plant tissue given
by the map x(t,-) : & — R from the initial (reference) configuration Q C R? into
deformed (current) configuration Q, = x(¢,€2) of a plant tissue for ¢ > 0. We consider
2 to be a bounded Lipschitz convex or a bounded C1'7, with 4 € (0,1), domain.

When modeling growth we use the framework of morphoelasticity and consider
the multiplicative decomposition of the deformation gradient F =1+ Vu into elastic
and growth parts F =F.F g, where u is the displacement of the cell walls and middle
lamella according to the map x and F. and F, are elastic and growth deformation
gradients, respectively. Then the elastic strain is given by

B = % (FeF.—T) = % [(Fe =D)T(Fe — 1) + (Fe — 1) + (Fe — I)]

= % [(Fe DT (F. 1)+ I+ Vu)F, ' + (I+Vu)F, ')’ - 21} .

(2.1)

We model the cell walls and middle lamella as a hyperelastic material and consider
the stress tensor in the form

o(z,Fo)=J 'Fop, W(x,Fo)T,

where W is the strain energy function and J, = det(F,) = det(FF,'). Then the
constitutive equation for elastic deformations is given by

o(x,F.)=0(x,Vu,F;')=J 'FF; ' 0p W (2, FF;")".
Mechanical equilibrium requires that
(2.2) —divzo(z, Vu,F; 1) =0 in Qf, >0,
where (2}’ denotes the domain of cell walls and middle lamellae, joining the walls of

individual cells together, and Z denotes the coordinates in the current configuration.
We complete (2.2) with the boundary conditions

o’(x,Vu,Fgl)V —Pv on I'y, t >0,
(2.3) o(z, Vu,F; v =f on O \Tp,, t>0,
u-v=0, HT(a(m,Vu,Fg_l)y)zo or u=0 on I'py t>0,

where P is the turgor pressure inside the cells which can vary between cells and across
the tissue, f denotes external forces, v is the external normal vector to the boundaries
of €2} in the current configuration, I'; denotes the boundary of cells, corresponding to
plasma membranes, I'p ; C 9€2; for £t > 0, and II; denotes the tangential components
of the corresponding vector.

We can rewrite (2.2) and (2.3), defined in the current configuration, in the refer-
ence configuration to obtain
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—div(JgST (z, Vu,F; ) F;7) =0 in QY t>0,
(2.4) Js 8T (z,Vu,F,)"F,"N=—-JPF "N on T, t>0,
Js ST (z, Vu,F; )F;"N=£fJ|F""N|  on 0Q\Tp,t>0,
u-N=0, I (J; 8" (z, Vo,F; " )F;"N) =0 or u=0 on I'p, t>0,

where N denotes the external normal vector to the boundaries of the reference domain
of cell walls and middle lamella Q% C R?, and the nominal elastic stress is given by

S (x,Vu,F; ') =0p W (z,FF,").

To specify the constitutive relation for the stress tensor o, or correspondent nom-
inal tensor S, we assume small elastic strain (small elastic deformations of plant
tissues), i.e.,

oz, Vu,Fgl) ~S%(z,Vu, Fgl) ~E(z)e® (Vu, Fgl),

where E(x) = Op, 0p, W (x,1) is the elasticity tensor and e® is the linearized version
of the elastic strain (2.1), which depends on the displacement gradient and growth
tensor

e — 1 — — — —
e (Vu Fpl) =2 [VuF !+ (VaF )" + F !+ F 7 — 21]
=sym(Vu Fg_l) + sym(Fng) -1

We also assume JF~T ~ JyF; T for small elastic strain. Notice that for Fy = I we
recover the standard formula for the strain in the case of linear elasticity.
To complete the model we specify equation for the growth tensor F

6Fg -1 : w
(25) W—G(Jf,vu,Fg )Fg in y t>0,
F,(0,z)=1 for x € QY.

Since there is no consensus on modeling growth [22, 53], we consider two scenarios
and assume that the growth depends on the local average of stress or of strain in
cell walls and middle lamella (both are compatible with Lockhart’s law [32]). We
also assume that the cell wall and middle lamella expand when the local average of
the stress or strain is larger than some threshold value [32]. Hence we consider the
stress-based growth

G(z,Vu, Fg_l) = G(z,0(z, Vu, Fg_l)) =1,[6 — To|+,
or the elastic strain-based growth

é(m,Vu,Fgl) = é(x,eel(Vu,Fgl)) = 778[5-?el -7,

and
-M if G(z,Vu,F;1);; <—M,

(2.6) G(m,Vu,Fg_l)ij: é(a:,Vu,Fgfl)q;j if jM<C~¥(x,Vu,Fg’1),-j <M,
M if G(x,Vu, Fgl)ij > M,
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for i,j=1,...,d and some M > 0. Here [v], = QT [Dv]*Q with Q the rotation that
diagonalizes the tensor v, and [Dv]* is a diagonal matrix with the positive parts of
the eigenvalues of v on its diagonal. This allows us to relate growth only to tensile
stress, in the case of stress-based growth, or only to elongational strain, in the case
of strain-based growth. The uniform boundedness assumption on the growth rate G
is used in the rigorous analysis of the model and is not restrictive from the biological
point of view. Notice that in the growth laws we consider piecewise constant fields &
and &%, obtained as an average over each cell of o and €°!, respectively. The growth
laws introduce two physical parameters: the extensibility constants 7, and 7. and
threshold matrices T, and 7., respectively.

2.1. Formulation of the microscopic model. We assume that in a plant tis-
sue cells are distributed periodically and consider the parameter § > 0 that determines
the ratio between the size of a cell and the size of the tissue. We also assume that the
size of the cell and the thickness of the cell wall h are of the same order and much
smaller than the size of the tissue, i.e., ¢ is small. To define the microscopic structure
of the plant tissue given by the cell walls and middle lamella, we consider a unit cell
Y and Y, C Y represents the voids filled by biological cells, with Lipschitz boundary
I' = 0Y. and composed of a finite number of subdomains separated from each other
and from the edges of Y, whereas Y,, = Y \ Y, represents cell walls surrounded by
middle lamella. Then the microscopic geometry of a plant tissue in the reference
configuration is defined as

V=[] oVe+ and Q°=0Q\ Q)
EEEs

where Z5 = {6 € Z: 6 (Y + &) C Q, dist(6 (Y. +£),00Q) > ké} and Z={¢ € R?: ¢ =
Z;l:l kjbj, k € Z%}, with {b;}?_, being the basis vectors of Y, i.e., ¥ = {y € R? :
Yy = ijl s;bj, s € (0,1)?}, and for some fixed £ > 0. The boundaries of Q° that
correspond to cell plasma membranes are

M= |JoC+¢ and T°=00°\0Q.

£€Es
The parts of the tissues near the boundary 9§ which do not include the complete § Y
are denoted by

L
As=Q\ U §(Y +¢) and A(;:UA% with ALNS(Y +&)#0 for one £€E
EEEs =1
and L=0(1/6%"1),

Then microscopic equations for elastic deformations in the reference domain read

—div(Jg 8§ (z,Vu’, F, ;) F_7) =0 in Q° ¢t>0,
J2 S5 (z, VU, F ) F i N=—J) P°(t,2)F ;N on I'’, t>0,
(2.7) Jg S5 (¢, Vu' F ) F IN =J2f(t,z) [F i N|  on 0Q\Tp, t>0,
- (J) 87 (z,Vu’,Fj) F,i N) =0, u’-N=0
or u’=0 on I'p, t>0,
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where Jg‘i =det(Fy,), S (z, Vu’, F;};) =9 (x)e®(Vul, F?;(ls) = Eé(x)[sym(Vu‘sF;(l;)—i—
sym(F, 5) —1IJ, with E°(z) =E(z,2/d), and P°(t,z) = P(t,z,2/d) for given functions
E:QxY — R and P:(0,T) x Q xI' = R, extended Y-periodically to R? and to

Uges(T + &), respectively.
The dynamics of the growth tensor is determined by

OF s

890 _ (6 5 —1 . 5
(2.8) 5 =G @V F 5 Fs i Q0 >0,
Fy5(0,2) =1 in Q7
where
G (2, Vu', Fy5) = 1o l ][ o (&, Vu' F}) di - TJ] or
5([z /8]y +Yuw)NQ N

e(Vu’,F })di — TE] ,

G (x, Vu', F,}) =1 [ ][
a(( +

/8]y +Y)NQ

with o (z, Vu‘s,F’;;) =S¥ (x, Vu‘s,F;}S) = E‘S(x)EEI(Vu‘s,F(;};), and

(2.9)
-M if é(s(l‘,vué’F;(l;)ij <-M,
G‘S(:E,Vué,F;(lg)ij = é5(m7vu57Fg;(15)ij if —M <~C¥6(x,Vu5,F;(1;)ij <M,
M if Gé(x,Vu‘S,F;};)ij > M,

for i,j=1,...,d.

2.2. Well-posedness of microscopic model. To prove existence of a weak
solution of problem (2.7) and (2.8), we consider standard ellipticity assumptions on
the elasticity tensor E and regularity assumptions on the pressure P° and boundary
forces f. For the pressure inside of the cells P? we shall consider dependence on the
microscopic structure in the form

(2.10) Po(t,x) = Py(t,z) + 8 Py(t,2,2/0)

for some given functions P;: (0,7) x Q=R and Py : (0,7) x @ xT' = R.

Assumption 2.1.
e Elasticity tensor E € C7(€; L2, (Y))* is positive definite and bounded, i.e.,
a1|Al? <E(z,y)A - A < as]A|? for z € Q, y € Y, symmetric matrices A €
R¥*? and positive constants a1, s, and has minor and major symmetries,
i.e., Eijkl = Eklij = Ejikl = Eijlk:) for 7, kil=1,...,d, for v e (07 1)
o fcC([0,T]x09), P, € C7([0,T];C*(Q)), and P, € C7([0,T] x 2 xT), where
Py(t,x,-) is Y-periodically extended to T + &£, with £ € &, for v € (0,1).
If Tp # 0, consider G the symmetry group of I'p, formed of at most one, for
d =2, or two, for d = 3, translations and at most one rotation, for d = 3, that leave

I'p invariant. Let G, be the subspace of R? spanned by the set of translations in G
and {py, py} be the orthonormal basis of the plane perpendicular to the rotation axis.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/21/24 to 137.195.27.23 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2360 A. BOUDAOUD, A. KISS, AND M. PTASHNYK

Then, depending on the boundary conditions, we define the following space for solu-
tions of (2.7):

Vs={ue H'(Q°)%: u=0 on I'p} or

V(;:{ueHl(Q‘s)d :u-N=0 on FD,/ IIg (u)dx =0,
(oK)
[ pi(va-van)p, o=},
Q

where Ilg_ is the projection on G, and 1 denotes an extension of u from Q° into Q;
see, e.g., [42]. If T'p =0, then

V(;:{uEHl(Q‘S)d :/ udz =0,
0
/(amjﬁi—amiﬁj)dxzq for i # 7, m’:L...,d}.
Q

Using (2.10) for P® and diV(JgF;:‘;F) =0 in Q% we can rewrite the equations in
(2.7) as
(2.11)
—div(Jg (ST (z,Vu’,F, 1) + Pi(t,)T) F;f) = —JF;IVP(tz) Q>0

Je (sg“(a:, Vo’ F, L) + Pt x)I) F.IN=—6J2P{(t,2)F;IN onT° >0,

g
J9SY (x,Vu' F, ) F, N =J)f(t,z)|F,; N| on Iy, t>0,
JoIL-(SF (2, Vu, F ) F i N) =0, u’-N=0
or u’=0 onTp, t>0,

where I'y = 9Q\T'p and P (t,z) = Pa(t,x,2/9).

In the analysis and numerical implementation of (2.8) and (2.11) we shall consider
weak solutions of the model equations. We shall use the notation (¢, ¥)4 = fA oY dx,
for ¢ € LP(A), ¢ € LY(A), and (p,9p)oa = [,, ¢¥dy, for ¢ € LP(DA),¢ € LI(DA),
with 1 <p,g< o0, 1/p+1/g=1, and a bounded Lipschitz domain A.

DEFINITION 2.2. A weak solution of (2.8) and (2.11) is u® € L?*(0,T;Vs) and
Fys5 € WEo(0,T;L9(Q°))?, for any q € (1,00), with Fy 5 € L®((0,T) x Q%)4xd,
satisfying

<J§ E°(z) sym(Vu‘sFl;}S) + Py (t,z)I, V¢F;é>m
o) +6 <J§ Py(t,x)F,_; N, <p>r5 - <J§ Py(t,x)F,; N, ¢>8Q

_ <J§ E(z) {1 _ sym(ng};)} ’WF5<15>95 _ <J§ F;(;TVPl(t,x),g0>m

() TN L)

for ¢ € L*(0,T;Vs) and a.a. t€(0,T), and Fy 5 satisfies (2.8) a.e. in (0,T) x Q°.

First we shall prove a version of the Korn inequality, where the symmetric gradient
includes the growth tensor.
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LEMMA 2.3. For u€ Vy and a tensor F € L>°(2) such that on each (Y +£)NQ,
for £ € 2, F is constant, det(F) > 1, and eigenvalues A\j(F) > 1 for j=1,...,d, we
have the following estimate:

(2.13) lull2 sy + [Vl 72 0s) < Cllsym(VaF~H)||7 qs)

with constant C' = C(F) independent of ¢.
Proof. Assumptions on the microscopic structure of the plant tissues ensure the
existence of an extension 1 of u from Q° to Q with
4]l 710 < Cllul| (s, V][ 22(q) < C| VUl 1205y,
[a]| 22 (0) + [lsym(Va)[| 22 o) < C(llull2qs) + [sym(Vu)|2qs)),
[sym(Va)||L2q) < Cllsym(Vu)||r2qs),

where constant C' is independent of J; see, e.g., [42]. In the following we shall identify
u with its extension . Using that F and hence F~7 are constant on each §(Y +£)N§Y,
for ¢ € E, and the properties of 9, together with an extension of u from 6F ()Y,
into dF ()Y, constructed as in, e.g., [42, Lemma 4.1], we obtain

/ lsym (VuF ') |?da = Z / sym (VuF ') |*da
Qe 3(Yw+§)

£€Es

L
+ Z_ZI/AQ sym (VuF ') |?da
= 3 det (F(e) [ [sym(Vu)[?dz

5655 6F(f)(yw+5)

L
+ Y det(F ) [ fsym(Va)Pda
1=1 F

(&AL
> 3 det (FH(E)CE(E) [ oy ST

£€Es

L
+ ) det(F(&) [sym(Vu) *dz,
; l /F Y

(&AL

where the dependence of the constant C on F(£), for £ € Ej, arises from the application
of the Korn and Poincaré inequalities when constructing an extension from F(§)Y,,
into F(£)Y (see [42, Lemma 4.1] for more details), and & € A} for [=1,...,L. Using
the uniform boundedness of F, together with the fact that det(F) > 1 in (0,7) x Q
and eigenvalues A\;(F) > 1, with j =1,...,d, and applying the Korn inequality (see,
e.g., [10, 18, 42]) yield

/ ‘sym(VuF_l)‘deZC/ |sym(Vu)|2dsz/ sym(Vu)|*dx
Qs Qp Q

zc/ (|u|2—|—|Vu\2)da:ZC/ (Juf?* + |Vuf?) dz
Q Qs

for u € V5, where Qp = (U§€Es SFEOY +9)U (U1L:1 F(&)A)). This implies the
result stated in the lemma. O
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Remark 2.4. Some results on the generalization of the Korn inequality can be
found in [38, 46]. Notice that in [38] Cl-regularity of F is required and in [46] the conti-
nuity of F or u =0 on 91 is assumed. In the proof of Lemma 2.3 we use the fact that F
is uniformly bounded and piecewise constant and the eigenvalues of F satisfy A; (F) > 1
for j=1,...,d, ensuring that € is a subdomain of the transformed domain Q.

Using the inequality (2.13) and applying the Banach fixed point theorem we prove
the well-posedness result for microscopic model (2.8) and (2.11).

THEOREM 2.5. Under Assumption 2.1 there exists a unique weak solution of (2.8),
(2.11) satisfying

(2.14) 10| oo (0,73v3) + I F .5l Loe (0.1 x025) < C,
' [0:Fyg,s]

Loo((0,T)x Q%) + [Fg.s weo(0,1;0a(08)) < C
with a constant C independent of 6 and any q € (1,00).
Proof. We shall apply a fixed point argument to show existence of a solution of
(2.8), (2.11). Consider
w :{F € L>((0,T) x Q)4 F e WhH(0,T; L(Q°)) ™4,
IF|| Loe 0.7y x5y < &, det(F) > 1, \;(F) >1in [0,7] x Q°,j =1,...d,

and piecewise constant in each §(Y,, +£)NQ for € E},
with % > exp(dMT). For a given Fy 5 € W, taking u® as a test function in (2.12), and

2.
using assumptions on E, Py, P, and f, together with the fact that 1 < det(f?gﬁ) <C,
with a constant C independent of d, we obtain

2
S—1 5112
(2.15) Hsym(Vu Fg,é)HLm(O’T;Lz(m)) <O+l 20w

for any fixed ¢ > 0. Here we also used the trace estimate

Sl 72 (rsy < C(I[vl1720s) + I VII720s))  for ve H'(Q)

for some constant C' independent of §; see, e.g., [27]. Notice that since f‘g@ is constant
on each 0(Y,,+£)NEQ it can be trivially extended by the constant into each (Y +£)NQ
for £ € =. Using Lemma 2.3 we obtain

(2.16) [0°]] o< (0,7v5) < C\\Sym(vuéﬁgé)HLO@(O,T;L?(W)),
and then choosing in (2.15) sufficiently small ¢ > 0 yields
(2.17) ||u5||L°°(O,T;V5) <C,

where the constant C' does not depend on §. Assumptions on E, Py, Py, f, and f‘gﬁ,
together with the estimate in Lemma 2.3, ensure that

Flp) = <J§ Py(t,2)F, TN, <p>89 - <P1 (t,2)L, Vi Fg_7<15>m - 5<J§ Py(t,z)F, N, <p>r

+ <J§E5(x) [I—sym(Fg’(l;)} ,V@F;é>m - <J§ F;(;TVPl(t,m),<p>m

+ (I (L) |F;5TN\7¢>FN
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defines a bounded linear functional on Vs and
B(u®, ) = <JéS E°(z) sym(Vuéf‘;};), sym(V@Fgé)>Qé

is a coercive bilinear form on Vs x Vs for t € (0,7) and a given Fg)g € W, where
Jg = det(Fg ). Thus the Lax Milgram theorem (see, e.g., [21]) yields existence of a
unique solution of problem (2.11) in L>(0,T; V) for a given Fy 5 € W and each fixed
§ > 0. The boundedness of function G° also ensures existence of a solution of (2.8)
with Fg,(; instead of Fg 5 in GY.

To show existence of a unique solution of the full model (2.8) and (2.11) we need
to show a contraction property of the map K : W — W, where Fy; = K(Fgs) is a
solution of problem (2.11) and (2.8), with Fg,(; instead of Fy 5 in (2.11) and in function
G? in (2.8).

From equations for F, 5, using properties of GY, we obtain

det (Fy 5(t,2)) = det(Fy 5(0,2)) det(exp ( /O t G (2, vl B 1) ds))

= exp (tr(/ot G‘s(;v,Vué,F{;;)d‘s)) >1

for (t,z) € [0,T] x Q9 since diagonal elements of G° are nonnegative. Assumptions
on GY imply that Fg s is piecewise constant in each §(Y,, + &) NQ for £ € =, has
eigenvalues greater than or equal to 1, and

(2.18)  [[Fgsllnoe(o,m)xa0) + 10:F g5l Lo 0,7y x20) + IFg,sllwr.o 0,100(00)) < C,
with a constant C' independent of §. Since J = det(Fys) > 1 for (t,z) € [0,T] x (92
we also have

IF, 5l Lo (0 x25) + 10 F 51| Lo (0,1 x5y + IF g5 llwree 0,520 25 < C-

Multiplying the difference of (2.8) for Féé and Fz,é by Fé#s — Fé(;, integrating
over the time variable, as well as using the boundedness of F, s and the Lipschitz
continuity and boundedness of G°, and applying the Gronwall inequality imply

1 2 2
||Fg,6 o Fg,éHLoo((o,T)xm)
S S (12
ro I LG L e
. <T [C(;Hsym(Vu‘lS (F;&)_l) — sym(Vug (F;é

—14\]12
) )HLOO(O,T;L2(Q5))
il P2 |12
+ CHFgﬁ o Fg75||L°°((O,T)><QJ):| ?
for Fé,é’ﬁé,é € W, where constant C depeinds on HF;5||L00((O’T)X95), for j = 1,2,
which is bounded by &, and C5 depends on HFJg sllze=((0,1)x0s) and 6. In the derivation
of (2.19) we used the following estimate:
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§ 5 (pl (-1 5 5 ;2 \—1 2
HG (x,Vul,(Fg,a) )_G (IaVUZa(Fg,é) )HLW(Q‘S)
2
<c ][ e (Tul, (L 5)7") - e (Vu, (F25) 7)) d
0([z/8]y +Yw)NQ L= (Q9)

~ - 2
< C167 [sym(Vui(FL ) 7) - sym(Vug (F2 )7

L2(09)
~ ~ 2
+ CZHF;(S - FéﬁHLw(m)

for a.a. t € (0,T). From (2.11), using the uniform ellipticity of E and estimate (2.17),
we obtain

L0 (0,T;L2(29))

(2.20) 5

< CHFéﬁ ~F5
Lo ((0,T)x02%)

In the derivation of (2.20) we used the following estimate:

HV(U? —ud)[(FL )~ — (F2,)7Y]

L2(Q9)
~ 2 ~ 2 B B 2
<C:¢ (Fé,6)71 (F;&)*l Fé,a -F;
L>(Q9) L0 (Q9) L0 (Q9)
2 ~ 2
+¢||V(uf —uj) <g|sym(V(u] —ud)(Fy5)™)
L2(Q°) L2(Q°)
2
+ Cl Féﬁ - ﬁ;a
Lo0 (Q9)
R ~ 2
<¢|lsym(Vul (Fy 5)7") — sym(Vuy(F; 5)~")
L2(Q9)
) ~ ~ 2
+ C(l + HVUgHLZ’(Qé))HFé,J - Féﬁ
L (Q9)

for any fixed ¢ > 0. Here we applied (2.13) with (F;(;)_l and u(t) — ud(t) € V;.
Combining estimates (2.19) and (2.20) and considering T' sufficiently small we
obtain that K is a contraction. Then applying the Banach fixed point theorem yields
existence of the unique solution for (2.8) and (2.11). Since the choice of T' depends
only on the parameters in the system and on § and does not depend on the solution,
we can iterate over time intervals to obtain the global existence and uniqueness result
for the microscopic model (2.8) and (2.11) for any fixed § > 0. a0

Next we prove convergence results for sequences {u®} and {Fg s} as § — 0.

LEMMA 2.6. Under Assumption 2.1, for sequence of solutions {u®} and {Fgs}
of microscopic model (2.8) and (2.11), up to a subsequence, we have the following
convergence results:
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(2.21)
uw —u weakly-x in  L*°(0,T;V),
Vu® = Vu+V,u  two-scale, u, € L2((0,T) x Héer(Y)/R),
F,; —~F, weakly-+ in  L*((0,T) x ),
F,s —~F, weakly-+ in ~ W1(0,T;LYQ)), for any q € (1,00),

where we identify u® with its extension from Q° into Q and for F. s consider a trivial
(constant) extension from 6(Y,, + &) into §(Y +&) for E€E5. The space V is defined
in the same way as Vg, with Q° replaced by Q.

Assuming additionally that

(2.22) IT° (V)| oo 0.1y x L2 (v )) < Cs
with a constant C independent of §, we have
Fes—Fg strongly in  L*((0,T) x Q),

/Y T? (sym(Vu‘sF;}S)) dy
(2.23) — sym((Vu+ Vyul)Fgl) dy strongly in  L*((0,T) x Q),
Yu

/Y T° (IE‘S (z) sym(Vu‘st;é)) dy

—>/ E(-,y) sym((Vu + Vyul)Fg_l) dy  strongly in L*((0,T) x Q),
Yu

where T? is the periodic unfolding operator defined below.

Proof. The first four convergences follow directly from estimates (2.14) and com-
pactness results for the weak-* and two-scale convergences; see, e.g., [3, 41] or the
appendix for the definition and properties of the two-scale convergence.

To show the strong convergence of F, s we shall use the periodic unfolding oper-
ator 79 : LP((0,T) x Q°) — LP((0,T) x Q x Y,), with 1 < p < oo, defined as

(2.24)

T3 )t y) = v(t,0[z/d]y +dy) for ae. (z,y) € (Q\ As) X Yo, t €(0,T),

0 for a.e. (z,y) €As x Y, t€(0,7T),
where [2/6]y denotes the unique integer combination, such that x/§ — [z /d]y belongs
to Yy, for x € Q9\ As; see, e.g., [11, 13] and the appendix for more details.

Applying the periodic unfolding operator 7 to (2.8) yields
(2.25) AT (Fgs) =G’ (x, T°(Vu’), T’ (F,;)) T°(Fgs) in (0,T) x Q2 xY,,

where

el (x,TJ(VuE),T‘;(F;(IS)) =1y []{/ o(z,y, Té(Vu5),T5(F;§)) dy — TU:| ;

w +

or

G (2, T°(Vu°), T°(F§)) =n. [][Y e (T°(Vu°), T (F ) dy — 7-5} :

w +
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and G? is defined in terms of G° as in (2.9). Notice that G° is independent of y and
hence 7?(Fy,s) depends on ¢ € (0,7) and z € Q and is constant in y € Y.

We shall show that {7?(Fy s)} converges strongly in L2((0,T) x Q2 xY,,) by apply-
ing the Fréchet—Kolmogorov compactness theorem [37] and its modification proposed
by Simon [52]. The uniform boundedness of G° implies
(2.26) ||T§ (ngfs)HLaQ((O,T)xQwa) + Haﬂ-& (Fga‘S)HLOO((O,T)xQwa) =G,
where the constant C' is independent of .

Denote Qp, = {z € Q:dist(0Q,x) > h} for h > 0. Considering (2.8) for x + h and
z, with h =8¢, for € €2, and |h| < h, applying the unfolding operator 79, multiplying
the resulting equations by 79(Fy, 5(a:+h)) T?%(Fgs(z)), integrating over (0,t), taking
supremum over Y,,, and then integrating over Qgh, we obtain

I7°F s+ 1) = T Fe) i
SC/ | T°(Fys(-+h)) —Té(Fg,(;)||i2(QSh;Lm(Yw))
2.27
o #[ £ [t (w7 )

o (. T (V). T, )|

)ds,
L2(Q3n)

or with e instead of & if we consider the second case for the growth rate. Notice that
for ease of notation in the formulas here and below we often do not write explicitly
the dependence of Fy s, u’, P, and P, on t€[0,T].

To estimate the second term on the right-hand side of (2.27), we consider (2.11) for
2 and z+h and take (u’(t,z+h) —u’(t,x))p2(z) as a test function, where pj, € C3(1)
with pp(z) =1 in Q3, and pp(x) =0 in Q\ Qap. Then applying the periodic unfolding
operator 7° and using (2.22), together with the uniform boundedness of F,; and
assumptions on E, P;, and Ps, yield

(T°(JF 4B (@ + B) sym (T° (Vu'Fy y(z + )
—Té(JgFg éE’S( )) sym(Té(Vu‘sF )))
+75(J5F Pyi(z+h)) = T°(JIF, }Pi(z)
[ x+h ) T‘;(Vu‘s(aj))} Té( ;2)>
)
(

< T (J PgFggN 2+ 1) =T (J2PJF, TN (2)),

):

h XY

"(Vu
(

(2.28) T (o (@ +h)) = T° (w’( x))} % >92hxr
_ <T‘5( REIVP (e + 1)~ T (RF,TVP(2)),
[7—6( (x+h) ) (u6 )} T° (e >Qgh XY

+ <T6(J2F;(15E6($+il)) [ —sym(T‘S( (x—l—h)))}
— T (JEF L JE (@) [T sym(T° (F;}(x)))} :
[T (Vul (@ + R) = T2 (T ()] T(3)) + (R,

Qap XYy
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where (k) — 0 as h — 0. Here we used that |k < h, that ps(z) =0 and pp(z+h) =0
for x € As, and the following estimate:

|7 (ud (- + h) — u‘s)T‘S(phVPh)HH(QthYw)

[y
(2.29) < CIT VOO s v
1/2 6 5
< C|2n \ Q| / HT (Vu )HLoo((o,T)xQ;m(Yw))
<k(h)

for a.a. ¢t € (0,T). Then using (2.22), together with the uniform boundedness of Fy s,
the assumptions on E, P;, and P,, and that integrals over (Qop, \ Q35) X Y, can be
estimated by [Qap, \ Qap, from (2.28) we obtain

< #(h)

. 2
oo (vur b i) - T wE )

(2.30) . 2
+C |70 B+ 1) = T (Fys)

L2(Q3p;L°°(Yuw))

for a.a. t € (0,T), where x(h) — 0 as h — 0 and |h| < h. Similarly as in the proof of
Theorem 2.5, in the derivation of (2.30) we used the following estimate:

|72 (Va4 B) = 9 T () [ T2 (B 5+ 1) = T (B 3) |

8.0

L1 (Q2n;L% (Yu))
2

< S|V +h) — ud)pn

N

L2(Q9)

T (ESh+ ) - T (B0

C-
o 8,9 L2(Q2p;L%° (Yw))

R 2
<< [sym(ved(+h) - u5>Fg3;)ph)

L2(Q9)
5 j g ’
+ Cg T (Fg,S('+h)) -T (Fgﬁ)‘ L2(Q37,;L°° (Yy)) K/(h)
A R 2
<c ‘Sym(vud(' + h)F;};( +h) — Vu‘ngé)Ph’ L2 + x(h)
) . 2
+§Hsym(Vu5(- +h) [Fg;é( +h) —F;};])Ph‘ L2(Q9)
2
5 ) =T
+ CHT (Fg,é( +h)) T (Fg,é)‘ L2(Q27;L%° (Yy))
. 2
<< [[sym (70 (VB3 + b)) = T (VUF L)) L (oY)
2h w
2
5 ) =T
+ O[T (g + 1) = T (Fys)| Loty T

for any fixed ¢ >0, a.a. t € (0,T), and xk(h) — 0 as h — 0. In the derivation of the
last estimate we used an estimate similar to (2.29), the properties of the unfolding
operator, and estimate (2.13) applied to (u’(- + ) — u®)p;, and F,_;(ls- Notice that
(u8(- +h) —u’)py =0 on .

Using (2.30) in (2.27), together with the regularity of E with respect to the first
variable, and applying the Grénwall inequality yields

A 2
2.31 | T2 (Bl 1) = T () =
(2.31) T ( g6(+ )) T° (Fg,s) Lo (0,T5L2 (L= (Yw))) =)
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and, using (2.30), also

<x(h),

5 Sg—1 ; 5 (=1 ||
(232)  [sym(T7 (Vo F 3+ B) = T (Vu Fg’(;))HLOO(O,T;LQ(Qgthw))

where £(h) — 0 as h — 0 and |h| < k. In a similar way, using the uniform boundedness
of 0;Fyg s, and hence also of 9,7° (Fgs), and uniform continuity, with respect to the
time variable, of P;, VP;, P, and f, we obtain

(233)  [joym (TP (VWFZ3) (4 7,,) = T° (Vu'F,}))| ’ < #(7)

L2((0,T—7)xQ2XYy)

with %(7) — 0 as 7 — 0. From the definition of the periodic unfolding operator, for
any h € R%, with |h| < h, we have

2

|72 ®eo) (o By = T2 ()|

L2 (Qgh,T XYw)

SIS [[Faslor+ a0+ (1/oly) ~ Fo

he{01}4 H4(@4n.r)
- 2
< > HTS(FM("'JF")) —Té(Fgﬁ)’ L2(Qen. %Y,
ke{0,1}4 3.7 XY)
N 2
= Z HT6 (Fes(y+h) =77 (Fg"s)’ L2(Qap, L% (Yu))
ke{0.1}4 3h,T w

where h = §(ky + [h/d]y), with ky = 2?21 kib; and |h| < h for sufficiently small
d, and Qa5 7 = (0,7) x Q35. Then for any h > 0 there exists do such that |B| =
|0(kp + [h/0]y)| < h for all § <dp. Considering (2.31) for such h yields

2
< k(h),
L2((0,T)XQ3p X Yy)

(231) [T (Fus) (b~ T (Fug)|

where k(h) — 0 as h — 0, and hence as |h| — 0, for all § < &. For § > & we have
a finite number of members of the sequence and for each of them the continuity of
the L?-norm of L*-functions (see, e.g., [6]) ensures (2.34) for an appropriate h, with
|h| < h. Then from the finite number of such h considering the smallest one implies
the property (2.34) for all § > 0. Similarly we obtain

<k(h),

2
‘ S (o T—1\(. 17 N 70 (bl
(235)  ||sym(TP (V0 }) (o By = T (V'F ) | [

for h € R, with |h| < h, and all § > 0, where x(h) — 0 as h — 0. Thus using
the uniform boundedness of Fy 5, assumption (2.22), and the fact that 7° (Fgs) is
constant in y € Y,,, and applying the Fréchet—-Kolmogorov and Simon compactness
theorems (see [52]), we obtain the strong convergence of 7% (Fy 5) to Fy in L2((0,T) x
QxY,) and of [ sym (T°(Vu’F, 5))dy in L*((0,T) x Q). The properties of 7° and
that F, and 7° (Fy5) are constant in y € Y,, imply
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/Q g dxdt = hm / g5 drdt = \Y| hm / / TO (Fas) T°(¥) dydadt
li 6 § — / /
|Y |6£r(1) /QT /“,T e.6) T° (V) dydxdt = \Y Jou Iy g’(/J dydxdt

:/ Fyo dadt
Qr

for all ¢ € L2((0,T) x Q). Hence Fy =F, in (0,7) x Q. Similarly we obtain

2
[Fgs — Fg||L2((O,T)><Q)
S|Y[TH|T? (Fys) — T°(F

— 2
< |Yw| ! HT6 (ng5) B gHLQ((O,T)xQwa) + |Y| ! ||T§(Fg) B FgHLQ((07T)><Q><Y)
+ C|As| =0, as 6 —0,

HL2((0 T)xQxY) +ClAs]

which ensures the strong convergence of Fy 5 to Fy in L2((0,7) x ). Strong con-
vergence of Fy 5, together with the uniform boundedness of Fg 5 and det (Fg5) > 1,
implies also strong convergence of F;}; in L2((0,T) x Q). Then using the equiva-
lence between two-scale convergence of a sequence and weak convergence of the cor-
respondlng unfolded sequence we obtain fY sym(’T‘s(Vu‘;Fg D)dy — fY sym((Vu +
Vyup)F )dy strongly in L*((0,T) x ).

Since the elasticity tensor E is independent of the time variable, estimate (2.33)
implies

2
(2.36) HTé(]EBSym(Vu(sF;}s))("*‘%v'v') _Ta( bym(vuaF 5))’ L2(Qp_3 X Yy)

<R(7T)

with R(7) — 0 as 7 — 0. From (2.35), together with the regularity of E with respect
to the first variable and Y -periodicity with respect to the second variable, we obtain

|72 E9) -+ sy (T (VB2 2)) -+ )
2
Fy )
-7° (E )sym(T (Vu 85))‘ L2((0,T)x Q35 X Vi)
g P ()

2
7 é
+ 0BG h) Bl gy, [y (Ve[ <),
ke{0,1}4

where h = 8(ky + [/d]y) for h € R? with |h| < h and k1 (h) = 0 as h — 0. Then using
the two-scale convergence of Vu® to Vu+ V,uy, the strong convergence of F_ 6» and
the strong two-scale convergence of E° to E, together with the Fréchet— Kolmogorov
compactness theorem, yields the last convergence in (2.23). d

3. Derivation of macroscopic equations for microscopic model (2.8) and
(2.11). We shall use both the formal asymptotic expansion and two-scale convergence
methods to derive macroscopic equations for (2.8), (2.11).
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3.1. Formal asymptotic expansion. First we present the formal derivation of
the macroscopic equations using the asymptotic expansion of u® and Fg_,(lS in powers
of . The convergence results (2.21) ensure that the limit functions (zero-order terms)
u = u(t,z) and Fy = F,(t,z) are independent of the microscopic variable y € Y,,.
Hence the formal asymptotic expansion ansatz reads

W (t,z) =u(t,z) + ouy (t,z,2/0) + 6%uy(t, z,2/8) +

3.1
(3.1) F (1;( ,x) = Fg (t,z) +OF, (t,m,x/(i)—!—(SQFg_é(t,a:,m/é)+
for (t,x) € (0,T) x Q% and u,(t,z,-) and F, ( ,-) are Y-periodic, for j =1,2,....
Substituting (3.1) into microscopic equatlonb (2 11) yields
(3.2)
1
= (divg + 5divy) [Jg [E(:u ) e (Vou+ Vyuy +6(Vouy + Vyus) ... Fy ' +0F, ] ...)

+ Pt (BT +oFT )| = =) (BT +0F,T ) VL Pi(t,)

in (0,7) x Q x Yy, where JJ = JJ((F;' 4 6F,1...)~"). For the boundary conditions
on (0,7) x 2 x T we have

53 Jg [E(x,y) sel(un +V,yu1 +6(Vyur + Vyus) ... ,Fg_1 + JF; )
+ Pt )| (BT 4+ 0F, T )N = =00 Palt ) (B T +6F, T .. )N

and on (0,7) x 'y x Y,, we obtain

! [E(x,y) e (Vou+ Vyur +6(Vou + Vyug)... . Fy L+ 6F; 1)
(3.4) + Py (t, x)I} (F,T+0F,]...)N

=J] [Pl(t,x)(F;T +O0F, ] )N +£(t,2)|(F, " +0F,] ... )N\].
For the growth equation it holds that

(3.5)
0, (F; 4+ oF 1)
=G (2, Vou+ Vyu +6(Vouy + Vo) .. Fy 4 6F, 1) (F 4 6F, L)
Now we shall consider terms for different powers of §. For O(6~!) in (3.2) and
O(1) in boundary condition (3.3) we obtain
(3.6)
—div, [Jg (E(x,y)sd(ku +V,u, Fy )+ Py (t,x)I) Fg‘T} =0 in (0,T) x Qx Y,,
Jg (]E(x,y)sel(ku +Vyu, FoY) + Pt :c)I) F,”N=0 on (0,7)xQxT,

u Y -periodic,

where Jy = Jz(Fy). This is an elliptic problem for uy in Y, for given u and F,.
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Terms of O(1) in (3.2) are
— div, _J (E(x y) e (Vou+ Vyuy, Fy ) + Pt :1:)1) FQT}
— divy [Jy - Fo (B(z,) e (Vou+ Vyu, By ) + Pyt o)1) F, 7|

g,

an _Jg (E(% y) e (Vau + Vyu, Fy 1) + Pi(t, m)I)F_ﬂ

— divy |y B, y) Doe? (Vou+ Vyuy, Fy F,IF, 7|

g

—divy _JgE(:c, Y) alsEI(Vzu +Vyuy,
=—JF; "V, Pi(t,z) inQxY,

F, ) (V,u +Vyu2)FgT}

and O(0)-terms in boundary condition (3.3) are

. F (]E(x, y) e (Vou+ Vyu, By 1) + Py(t, a:)I) F;7N

+, (]E(% y) e (Vou+ Vyu, Fo 1) + Pt x)I) F,I'N
(38) T E(y) 0% (Vou + Vyuy Fy ) (Vous + Vyup)F; TN
+ JgE(2,y) 0,6 (Vou+ Vyu FOFJF, TN
=—Jg Py(t,z,y)F;"N on QxT,
where Jg - ! denotes the sum of the components of the Hadamard product of two

matrlces J’ and Fg_

Equatlons (3.7), with boundary condition (3. 8) and Y-periodicity of usy, define an
elliptic problem for up in Y, for given u, uy, Fg and F 1 . Applying the Fredholm
alternative to ensure ex1stence of a solution uy of (3 7) and (3 8) (see, e.g., [21]), and

using Y-periodicity of E, Fg 1, and u;, for j =1, 2, imply macroscopic equations for u:

(3.9)
— div, / Ty (IE(x, e (Vou+Vyuy, Fy ') + Pyt x)I) ¥, dy

w

=—|Yyu|J;F, "V, Pi(t,x) — / Jg Pa(t,x,y)F; T Ndy, in (0,7) x Q.
r

Next we need to determine u;. Using the expression for €®' and transformation of
problem (3.6) to be defined on Yy, , =F,Y,, and I'y, = F,T for (¢,z) € (0,T) x Q, we
obtain

div, (E(.’L‘, Fg_ly) [sym(V,uy) + sym (unFg_l)
+sym (Fy 1) — 1 + Pi(6o)T) =0 in Y,
(3.10) <E(x, Fgly) [sym(V,up) + sym(VIuF_l)

+sym (Fg Y -1 + Pt :v)I) =0 only,

u Y,-periodic.

This is a linear elliptic problem for u; which due to assumptions on E has, up to
constant in y, a unique solution. Thus we can consider u; in the form
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d

B1) ity = Y [(VeuFg )y (te) + (F7 (4o) - Dy |wh (ta.y)
—;—Pl(t,x)v(t,x, y) + (¢, x),

where w¥ and v are solutions of the unit cell problems

in Yy,

(3.12) divy(E(“”>F£1?J)[Sym((Vy ) +bij]) =

0
E(x,Fgly) [sym Vyw )"‘bu} =0 on Iy, w" Y,periodic,

for i,j=1,...,d, where b;; = %(ei ®e;+e;®e;) and {ej};-lzl is the standard basis
in R%, and

divy (E(x, F;ly) sym(Vyv) + I) =0 inY,,,

(3.13)
(E(, Fgly) sym(Vyv) +I)v=0 onTly, v Yg-periodic.

Transforming back to the fixed domain Y,, gives

divy (JgE(gc, Y) (Sym(Vywing_l) + bij)Fg_T) =0 in Y,

(3.14) 3 3

JeE(z,y) (sym(Vy,w“F; 1) + b )F;,"N=0 on I', w" Y-periodic,
and

. _1 -TY\ _ .
(3.15) divy (Jg (E(z,y)sym(Vy vF, ') + I)F, ) =0 inY,,

Jg (E(x,y)sym(VyVFgl) + I)FgTN =0 on I'y vY-periodic.

Using the solutions of the unit cells problems, the macroscopic (homogenized) elas-
ticity tensor Epop, is defined as

Ehom, ik (t, ) |Y ‘/ Ukl(m,Fgly) + {E(%Fg—ly) sym(Vywu)]M)dy

Y .8

(3.16)
. ijp—1
|Y| / Eijri(z,y) [E(aj,y)sym(vyw F, )Ll)dy

for (t,z) € (0,T) x Q, and matrix Ko, is given by

(3.17) Khom(t, ) |Y | / (x Fgly) sym(V,v)dy

Y, .8

|Y| / (z,y)sym(V,vF; ") dy in (0,T) x Q.

Using the structure of uy in (3.9) and in O(1)-terms in (3.4), together with the
expressions for Epoy and Kpom, yields the macroscopic problem (3.18) formulated
below. Considering O(1)-terms in (3.5) and using again the structure of u; imply
macroscopic equations (3.19) for the growth tensor F,.

2. Rigorous derivation of macroscopic model. Now, using the two-scale
convergence method (see, e.g., [3, 14, 41]) and the properties of the periodic unfolding
operator (see, e.g., [13]), we rigorously derive the macroscopic model for the micro-
scopic problem (2.8) and (2.11).
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THEOREM 3.1. Under assumptions in Lemma 2.6, up to a subsequence, solutions
{u’} and {F,s} of the microscopic problem (2.8) and (2.11) converge, as § — 0,
to solution u € L>(0,T;V) and Fg € WH*(0,T; L9(2)) N L>=((0,T) x Q), for any
q € (1,00), of the macroscopic problem

divy (Jgonom Fy T)
1
= JgFg_Tm/Pg(tmc,y)Ndwy in (0,T) x 9,
r
Jg O hom FgTN
3.18 Y,
(3.18) = ( — ||Y||) JePi(t,x)F, "N + J, [F;"N|f(t,z)  on (0,T) x Iy,
u-N=0, J I (ohomF; ' N)
Yo _
= ( ||Y||) JgP1(t,3c)lL(FgTN)7 or u=0 on (0,T) xT'p,
and
(3.10) OFy =G (z,Vu,F; ') F, m (0,7) x 9,
F,(0)=I in €,
with
(3.20) G (J;,Vu,Fg_l) =7y [(|Y\/|Yw|)0'hom (t,x,Vu, F;l) — TU]+ or
(3.21) G (z, Vu,F. ') = [(IY]/|Yw|)enom (t, 2, Vu,F 1) — 7] L
where
(3.22)  Ohom (t,x, Vu,Fgl) = Ehom(t, x) g¢ (VmF;l) + Khom(t, )Py (t, x)
_ Yol . _
(3.23)  €nom (t, 2, Vu,F, 1) = ||;’||s "(Vu,F, 1)
d 1
el -1 ijp—1
+i;1€ (Vu,F, )ij Vi /Yw sym(V,w7F 1) dy

with € (Vu,F; 1) = sym(VuF; 1) +sym(F; 1) — 1L, and G is defined by G as in (2.6).
The macroscopic tensors Epom and Kpom are defined by (3.16) and (3.17), where w¥
and v are solutions of the unit cell problems (3.14) and (3.15). The space V is defined
in the same way as Vs with Q° replaced by .

Assuming, additionally,

(3.24) IVl Lo (0.1)x2) < C,

the solution of problem (3.18), (3.19) is unique and the whole sequence of solutions
of microscopic model (2.8) and (2.11) converges to the solution of the macroscopic
problem.

Proof. Considering op(t,x) = (t, z)+6¢1 (t, z,2/5), with ¢ € C1([0,T]; C1(Q2)NV)
and ¥; € C3((0,T) x Q;CL..(Y)), as a test function in (2.12), taking the two-scale

per
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limit as 6 — 0, and using the two-scale convergence of Vu? and the strong convergence
of Fg_,é, ensured by the boundedness of Fg_j; and the strong convergence of Fy 5 (see
Lemma 2.6), we obtain

/Q ﬁ/y Jg {E(ﬁf,y) (sym((Vu+ Vyup)F; ') + sym(F; ') — 1)

+ Pt 37)1} (Vip + Vi1 ) Fy  dydadt
_ T
(3.25) = /SZT V| / JoF, " VP(t,2)y dydxdt

+ / JePy(t,2)F ;T Nop dydt + / Jof(t,2)|F; "N dvydt
o) T

N,T

1
— /Q W /F Jg Pa(t,,y)F; T N1 dy,dadt,

where Qr = (0,T) x Q, (0Q)r = (0,T) x 09, and 'y r = (0,T) x I'y. Considering

now ¢ = 0 implies the problem for u;:

1
(3.26) / — / Jg (E(z,y) [sym(V,u; F; ') + sym(VuF, )
ar Y] Jy,
+sym (F7') — 1) + Pi(t, x)I) Vi Fy Ldydzdt = 0.

From (3.26), considering for u; the ansatz (3.11) we obtain the unit cell problems
(3.12) and (3.13) and the formulas for the macroscopic coefficient Epom and Kpom in
(3.16) and (3.17), respectively.

Considering 11 =0 in (3.25) yields

1 —_ — J—
| 3l ] B vm(Tur, !+ Vym ) s (1) < T)ay
T 'u.r

4 Yol
T

Yy,
(3.27) =— / |Y‘JF—TVP1(t ) dadt + / JePy(t,2)F ;T N1y drydt
QT | | (6SZ)T

Bolp t,2) ]vwg—ldxdt

+ / Jof(t,2)|F; TN dvydt
'n,r

1
—/ J, Fg_T /Pg(t,x,y)Nd’yywdxdt.
Qr |Y|

Using the structure of u; and expressions for Eyoy, and Kpom, we obtain
/ Jg [Ehom(t, z) [sym(VuF ') +sym(F, ') —1I]
Qr

+ (Khom(t;x) ||5:,U||I I)Pl(t 1'):| Vz/JF 1 dxdt

Yoo |\ o _
— Jg(1—‘ “|)F TPy (t,x) ) dedt + Jo [F;TN|£(t,x) ¢ dydt
SZT |Y| & FNT &

(3.28)

—/ JgFg |Y|/P2 (t,z,y)Ndy, ¥ dzdt,
Qr
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which is the macroscopic problem (3.18) for u in the weak form. Here we used
div(J;F;7)=01in (0,T) x Q to rewrite the boundary term involving Py as an integral
over 2 of VP;. Using the same calculations, the first integral on the right-hand side
n (3.28), combined with the last two terms on the left-hand side, can be rewritten as
the integral over (0,T") x 9§.

To pass to the limit in equation (2.8), we first determine the weak limit of
Ss(w/o1y v @ (& vu’, F 5)d# and Ss /o1y +v2) 81(Vu(s,Fg_’(ls)dic. Using the two-
scale convergence of Vu and strong convergence of Fgf’(ls, together with the relation
between the two-scale convergence of a sequence and weak convergence of the unfolded
sequence, yields

T
1
im [ [ o (&, VUl F; })di ¢ dadt
0o Ja Yol Jsa/oy+v.) )
T
1
:1 4 5 F71 d d dt
51—%/0 /Q|Yw|/y,wT (o(z, Vu’, g,5)) ypdx
T
1
0 Q |Yw| Y
Ty
:/ /70h0m(t7$7vuqu_1)¢d$dt
o Jo Yol

for ¢ € Co((0,T) x ) and opom(t,z, Vu,F ') given by (3.22). Similarly we obtain
the weak convergence for the strain

T
1
lim/ /— e (Vu®,F_ }) di ¢ dxdt
3=0Jo Ja 1Yul Js(z/o)y+v) &0

Ty
:/ / — €hom (t,:c,Vu, Fg_l) ¢dxdt,
o JalYul

where the macroscopic strain €nom(t,z, Vu,Fg') is defined by (3.23). Then the
continuity of G and the strong convergence of F s, fY (sym(Vu‘st;é))dy, and
wa TO(E (x )sym(Vu‘;F 3))dy yield macroscopic equation (3.19).

Considering a p1ecew1se constant approximation of Fy; by Fg; = const on €,
with Q = Int(U7_,Q;), ;N Q; =0, for i 7é Jy Jej = det(F ;) > 1 and eigenvalues
Me(Fgj) > 1, for k=1,...,d and j = 1,...,n, and using the Korn inequality for
u(t) € V, we can write

/Q|sym(VuF )|?dx = hm Z/ |sym( VquJ)| dx

(3.29) — i > [ (V)P
j=1 Fg,i€

> C lim Z/ \sym(Vu)|2dx:C’/ lsym (V) 2dz > Cllul.
1 Jo, )

n—00 4
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Then using (3.24), in a similar way as in the proof of Lemma 2.6, for two solutions
uy,Fy 1 and ug, Fy 2 of (3.18), (3.19) we obtain

(3.30) sym(Vuy Fy 1) — sym(VusF, 5)[172(0) < CllFg1 — Feollizq)

for a.a. ¢t € (0,7). Considering then the equation for Fg; — Fg o and using (3.30)
yields [|[Fg1(t) —Fga(t)|z2() = 0 for a.a. ¢t € (0,T), and hence Fy; = Fy» a.e. in
(0,T) x Q. Using this in (3.30) implies sym(V(u; —ug)F; ') =0a.e. in (0,7) x Q and
hence, due to (3.29), also u; =us a.e. in (0,7") x Q and the uniqueness of solution of
(3.18), (3.19). Thus we have that the whole sequence of solutions of the microscopic
problem converges to the solution of the macroscopic equations. 0

Remark 3.2. (i) Using assumptions on the domain Q and regularity of E, P,
P,, and f, estimates (2.22) and (3.24), assumed to be true in the rigorous derivation
of the macroscopic model, may possibly be shown considering approaches similar to
[1, 2, 9, 30, 51].

(ii) In the derivation of the strong convergence of Fy 5 and [, T° (sym(Vu‘SFg_’(ls))dy
we assumed the uniform in § boundedness (2.22) of the L?(Y,,)-norm of 7°(Vu?®) in
(0,T) x Q.

It is also possible to derive macroscopic equations (3.25) for u, by assuming first
the strong Convergence of Fg 5 and then by showing the strong two-scale convergence
of sym(Vu‘SF ) deduce the strong convergence of F, 5. To show the strong two-scale
convergence of sym(Vu5F ) we consider Vu® as a test function in (2.12) and take
the limit as § — 0. Then Ublng the lower semicontinuity of the norm, together with
the positivity of J, and properties of E, yields

1
Y]

< lim <J5 E(z )syrn(Vu‘ng__%),sym(Vu‘ng_)(lg)>

(Vo y)sym((Vu+ Vyu)F ) sym((Vu+ V,u)Fg )

Q&

— —1 T
N |Y|<J Pt (Vat VB ) |Y|<J Pty BT Now)

+ <Jg Pi(t,z)F; N, u>

QT

(02)

Dl/| <J E(z,y)[I- sym(F )] (Vu+V,u)F

-7 <J F,TVPi(t ), >

)
& /Qr,Ye
+ (JoE(@) [P, "N u)

<J E(z,y)sym((Vu+ V,u)F 1), sym((Vu + Vyul)F;1)>QT7Yw’

Qr, Y N, T

1
g

where the last equality follows from (3.25) by considering ¢ = u and ¢, = u;. This,
together with the two-scale convergence of E‘s(a:)sym(Vu‘ng_’(l;) and the strong con-
vergence of Jg, % ensured by the strong convergence of Fy 5, implies the corresponding
strong two- bcale convergence of bym(Vu‘;F +). Using now this result in (2.8) yields
the strong convergence of Fy 5.
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4. Numerical simulations of microscopic and macroscopic two-scale
problems. To numerically solve the microscopic problem (2.11) and (2.8) we consider
a rectangular tissue of hexagonal cells with geometrical parameters—wall length [y,
I, wall thickness w, and angle §—as shown in the unit cell scheme of Figure 1(a)—(b).
The tissue is composed of N, cells along the first axis and N, /2 cell layers along the
second axis (see Figure 2(d)). The bottom cell layer is cut horizontally at mid-height,
and we assume no normal displacement and no tangential stress at the cut walls. As
long as there is no symmetry breaking, this setting amounts to simulating a square
tissue made of N, (N, —1) cells. The parameters related to the microscopic mechanical
properties of the cell wall are its Young modulus F and its Poisson ratio v. Regarding
growth, we denote for the numerical simulations simply by 7 the extensibility 7, or
1 and simply by 7 the yield threshold tensor 7, or 7. in case of stress-based and
strain-based growth, respectively. Furthermore, in all our simulations we consider an
isotropic threshold tensor 7= 7I with parameter 7.

For the space-dependent turgor pressure P;(z) a piecewise constant approxima-
tion P° of P is defined as in (2.10), with an appropriate function P, where Py(z,-)
is Y-periodic. In the case of a linear function P (z) = ax; +  we have P°(z) = 3 for
2 €[0,6) and P(x) = B+ o168 for x € §(Y + &) with £ € 2% and Py(z,y) = —aP(y),
where If’(y) =y, on Y and Y-periodically extended to R?. Notice that for constant
P; we have P, =0.

In order to solve the microscopic problem at each time step, we consider its
variational formulation (2.12) and implement it using the finite element method and
the open-source finite element software FreeFEM [25]. The vector components of the
displacement fields u and test function fields ¢ are represented by P1 finite elements,
and we use the sparsesolver solver of FreeFEM. The mesh is built so that a fixed
number of triangle edges is imposed per unit length of domain boundary (in most of
the simulations we use 25 triangle edges per cell wall length I5).

The numerical simulations of the macroscopic two-scale problem are based on an
algorithm that we schematized in Figure 2(b) and detailed in Algorithm 1. Namely, at
each time step, we solve the macroscopic problem (Algorithm 3) in order to compute
tissue level growth and displacement. To compute the required tissue level material
properties, we locally solve the corresponding unit cell problems (Algorithm 2). In
doing so, we use two meshes (Figure 2(a))—a fine mesh m for the numerical resolution
of the macroscopic problem, and a coarse mesh 9t for the calculation of the homog-
enized (macroscopic) properties Eyom and Kpem. For instance, for the simulations
presented in Figures 2 and 3, we consider a tissue of width 7 and use 10 edges per
unit length for the fine mesh m, corresponding to 70 triangle edges along the width
of the tissue. In contrast, the coarse mesh 9 for the same tissue has edge length of
1, corresponding to 7 triangle edges along the width (see Figure 2(a)).

To determine Epoy, and Kyom for given Fy(t, &), where & are the nodal points of
the coarse mesh, we compute numerically solutions of the unit cell problems (3.14)
and (3.15), written in the weak form as

(4.1) / JeE(z,y) [sym(vywingl) + bij] Vy¢F,ldy=0 for ¢ H, (Y),
Yo

(4.2) / T {E(g:, y)sym(V,vF, 1) + I} Vy¢Fg'dy=0 for ¢ € HL, (Y),

w
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with 4,7 = 1,...,d. We call the solutions w*”/ and v of the unit cell problems the
elementary deformations (see Figure 1(b)), as they form the building blocks for the
effective material properties of the tissue. If we denote an arbitrary displacement field
by w, a generalized gradient and its product with the elastic tensor by

dw](t, z.y) = sym(V,w(t,z,y)F; () and
Ed[w](t,2,y) = E(z, y)sym(V,w(t, z,5)F; (7)),

and the mean over the unit cell centered on the node with coordinates x by
—_ 1 —_— 1
dw](t,z) = 7/ dw](t,z,y)dy and Edw]|(t,z)= 7/ Ed[w](t,z,y)dy,
Y1 Jy, Y| Jy,
then the effective material properties (3.16) and (3.17) are computed as

(4.3) Enom,ijki = Fijrr + (Ed[w]) g, Khom =Ed[v].

On the same nodal points we also compute the components of the vector field
(4.4) Pa(t,x) |Y‘ /P2 t,z,y)Ndy,.

Then we interpolate the values for Eyom, Khom, and Pa to obtain the correspond-
ing tensor and vector fields defined in the whole domain €2, so that these can be used
in the numerical simulations of the macroscopic equation (3.28). With u the solution
of the macroscopic problem at time ¢, we compute the macroscopic strain epq,y, and
stress ohom tensor fields,

€hom (t7 x, vu, Fgl) = I(t, 37)601 (Vu, Fg1>
d

(4.5) + > dwi](t,z)e (Vu, F. '), +dVI(ta)Pit ),
i,j=1
O hom (t7$7 vua Fg_ ) EhOm(t x) el(vu? Fg) + Khom(t7$)P1 (t,l'),

and the corresponding growth rate at this time step according to the strain or stress
hypothesis (3.21) or (3.20). Finally we use the Euler method to compute the growth
tensor F, for the next time step according to (3.19).

For the unit cell problems we implement periodic boundary conditions on Y and
the corresponding Neumann boundary conditions on I'. For the macroscopic problem
zero normal displacement and no tangential force are imposed on the lower boundary
of the tissue, with zero-force conditions on all other boundaries of €. The weak
formulations of the unit cell problems and the macroscopic problem were implemented
using FreeFEM. The vector components of the displacement fields are represented by
P2 finite elements for the unit cell problems, while they are P1 elements for the
macroscopic problem. We use the sparsesolver solver of FreeFEM to solve both
problems.

While the building blocks Algorithms 2 and 3 are implemented in FreeFEM, the
orchestrating Algorithm 1 is implemented in Python. In particular, at each time step
we solve a relatively high number of unit cell problems that are independent of each
other, and we use the multiprocessing module of Python to solve them in parallel.
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Algorithm 1. Coupled simulation

Inputs : reference tissue geometry,
Py, E, v, n, T functions defined on the tissue domain
time step dt and maximal time t,,44
Output: F(¢) field for all time points ¢ in [0, tmas],
macroscopic displacement field u(t) for all time points ¢ in [0, tymaz]-

Construct fine mesh m and coarse mesh 9 of the tissue;
Initialize ¢ = 0;
Initialize Fy = I on 9;
Evaluate the functions F, v on each element of the coarse mesh 2t
Define FE fields Py, n and 7 on the fine mesh m
while t < t,,,4, do
for all elements of the coarse mesh 9 do
L Solve the unit cell problems (Algorithm 2);

o N O oA W N =

Reconstruct FE fields of the effective properties Enom, Khom, and Po on
the coarse mesh 9;
10 Interpolate and get the FE fields Eyom, Khom, and Py on the fine mesh m;

©

11 Solve macroscopic problem on m (Algorithm 3);

12 Compute strain and stress field on m;

13 Compute growth rate depending on strain or stress;
14 Compute new growth tensor F, on m;

15 Project F, on the coarse mesh 9i;

16 Set t =t + dt;

Algorithm 2. Unit cell problems

Inputs: unit cell geometry (11, lo, 0, w),
cell wall properties (E, v),
P25
growth tensor F,
Output: effective properties Enom, Khom, and Po

1 Construct unit cell mesh;
2 Solve the unit cell problems (4.1) and (4.2);
3 Compute the effective properties Epom (3.16), Khom, (3.17) and Po (4.4).

Algorithm 3. Macroscopic problem

Inputs: fine mesh m of the tissue,
pressure field P; and growth tensor field F; on m
homogenized property fields Enom, Khom, and P2 on m
Output: macroscopic displacement field u on m

1 Solve macroscopic problem (3.28).

5. Numerical simulation results. In this section we first present the results
of the unit cell problems, which allow us to compute the effective material properties,
and in particular we analyze how the microscopic geometrical parameters as well as
growth affect the tissue level properties. Then we validate the multiscale, coupled
simulation algorithm on homogeneous isotropic tissues and homogeneous pressure
comparing its outcome to the simulation of the microscopic model of the same setup.
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We also validate the multiscale approach on more general configurations. Namely, we
consider gradient fields over the tissue of all the microscopic parameters one by one
and, whenever possible, compare the tissue deformation computed using the coupled
simulation to the one obtained by simulating the same setup using the microscopic
model.

5.1. The unit cell problems and the macroscopic (homogenized) ma-
terial properties. In the case of nongrowing cellular solids, previous studies have
computed numerically the homogenized elasticity tensor and compared their results
to asymptotic expansions and experimental results; see, e.g., [34]. We validated our
results by quantitatively comparing the dependence of the effective material prop-
erties embedded in Epo, with the results presented in [34]. Qualitatively, a unit
cell in the form of a regular hexagon yields an isotropic homogenized medium; see
Figure 1(d)—(e). Elongating the unit cell in the zs-direction only reduces the homog-
enized modulus in the zi-direction. This is in agreement with the measurements on
epidermal onion peels realized using a microextensometer setup [33]. The macroscopic
(homogenized) Poisson’s ratio vz is comparatively large for thin walls and is reduced
by elongating the unit cell in the zs-direction; see Figure 1(f). The shear modulus
turns out to be particularly low for thin walls and is lower for elongated cells than
for regular hexagons; see Figure 1(g). All homogenized properties converge to the
microscopic properties when the empty space (cell inside) vanishes, i.e., w/ls — 1.

In our multiscale analysis we introduced a tensorial material property, Knom, that
accounts for the contribution of cell pressure to the macroscopic (homogenized) stress
tensor. For the present choice of coordinate system (which corresponds to symmetry
axes of the unit cell), Ky, is diagonal; the two diagonal elements of Kjom are shown
in Figure 1(h)—(i) as functions of relative thickness. A regular hexagonal unit cell
yields an isotropic Kyom, while an elongated hexagon yields an anisotropic Kyom,
where the anisotropy increases with wall thickness (as can be seen from the ratio
Khomll/Khom22)~

In case of isotropic growth, neither Eyo, nor Kpom depends on the degree of
the growth. In contrast, when growth is anisotropic, the effective material properties
change with growth anisotropy. In order to illustrate this, we show in Figure 1(j)—(0)
the macroscopic (homogenized) material properties as a function of the degree of
growth g, when there is only growth along axis 1, for a fixed relative wall thick-
ness. The macroscopic (homogenized) Young’s modulus in the growth direction
increases with g (see Figure 1(j)), while the perpendicular modulus decreases (see
Figure 1(k)). Inversely, the absolute value of Ko in growth direction decreases
with ¢ (see Figure 1(n)), while the absolute value of the other element increases (see
Figure 1(0)). The macroscopic (homogenized) Poisson’s ratio v15 increases with g.
Finally, the macroscopic (homogenized) shear modulus is nonmonotonic.

5.2. Validation and sensitivity analysis for tissues with homogeneous
material properties. In order to further validate the multiscale method and the
macroscopic model derived from the microscopic description of the growth and elastic
deformations, we first consider on the one hand a tissue of N2/2, with N, = 16,
identical regular hexagonal cells with microscopic geometrical parameters the cell wall
length 441y, 4615, the cell wall thickness 40w, and the angle 8, where § =1/N, =1/16,
I =1Ip=1, w=0.05 and § =7/3, and on the other hand a continuous tissue of the
same size. The cell wall material properties, £ = 1 and v = 0.3, and the pressure,
P, = 0.001, are homogeneous over the tissue. In Figure 2(d)—(f), we superimposed
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F1G. 1. Unit cell problem. (a) “Unit cell” examples: isotropic cell shape 11 /la =1 (red box),
elongated cell shape l1/lo =1.5 (green boz), and l1/lo =2 (blue box) with w/lo =0.05 and 6 =30 for
all. The color of the box corresponds to the color of lines in other graphs (color online). (b) Geometry
of the unit cell and definition of the geometrical parameters l1, la, w, and 0. (c) Deformed unit
cell geometries corresponding to the four elementary solutions of the unit cell problems (parameters
E=1,v=035101=1,lc=1, w=0.1, 0=30, Fg =1). (d)-(i) Dependence of homogenized
material properties on the relative wall thickness (no growth). All moduli are normalized
by the cell wall Young modulus E and are shown as a function of relative wall thickness w/lz. (d)
Modulus along axis 1, Epomi. (€) Modulus along axis 2, Epoma. (f) First Poisson’s ration vi2. (g)
Shear modulus, Gi2. (h)—(i) Diagonal elements of the effective material property Kpom. The off-
diagonal elements vanish. (j)—(o) Dependence of homogenized material properties on the
degree of anisotropic growth. We consider here only growth along axis 1, with corresponding
etgenvalue g. All moduli are normalized by the cell wall Young modulus E and are shown as a
function of g. The relative wall thickness is set to w/la = 0.05. (j) Modulus along azis 1, Epom1-
(k) Modulus along azis 2, Epoma. (1) First Poisson’s ration v12. (m) Shear modulus, G12. (n)—(o)
Diagonal elements of the effective material property Kpopm. The off-diagonal elements vanish.

the initial states of the microscopic cellular structure and of the continuous tissue,
and we visually find that the continuous tissue evolved with the macroscopic model
corresponds well to the cellular tissue evolved with the microscopic model at t = 60,
both for the strain- and the stress-based growth law; see Figure 2(e)—(f).
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F1G. 2. The coupled simulation and its validation. (a) The coupled simulation involves
in parallel a fine mesh m and a coarse mesh M of the tissue. (b) Simplified diagram of the coupled
stmulation algorithm, emphasizing the usage of the two meshes. (c) One-factor-at-a-time sensitivity
of growth rate to model parameters around their reference values (E =1, v =03, l1 =12 =1,
w=0.05,0=30,n=1, 7=0) for both stress-based and strain-based growth. (d)—(f) Superimposition
of the cellular (cell number, N, = 16) and continuous representations of tissue at t =0 (e) and at
t =60 using either strain-based (e) or stress-based (f) growth law—the smaller shaded area in (e)—(f)
indicates the initial tissue geometry. (g)—(h). Relative error (difference between coupled simulations
and full microscopic model) of the displacement components u1 and uz as a function of the cell
number Ng. (1)—(j). Mean growth rate as a function of time, with strain-based (1) or stress-based (j)
growth law. The coupled simulation is compared with the microscopic simulation for several values
of cell number, Ny, and of wall thickness to length ratio, w/la—all but w/la parameters are the
reference parameters.
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We varied the number of cells by scaling their size while keeping tissue dimensions
unchanged, and considered three values of relative wall thickness, w/ls = 0.05, 0.1,
and 0.2. We analyzed the relative error given by the relative difference of solutions
obtained from the coupled macroscopic simulations and microscopic simulations; see
(B.1) in the appendix. Figures 2(g)—(h) show the relative error of the displacement
components u; and us at the first time step as a function of the number of cells N,.
This relative error is higher for thinner walls and it decays with the number of cells.
Accordingly, the values of the growth rate are in agreement between microscopic and
coupled macroscopic simulations; see Figure 2(i)—(j). The larger error for a tissue of
cells with thin walls compared to the error for a tissue of cells with thick walls for
the same number of cells relates to the fact that the tissue with thick cell walls has
smaller voids and is closer in the approximation to the homogeneous tissue than the
tissue with thin cell walls. The mean growth appears constant in time and space, with
thinner walls growing faster. This analysis verifies that the coupled simulation scheme
enables the efficient computation of the tissue-scale behavior for a given microscopic
cellular geometry and cell wall material properties, and provides a good approximation
to the microscopic description of the problem.

In order to better understand the effects of microscopic parameters on the macro-
scopic behavior we performed a one-factor-at-a-time sensitivity analysis around ref-
erence values. We assumed the tissue to be homogeneous and we computed the
sensitivity of growth rate with respect to each parameter, as defined by (B.2) in the
appendix; see Figure 2(c). As could be expected, growth rate increases with pressure,
Py, and extensibility, 7, while it decreases with yield threshold, 7. Growth rate is
less sensitive to yield threshold than to pressure and extensibility. Concerning micro-
scopic geometric parameters (cell size, lo, and wall thickness, w) growth is promoted
by thinner walls if cell size is constant or by larger cells if wall thickness is constant.

Finally, we note a fundamental difference between the two growth models: while
the strain-based growth rate decreases with cell wall Young modulus E and Pois-
son ratio v, these microscopic material properties have no effect on the stress-based
growth.

5.3. Validation and predictions based on the dynamics of tissues with
heterogeneous material properties. Now we consider more complex configura-
tions in which material or geometric properties vary spatially, and we use them to
further validate the agreement of macroscopic coupled simulations with simulation
results for the microscopic model.

Beforehand we perform a parameter scan on larger intervals in the context of
homogeneous tissues, and we present in the first column of Figure 3 the growth rate
as a function of the parameters for strain- and stress-based growth hypotheses, as
predicted by the macroscopic model. The reference situation is highlighted by black
dots on each graph. For several parameters the dependence is affine, so that the
sensitivity analysis in Figure 2(c), which was restricted to small variations around the
reference values, already captured the essence of the behavior. We find a nonaffine
dependence of the growth rate on the cell wall Young modulus for strain-based growth,
and on cell wall thickness for both growth hypotheses. We also note that the results
for the strain-based and stress-based growth rates are identical when the Poisson
ratio is equal to zero and all other parameters take their reference values, providing
an additional check of the numerical simulation codes.
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F1G. 3. Validation and illustration with gradients of material/geometric properties.
First column: One-factor-at-a-time parameter scan around the reference model for the homogeneous
macroscopic coupled simulation. The results for the reference parameter values are indicated by black
dots. Second and third columns: Superimposition of the deformed reference tissues obtained from
microscopic (excluding (f) and (g)) and from macroscopic coupled simulations, where all parameters
are homogeneous, except for the parameter of focus in the row, which varies linearly with first
coordinate (in initial geometry) between the minimum and mazimum value of the x-azxis in first
column. The shadowed area behind indicates the initial geometry of the tissue. In all simulations
tmaz = 60, dt = 1; the number of cells is Ny = 16 for microscopic simulations. The second and third
columns correspond to strain-based and stress-based growth hypotheses, respectively. The parameters
varied in each row are (a) cell-wall Young modulus, E; (b) cell-wall Poisson ratio, v; (c) pressure,
Py; (d) strain/stress threshold value, T; (e) extensibility, n; (f) wall thickness, w; (g) cell size,
l1 =la.

Next, we consider spatial heterogeneity of each parameter one by one, where all
other parameters are homogeneous and take the reference value. We consider linear
variations of the parameter along the first axis of the tissue, spanning the same interval
for which the growth rate variation was presented in the homogeneous context; see
the first column of Figure 3. In the second and third columns of Figure 3 we present
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the superposition of the corresponding tissues at ¢ = 60 for the strain-based and the
stress-based growth hypothesis, respectively. For the five parameters, FE, v, Pi, T,
7, there is a quantitative agreement of tissue shape and size between macroscopic
coupled simulations and microscopic simulations. This outcome further validates the
multiscale procedure in a context where an additional mechanical stress is induced by
spatial differences in growth rate.

Finally, we note that implementing gradients of geometrical properties is not
trivial in the microscopic model, whereas such gradients can be easily implemented
in the macroscopic coupled simulations. In Figure 3(f)—(g), we present initial and
final tissue shape for gradients in thickness, w, and cell size, I, as predicted by the
macroscopic two-scale model.

6. Conclusions. We formulated a microscopic model for the growth of plant tis-
sues and derived the corresponding macroscopic equations, when the limit of the ratio
between cell size and tissue size 0 tends to zero. Both methods, the formal asymp-
totic expansion and rigorous two-scale convergence, are used to revise the macroscopic
equations. Passing to the limit in the nonlinear equations, resulting from the mul-
tiplicative decomposition of the deformation gradient into elastic and growth parts,
requires the strong convergence of {Fg s}, the proof of which was the main technical
step in the analysis. To show the strong convergence for the sequence of solutions
of the microscopic problem and uniqueness for the macroscopic problem we used as-
sumptions on the boundedness of the deformation gradient, which may be shown using
the regularity results for solutions of the linear elasticity equations. The multiscale
analysis performed here will also apply to other multiscale models for the growth of
biological tissues.

The macroscopic two-scale model comprises the coupled system of equations of
linear elasticity for the displacement and nonlinear ordinary differential equations for
the growth tensor, that are additionally coupled to the unit cell problems describing
cell-scale properties and behavior. This approach notably enables mapping the pa-
rameters of microscopic models that account for cell level characteristics to those of
the macroscopic models defined on the tissue level, helping to bridge two relatively
separate worlds in current models of plant growth. We implemented both models
(microscopic and macroscopic) numerically and compared them quantitatively. The
macroscopic coupled model requires less computational time for its numerical solu-
tion and can be readily adapted to describe spatial variations of parameters. Future
work will address more complex spatial patterns of properties, such as accounting for
variations in material properties across the cell wall, or additional physics, such as
feedback from stress on material properties or hydraulics of water movement during
growth. More generally, homogenization and the corresponding multiscale models
appear to be promising approaches to quantitatively describe morphogenesis.

Appendix A. Components of the elastic tensor. The elasticity tensor in
two dimensions is implemented as a six-component structure, where every component
varies spatially,

E = {Ep, Eq, Es, Es, Ey, Es5}
={Fi111, FE292, Fii22, Fi212, Fi112, Fai2}.

For an isotropic material in two dimensions, or in three dimensions with plane stress
conditions, the components of the elasticity tensor using Lamé’s parameters A and u
are given by
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E Ev

E={2 A, 2 A A, 1,0,0 ith p=———, A=——
{204+ A 20+ A A, 1,0,0F with p 010 T2

where E and v are Young’s modulus and Poisson’s ratio, respectively.

Given an elasticity tensor [E in two spatial dimensions, for an orthotropic material
with symmetry axes along the two Cartesian axes (F1112 = Fa221 = 0), its material
properties, such as the Young moduli £; and Es in the symmetry directions as well
as the Poisson ratio v15 and shear modulus G712, can be computed as

~ Fii22

E? E?
By =FEi1 — % Ey = Egggp — =22 Gi2 = Ei212.

) ) 2 — )
2222 Eiin E2392

Appendix B. Error and sensitivity definitions. For the quantity a® defined

in the microscopic domain (tissue) Q% and its corresponding macroscopic quantity A

defined in the macroscopic domain (tissue) €2, we define the relative error ¢® as

[ Jgs(a® = A)2dx
(B.1) e®(a®,A) = Qfmw

The sensitivity ¢(X,z) around the reference model of an output quantity X to the
value of parameter z is defined as

i) 0X
X(zg) Ox

(B'2) (ZS(X, z)= )

=T

where z( is the reference value of the input parameter z and X (z¢) is the output
value in the reference model (all input parameters are equal to their reference value).
The sensitivities ¢ are normalized, nondimensional quantities, and thus sensitivities
of the output to different input parameters can be compared.

Appendix C. Two-scale convergence and periodic unfolding operator.
We recall the definition and some properties of the two-scale convergence and periodic
unfolding operator.

DEFINITION C.1 (two-scale convergence [3, 41]). A sequence {u’} in LP(Q), with
1 < p< oo, is two-scale convergent to u € LP(Q2 x Y') if for any ¢ € LI(; Cper(Y)),
with 1/p+1/q¢=1,
1

lim u‘s(a:)(b(x,x/(S)dx: —

u(z,y)o(x,y)dydz.
0=0/0 Y| Jaxy (=:9)¢(z,9)

TueoREM C.2 (see [5, 40]). Let {v°} C L*(T°) satisfy 5””6“%2@5) < C; then
there exists a two-scale limit v € L?(2; L*(T)) such that, up to a subsequence, v°

two-scale converges to v € L*(Q x T') in the sense that

1

limé/ v (2)p(z,2/8)dy’ =— v(x,y)o(x,y)dy,dx,
i [ @) =z [ ootan,

for any ¢ € Co(2; Cher(Y)).

LeMMA C.3. (i) If {u®} is bounded in L?*(Q), there exists a subsequence (not
relabeled) such that u® — u two-scale as § — 0 for some function u € L>(Q x Y).

(ii) If u® — u weakly in H*(Q), then u® — u and Vu® — Vu + V,u; two-scale,
where uy € L*(Q; H (Y)/R).

p
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To define the periodic unfolding operator, let [z]y for any z € R? denote the
unique combination Z?:l k;b; with k € Z? such that z — [2]y €Y see, e.g., [11, 13].

DEFINITION C.4. Let p € [1,00] and ¢ € LP(Y). The unfolding operator T° is
defined by

T°(6)(z,y)
~Jo(8[x/b], +6y)  for ae. (z,y)€(\As) XY, )
_{0 i for a.e. x€ A5, y€Y, and T°(¢) € LP(2A x Y).

For v € LP(I'°) the boundary unfolding operator 7}5 is defined by

TR () (x,y)

_ {1/}(5[90/5]Y+5y) for a.e. (z,y) € (2\As) xT,

d T2() € LP(2 x T).
0 for a.e. x€ A5, y€eT, and T () (QxT)

For v € LP(Q°) the unfolding operator ’T{ﬁw is defined in (2.24).

Notice that in the main text we use the same notation 7° for all three types of
unfolding operator.

PropPOSITION C.5 (see [12]). Let {1°} be a bounded sequence in LP(Q) for some
1 <p<oo. Then the following assertions are equivalent:

(i) {T°(°)} converges weakly to ¢ in LP(Qx Y);

(ii) {1°} converges two-scale to 1, 1 € LP(Q2 x Y).

We have the following properties of the periodic unfolding operator and the
boundary unfolding operator:

T (F(u,v)) = F(T°(u), T°(v)),
T (v(t,2/6)) =v(t,y), € Q y €Y, or y €T, t€(0,T),
(C.l) <7-5(U)7T6(u)>QT XY = ‘Y‘<U,’LL>Q($T - |Y|<Uvu>A5,T7
T2 (D)l Lr@rxvuy < Y17 1]l o5,
IT°() | L (pxT) < 5%|Y|%HwHLP(F5T) <O(Illlwr sy + 0Vl o))

for u,v € L%((0,T) x Q°) or u,v € L2((0,T) x I'%), ¢ € LP(Q%), ¢ € L?(0,T;
WLP(Q%)) and F is any linear or nonlinear function; see, e.g., [12, 11, 13].

LEMMA C.6 (see [12]). (i) If ¢ € LP(Q), then T°(¢) — ¢ strongly in LP(Q x Y),
for1<p< 0.

(ii) Let {4°} € LP(), with ¢° — ) strongly in LP(SY), then T2 (%) — 1 strongly
in LP(QAxY).

Numerical simulation codes. Numerical simulation codes for both micro-
scopic model (2.8), (2.11) and macroscopic model (3.18), (3.19) can be found at
https://gitlab.inria.fr/akiss1/planthom.
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