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a b s t r a c t

In this paper, we focus on the Keller–Segel chemotaxis system in a random
heterogeneous domain. We assume that the corresponding diffusion and chemotaxis
coefficients are given by stationary ergodic random fields and apply stochastic two-
scale convergence methods to derive the homogenized macroscopic equations. In
establishing our results, we also derive a priori estimates for the Keller–Segel system
that rely only on the boundedness of the coefficients; in particular, no differentiability
assumption on the diffusion and chemotaxis coefficients for the chemotactic species
is required. Finally, we prove the convergence of a periodization procedure for
approximating the homogenized macroscopic coefficients.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Chemotaxis as a term refers to the directed movement of cells and microorganisms in response to a
chemical signal. Historically, the first mathematical model of chemotaxis was proposed by Keller and Segel in
order to investigate the aggregation dynamics of cellular slime molds, such as the social amoeba Dictyostelium
discoideum [30]. Since then, the Keller–Segel model has been analyzed extensively, and a comprehensive
review of related mathematical results can be found in the two articles by Horstmann [23,24].

It is well known that in one dimension the Keller–Segel model is well-posed globally in time. Global
existence and boundedness of solutions in one dimension were first shown by Yagi [49] by means of energy
estimates. Moreover, the well-posedness and the existence of a finite-dimensional attractor for the one-
dimensional model was proved by Osaki and Yagi [41].

The dynamics of the Keller–Segel model in two and three dimensions are more complex than the one-
dimensional case, since in higher dimensions the solutions may blow up in finite time [27,38,45,47]. Several
results that appeared in the 1990s have demonstrated that in two and three dimensions the Keller–Segel
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model is well-posed globally in time for “small” initial data. However, in the presence of “large” initial data,
the solutions blow up; in other words, they do not remain bounded [25,26,39,49].

Corrias and Perthame [11] showed that in d dimensions, the Keller–Segel model is critical in Ld/2, which is
to say that the “smallness” or “largeness” of the initial data is determined in terms of the Ld/2 norm. Similar
conditions were derived in [13,12] for a parabolic–elliptic variation of the Keller–Segel model. The global
behavior of a two-dimensional parabolic–parabolic chemotaxis system, under the assumption of “small”
initial data, was investigated by Gajewski and Zacharias [18].

As alluded to in the above paragraphs, there is a wealth of results on the existence and regularity of
solutions of the Keller–Segel model. However, there is no literature investigating homogenization approaches
and the influence of substrate heterogeneity on the dynamics of the model.

Stochastic homogenization is a growing field in multiscale analysis. Some of the first results on the stochas-
tic homogenization of linear second-order elliptic equations were obtained by Kozlov [32] (by a direct contrac-
tion of the corrector functions), by Papanicolaou and Varadhan [43] (by using Tartar’s energy method), and
by Zhikov et al. [51] (by using G-convergence of operators). Subsequently, the homogenization of quasi-linear
elliptic and parabolic equations with stochastic coefficients was considered by Bensoussan and Blankenship [5]
and Castell [10]. The stochastic homogenization of convex integral operators by means of Γ -convergence was
considered by Dal Maso and Modica [16,15]. The method of viscosity solutions was employed by Caffarelli
et al. [9] to derive effective equations for fully nonlinear elliptic and parabolic equations in stationary ergodic
media. In a similar fashion, subadditive ergodic theory has been used together with the theory of viscosity so-
lutions or variational representations of solutions and the minimax theorem to homogenize Hamilton–Jacobi
and viscous Hamilton–Jacobi equations in stationary ergodic media [2,31,34,35] (see also references therein).
More recently, subadditive ergodic theory has also been employed to homogenize quasiconvex (level-set
convex) and, more generally, non-convex Hamilton–Jacobi equations in stationary ergodic media [3,4].

The theory of periodic two-scale convergence [1,36,40] has been extended in the stochastic setting by
Bourgeat, Mikelić, and Wright [7], who defined the concept of two-scale convergence in the mean, and by
Zhikov and Piatnitski [52], who defined an explicitly stochastic two-scale convergence for random measures.
The two-scale convergence in the mean has been applied to derive macroscopic equations for single- and
two-phase fluid flows in randomly fissured media [6,48]. The stochastic two-scale convergence has been
extended to Riemannian manifolds and has been applied to analyze heat transfer through composite and
polycrystalline materials with nonlinear conductivities [21,20].

The paper is organized as follows. In Section 2, we formulate a microscopic chemotaxis model with diffusion
and chemotaxis coefficients for the chemotactic species given by stationary ergodic random fields. In contrast,
and consistent with the experimental setting discussed in Section 2, the diffusion coefficient of the chemical
species (chemoattractant) is assumed to be deterministic, i.e., independent of the random medium. We then
derive a priori estimates in Section 3 and prove the existence and uniqueness of weak solutions for the micro-
scopic model. Our derivation of the a priori estimates differs from those found in [22,39], or [41], as we only as-
sume the boundedness of the rapidly oscillating coefficients describing the stochastic medium. In Section 4, we
use the derived a priori estimates and the notion of stochastic two-scale convergence to derive a macroscopic
(homogenized) model for our system. Two auxiliary stochastic problems are obtained to define the macro-
scopic diffusion and chemosensitivity coefficients for the chemotactic species. In Section 5, we use a periodiza-
tion procedure and prove the convergence of the effective coefficients obtained by periodic approximation to
the corresponding macroscopic coefficients obtained by the stochastic homogenization approach of Section 4.

2. Formulation of the problem

We consider a variation of the original Keller–Segel model of chemotaxis [30], where the coefficients of
the model are defined by stationary random fields. Specifically, we consider the system:
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uεt = ∇ · (Dεu(x)∇uε − χε(x)uε∇vε), x ∈ Q, t > 0,
vεt = ∇ · (Dv(x)∇vε)− γvε + αuε, x ∈ Q, t > 0,

∂uε

∂n
= 0, ∂vε

∂n
= 0, x ∈ ∂Q, t > 0,

uε(0, x) = u0(x), vε(0, x) = v0(x), x ∈ Q,

(1)

where Q ⊂ Rd is a bounded domain and α, γ are positive constants. Moreover, uε and vε denote the density
of a population of cells (the chemotactic species) and the concentration of a chemoattractant, respectively.

As will become apparent in the following, the parameter ε represents the spatial scale of the microscopic
structure of the underlying medium or substrate. The diffusion coefficient Dεu and the chemosensitivity
function χε depend on ε, as they are affected by changes in the properties of the substrate. It is assumed
that these changes do not affect the diffusion of chemicals, and specifically the diffusion coefficient Dv does
not depend on ε (nonetheless, we allow for Dv to be a smooth enough function of the spatial variable x). This
is consistent with in vitro experiments where the cells are positioned on a micropatterned surface, and hence
their random and chemotactic motility are affected by the microstructure, whereas the chemoattractant
diffuses freely in the solution above the surface [19].

In order to specify the dependence of the model coefficients on the microscopic scale ε, we introduce the
concept of a spatial dynamical system as follows (see, e.g., [7]). We consider a probability space (Ω ,F , P )
with probability measure P . Throughout the paper, Ω is assumed to be a compact metric space and F
is the σ-algebra of Borel sets over Ω . We define a spatial dynamical system T (x) : Ω → Ω , i.e. a family
{T (x) : x ∈ Rd} of invertible maps, such that for each x ∈ Rd, both T (x) and T −1(x) are measurable and
satisfy the following conditions:

(i) T (0) is the identity map on Ω and T (x) satisfies the semigroup property:

T (x1 + x2) = T (x1)T (x2) for all x1, x2 ∈ Rd.

(ii) P is an invariant measure for T (x), i.e. for each x ∈ Rd and F ∈ F we have that

P (T −1(x)F ) = P (F ).

(iii) For each F ∈ F , the set {(x, ω) ∈ Rd × Ω : T (x)ω ∈ F} is a dx× dP (ω)-measurable subset of Rd × Ω ,
where dx denotes the Lebesgue measure on Rd.

The coefficients in (1) are defined as follows. First, we define two stationary random fields through the
relations

Du(x, ω) = Du(T (x)ω) and χ(x, ω) = χ(T (x)ω),

where Du and χ are given measurable functions over Ω . Then, given the specified assumptions on the random
fields, the coefficients Dεu(x) and χε(x) are defined as

Dεu(x) = Du(x/ε, ω) and χε(x) = χ(x/ε, ω).

From a mathematical point of view, this construction of the coefficients is common in the stochastic
homogenization literature because it allows for the use of ergodic theory in the asymptotic investigation of
(1) as ε→ 0 (see Section 4). From a modeling perspective, this construction is equivalent to the assumption
that the coefficients are statistically homogeneous (see, e.g., [14]). As alluded to above, the chemoattractant
diffusion coefficient Dv does not depend on ε.
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As an example, we discuss here a specific construction of (Ω ,F , P ) and T (x) based on the Poisson point
process in order to provide some intuition on the abstract setting discussed above. Consider the case where
motile cells are positioned on a micropatterned surface with randomly imprinted “dots”, i.e. Dεu(x) and
χε(x) are assumed to attain distinct values in the union of randomly dispersed balls and in their exterior.
Then, a realization ω ∈ Ω is identified with a set ω = {B(αm) : m ∈ N} of a spatial distribution of balls
B(αm) of a specified radius centered at αm, and the σ-algebra F is defined as follows. Let N(ω,A) denote
the number of balls the centers of which fall in the open set A ⊂ R2. Then, F is the σ-algebra generated by
the subsets of Ω of the form

{ω ∈ Ω : N(ω,A1) = k1, . . . , N(ω,Ai) = ki},

where i, k1, . . . , ki are non-negative integers and A1, . . . , Ai are disjoint open sets. A natural choice for the
probability measure P (in the absence of any a priori information) is given by the Poisson point process
defined in the following way. We let

P

N(ω,A1) = k1, . . . , N(ω,Ai) = ki


= P

N(ω,A1) = k1


× · · · × P


N(ω,Ai) = ki


,

with

P

N(ω,A) = k


= (λ|A|)k

k! exp(−λ|A|),

where λ is a positive parameter. In this setting, T (x) is defined as the family of translation operators given by:

T (x)ω = {B(αm) + x : m ∈ N},

where x ∈ R2 and ω = {B(αm) : m ∈ N}. One can define a metric that turns Ω into a compact metric
space, as required in the more general setting of Section 2. This can be achieved either by considering an
alternative characterization of the Poisson point process as a point process over i.i.d. compact domains that
cover the Euclidean space (see, e.g., [14]) or by using an appropriate weighting and normalization of one of
the standard sequence space norms (see, e.g., [29]). This specific construction of (Ω ,F , P ) and T (x) is intu-
itive from a modeling perspective. Nonetheless, the somewhat more abstract setting of a spatial dynamical
system is quite versatile, and will be adopted in the remainder of the paper.

The following assumption is used throughout the paper.

Assumption 1. The following hold:

(i) It is assumed that 0 < d0
u ≤ Du(ω) ≤ d1

u <∞ and 0 ≤ χ(ω) ≤ χ1 <∞ for P -a.s. ω ∈ Ω .
(ii) It is assumed that Dv ∈W 2,∞(Q) is strongly elliptic, i.e.,

0 < d0
v ≤ (Dv(x)ξ, ξ) ≤ d1

v <∞ for x ∈ Q and ξ ∈ Rd,

and supQ |∇Dv(x)|+ supQ |∇2Dv(x)| ≤ d2
v, and α, γ are positive constants.

(iii) With respect to the initial conditions, it is assumed that

u0 ∈ H1(Q), v0 ∈ H2(Q), and u0(x) ≥ 0, v0(x) ≥ 0 for a.e. x ∈ Q.

Moreover, if d = dim(Q) = 2 or d = 3, it is additionally assumed that


1 + |Q|

2−r
2 ∥u0∥r/2L1(Q)


max

∥u0∥Lr(Q), Cg


∥u0∥L1(Q) + ∥u0∥

2
d+2
L1(Q)


+ ∥∇v0∥Lq(Q)


<

2d0
u

r

1
χ1CbCv

,

(2)

where q = max{2 + ζ, d}, 1 + ζ
4+ζ < r ≤ 2 for any ζ > 0 if d = 2, and d2 < r ≤ 2 if d = 3. The constants

Cv, Cb, and Cg appear in the estimates (20) and (22)–(25).
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We are now in a position to define the concept of weak solution that is used in this paper. In the following,
Qτ = (0, τ)×Q for τ > 0, and ⟨ ·, · ⟩Qτ denotes the integral ⟨u, v⟩Qτ =

 τ
0

Q
uv dxdt.

Definition 2. The pair (uε, vε) is a weak solution of (1) if uε ∈ L2(0, τ ;H1(Q)) ∩ H1(0, τ ;L2(Q)), vε ∈
L4(0, τ ;W 1,4(Q)) ∩H1(0, τ ;L2(Q)), and

⟨uεt , φ⟩Qτ + ⟨Dεu(x)∇uε − χε(x)uε∇vε,∇φ⟩Qτ = 0, (3)
⟨vεt , ψ⟩Qτ + ⟨Dv(x)∇vε,∇ψ⟩Qτ + γ⟨vε, ψ⟩Qτ = α⟨uε, ψ⟩Qτ , (4)

for any φ, ψ ∈ L2(0, τ ;H1(Q)) and P -a.s. in Ω . Moreover, uε and vε satisfy the initial conditions
uε(0, x) = u0(x), vε(0, x) = v0(x) in L2(Q) for P -a.s. ω ∈ Ω .

3. Existence of solutions of the microscopic problem and a priori estimates

In this section, we establish a priori estimates for the weak solutions of (1) that eventually lead to the
proof of our main homogenization result in Section 4. In what follows, we distinguish (and treat differently)
the cases dim(Q) = 1 and dim(Q) ≥ 2. In the latter case, motivated by experimental and modeling settings
for biological and physical systems, we only consider the cases dim(Q) = 2 and dim(Q) = 3. However similar
results can also be obtained when dim(Q) ≥ 4.

If dim(Q) = 1, the chemotaxis system has a global solution as shown in [22,41,49]. However, since the
system studied in this paper has fast oscillating diffusion and chemotaxis coefficients, we provide a different
proof of the well-posedness of the system than the one developed in [22,41,49]. Specifically, our derivation
of the a priori estimates does not require the differentiability of Dεu or χε.

Theorem 3. Under Assumption 1 and dim(Q) = 1 there exists a unique weak solution of (1) for every ε > 0,
and for P -a.s. ω ∈ Ω we have

∥uε∥L∞(0,τ ;L2(Q)) + ∥∂xuε∥L∞(0,τ ;L2(Q)) + ∥∂tuε∥L2(Qτ ) ≤ C,
∥vε∥L∞(0,τ ;H1(Q)) + ∥∂tvε∥L2(0,τ ;H1(Q)) + ∥∂2

xv
ε∥L∞(0,τ ;L2(Q)) ≤ C,

(5)

for any τ > 0, where the constant C is independent of ε.

Proof. The existence of a weak solution to problem (1) is proved by showing the existence of a fix point of
the operator K defined on L4(0, τ ;W 1,4(Q)) by vε = K(vε) with vε given as a solution of the linear problem

uεt = ∂x · (Dεu(x) ∂xuε − χε(x)uε ∂xvε) in Qτ ,

vεt = ∂x · (Dv(x) ∂xvε)− γ vε + αuε in Qτ ,

∂xu
ε = 0, ∂xv

ε = 0 on (0, τ)× ∂Q ,

uε(0, x) = u0(x), vε(0, x) = v0(x) in Q.

(6)

By applying Galerkin’s method [17] and a priori estimates similar to the estimates (10), (15), (17), and
(18) established below, we obtain for every vε ∈ L4(0, τ ;W 1,4(Q)) the existence of solutions (uε, vε) of (6)
with uε ∈ L2(0, τ ;H1(Q))∩H1(0, τ ;L2(Q)) and vε ∈ H1(0, τ ;L2(Q))∩L∞(0, τ ;H2(Q)). Then, the compact
embedding L4(0, τ ;H2(Q)) ∩ H1(0, τ ;L2(Q)) ⊂ L4(0, τ ;W 1,4(Q)), along with the Schauder Fixed point
theorem and a priori estimates ensure the existence of a solution to the original nonlinear problem (1) for
all ε > 0. The regularity of the solutions ensures that uε, vε ∈ C([0, τ ];L2(Q)) for P -a.s. ω ∈ Ω , and thus
the initial conditions are satisfied.

We also remark that the a priori estimates are first derived for Galerkin approximations constructed
by smooth eigenfunctions of the one-dimensional Laplace operator with Neumann boundary conditions.
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Then, using standard arguments pertaining to the weak convergence and lower semicontinuity of the norms
involved, we also obtain the corresponding estimates for the solutions uε and vε of (1).

We remark that, provided Assumption 1, the solutions of (1) remain nonnegative for all times, see e.g.
[41,45]. To prove the required a priori estimates, we first consider φ = 1 and ψ = 1 as test functions in (3)
and (4) to obtain

∥uε(t)∥L1(Q) = ∥u0∥L1(Q) for t ≥ 0, (7)

and

∂t∥vε(t)∥L1(Q) = −γ∥vε(t)∥L1(Q) + α∥uε(t)∥L1(Q) for t > 0. (8)

Hence, we obtain

∥vε(t)∥L1(Q) = ∥v0∥L1(Q)e
−γt + αγ−1(1− e−γt)∥u0∥L1(Q) for t ≥ 0. (9)

Multiplying the second equation in (1) by vε and ∂2
xv
ε, integrating over Q, and using zero-flux boundary

conditions together with the specified assumptions on Dv, we have
1
2∂t∥v

ε(t)∥2L2(Q) + d0
v∥∂xvε(t)∥2L2(Q) + γ∥vε(t)∥2L2(Q) ≤ α∥u

ε(t)∥L2(Q)∥vε(t)∥L2(Q),

1
2∂t∥∂xv

ε(t)∥2L2(Q) + d0
v∥∂2
xv
ε(t)∥2L2(Q) + γ∥∂xvε(t)∥2L2(Q) ≤ α∥uε(t)∥L2(Q)∥∂2

xv
ε(t)∥L2(Q)

+ d2
v ∥∂xvε(t)∥L2(Q)∥∂2

xv
ε(t)∥L2(Q).

Applying Young’s and Gronwall’s inequalities and using v0 ∈ H1(Q) yield

∥vε∥L∞(0,τ ;L2(Q)) + ∥∂xvε∥L∞(0,τ ;L2(Q)) + ∥∂2
xv
ε∥L2(Qτ ) ≤ C1∥uε∥L2(Qτ ) + C2, (10)

where the constants C1 and C2 are independent of ε.

Multiplying the first equation in (1) by uε, integrating over Q, and using zero-flux boundary conditions
together with the stated assumptions on Du give

∂t∥uε(t)∥2L2(Q) + 2d0
u ∥∂xuε(t)∥2L2(Q) ≤ 2 ⟨χε(x)uε(t) ∂xvε(t), ∂xuε(t)⟩Q.

The term on the right-hand side can be estimated as

⟨χε(x)uε∂xvε, ∂xuε⟩Q ≤
(χ1)2

d0
u

∥uε∂xvε∥2L2(Q) + d0
u

4 ∥∂xu
ε∥2L2(Q).

We use the Gagliardo–Nirenberg inequality, i.e. for w ∈W 1,l(Q) we use

∥w∥Ls(Q) ≤ C̃

∥∇w∥σLl(Q)∥w∥

1−σ
Lq(Q) + ∥w∥L1(Q)


,

1
s

= σ
1
l
− 1
d


+ (1− σ)1

q
, (11)

with (a) d = dim(Q) = 1, s = 4, σ = 1/2, l = 2, q = 1, (b) d = 1, s = 2, σ = 1/3, l = 2, q = 1, and (c)
d = 1, s = 4, σ = 1/4, l = 2, q = 2, respectively, to obtain

∥uε∥L4(Q) ≤ C̃

∥∂xuε∥1/2L2(Q)∥u

ε∥1/2L1(Q) + ∥uε∥L1(Q)

, (12)

∥uε∥L2(Q) ≤ C̃

∥∂xuε∥1/3L2(Q)∥u

ε∥2/3L1(Q) + ∥uε∥L1(Q)

, (13)

∥∂xvε∥L4(Q) ≤ C̃

∥∂2
xv
ε∥1/4L2(Q)∥∂xv

ε∥3/4L2(Q) + ∥∂xvε∥L2(Q)

. (14)

Thus, using estimate (14) we have τ
0
∥∂xvε∥4L4(Q)dt ≤ 8C̃

 τ
0


∥∂2
xv
ε∥L2(Q)∥∂xvε∥3L2(Q) + ∥∂xvε∥4L2(Q)


dt

≤ C

sup
(0,τ)
∥∂xvε∥3L2(Q)∥∂

2
xv
ε∥L2(Qτ ) + sup

(0,τ)
∥∂xvε∥4L2(Q)


.
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Then, the estimate in (10) together with (13) ensure that

∥∂xvε∥4L4(Qτ ) ≤ C1

∥uε∥4L2(Qτ ) + 1


≤ C2


∥∂xuε∥4/3L2(Qτ ) sup

(0,τ)
∥uε∥8/3L1(Q) + sup

(0,τ)
∥uε∥4L1(Q) + 1


.

Hence, using the last inequality along with (7) and (12), we obtain
(χ1)2

d0
u

∥uε∂xvε∥2L2(Qτ ) ≤
d0
u

8C̃(∥u0∥2L1(Q) + 1)
∥uε∥4L4(Qτ ) + C1∥∂xvε∥4L4(Qτ )

≤ d0
u

8 ∥∂xu
ε∥2L2(Qτ ) + C2∥∂xuε∥4/3L2(Qτ ) + C3 ≤

d0
u

4 ∥∂xu
ε∥2L2(Qτ ) + C4.

Combining all estimates together, we have that

∥uε∥L∞(0,τ ;L2(Q)) + ∥∂xuε∥L2(Qτ ) ≤ C, (15)

where the constant C is independent of ε. Using dim(Q) = 1 in the last estimate, we obtain that

∥uε∥L2(0,τ ;L∞(Q)) ≤ C. (16)

Considering ∂t∂
2
xv
ε as a test function in (4), applying integration by parts, and using zero-flux boundary

conditions together with the specified assumptions on Dv yield that τ
0


∥∂t∂xvε∥2L2(Q) + d0

v

2 ∂t∥∂
2
xv
ε∥2L2(Q) + γ

2∂t∥∂xv∥
2
L2(Q)


dt

≤ α
 τ

0
|⟨∂xuε, ∂t∂xvε⟩Q|dt+

 τ
0

⟨∂2
xDv(x)∂xvε + ∂xDv(x)∂2

xv
ε, ∂t∂xv

ε⟩Q
dt

≤ 1
4

 τ
0
∥∂t∂xvε∥2L2(Q)dt+ C

 τ
0


∥∂xuε∥2L2(Q) + ∥∂2

xv
ε∥2L2(Q) + ∥∂xvε∥2L2(Q)


dt,

where C = C(d2
v, α). Then using (10), (15), and the assumption v0 ∈ H2(Q), we have

∥∂t∂xvε∥L2(Qτ ) + ∥∂2
xv
ε∥L∞(0,τ ;L2(Q)) + ∥∂xv∥L∞(0,τ ;L2(Q)) ≤ C. (17)

Multiplying the first equation in (1) by uεt , integrating over Q and using zero-flux boundary conditions we
obtain

∥∂tuε(t)∥2L2(Q) + ⟨Dεu(x) ∂xuε(t), ∂t∂xuε(t)⟩Q = ⟨χε(x)uε(t) ∂xvε(t), ∂t∂xuε(t)⟩Q.

Then, the term on the right-hand side can be rewritten as

⟨χε(x)uε ∂xvε, ∂t∂xuε⟩Q = ⟨χε(x) ∂tuε ∂xvε + χε(x)uε ∂t∂xvε, ∂xuε⟩Q + ∂t⟨χε(x)uε∂xvε, ∂xuε⟩Q .

The first and second terms can be estimated as

|⟨χε(x)∂tuε∂xvε, ∂xuε⟩Q| ≤
1
2∥∂tu

ε∥2L2(Q) + (χ1)2

2 ∥∂xvε∥2L∞(Q)∥∂xu
ε∥2L2(Q),

and

|⟨χε(x)uε∂t∂xvε, ∂xuε⟩Q| ≤ (χ1)2∥∂t∂xvε∥2L2(Q) + 1
4∥u

ε∥2L∞(Q)∥∂xu
ε∥2L2(Q).

Thus, considering the fact that ∥∂xvε∥L∞(Qτ ) ≤ C, we obtain

∥∂tuε∥2L2(Q) + d0
u ∂t∥∂xuε∥2L2(Q) ≤ C1


∥∂xuε∥2L2(Q) + ∥∂t∂xvε∥2L2(Q)


+C2∥uε∥2L∞(Q)∥∂xu

ε∥2L2(Q) + 2∂t⟨χε(x)uε ∂xvε, ∂xuε⟩Q.

For the last term we have that for t ∈ (0, τ ] t
0
∂s⟨χεuε∂xvε, ∂xuε⟩Qds = ⟨χεuε(t)∂xvε(t), ∂xuε(t)⟩Q − ⟨χεuε(0)∂xvε(0), ∂xuε(0)⟩Q
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and

|⟨χε uε(t)∂xvε(t), ∂xuε(t)⟩Q|+ |⟨χε uε(0)∂xvε(0), ∂xuε(0)⟩Q| ≤
d0
u

8 ∥∂xu
ε(t)∥2L2(Q)

+C1∥∂xvε(t)∥2L∞(Q)∥u
ε(t)∥2L2(Q) + C2∥∂xv0∥2L∞(Q)∥u0∥2L2(Q) + C3∥∂xu0∥2L2(Q).

Applying Gronwall’s lemma and using estimates (15), (16), and (17) along with u0 ∈ H1(Q) and v0 ∈ H2(Q),
we obtain that for a.e. t ∈ [0, τ ]

∥∂xuε(t)∥2L2(Q) ≤ C1 exp

∥uε∥2L2(0,τ ;L∞(Q))


+ C2 ≤ C.

Thus, we conclude that

∥∂xuε∥2L∞(0,τ ;L2(Q)) + ∥∂tuε∥2L2(Qτ ) ≤ C. (18)

To prove uniqueness, we assume there are two solutions and consider uε = uε1 − uε2 and vε = vε1 − vε2 as
test functions in Eqs. (3) and (4), respectively,

⟨uεt , uε⟩Qτ + ⟨Dεu(x)∂xuε, ∂xuε⟩Qτ − ⟨χε(x)(uε∂xvε1 + uε2∂xv
ε), ∂xuε⟩Qτ = 0,

⟨vεt , vε⟩Qτ + ⟨Dv(x)∂xvε, ∂xvε⟩Qτ + γ⟨vε, vε⟩Qτ = α⟨uε, vε⟩Qτ .

Then using the boundedness of uεi and ∂xv
ε
i , i = 1, 2, along with Young’s and Gronwall’s inequalities, we

obtain uε1 = uε2 and vε1 = vε2 for a.e. (t, x) ∈ Qτ and P -a.s. ω ∈ Ω . �

Remark. The constant C in estimates (5) depends on τ , i.e. C ∼ aebτ , a, b > 0. However, if dim(Q) = 1
the solutions of (1) exist for any fixed τ > 0 without any smallness restrictions on u0 and v0. Moreover, the
estimates (5) are uniform in ε.

In the system investigated in this paper, the diffusion Dεu and chemotaxis χε coefficients depend on a
small parameter ε, and we do not have estimates which are uniform in ε for ∇Dεu and ∇χε. Hence, when
dim(Q) = 2 we cannot use the derivation of the a priori estimates and the corresponding proof of well-
posedness developed in [39]. Instead, when dim(Q) = 2 or dim(Q) = 3 we adopt an approach similar to the
one in [11].

Theorem 4. Under Assumption 1 and assuming d = dim(Q) = 2 or 3, there exists a unique weak solution
of (1) for every ε > 0, and we have

∥uε∥L∞(0,τ ;L2(Q)) + ∥∇uε∥L∞(0,τ ;L2(Q)) + ∥∂tuε∥L2(Qτ ) ≤ C,

∥vε∥L∞(0,τ ;H1(Q)) + ∥∂tvε∥L2(0,τ ;H1(Q)) + ∥vε∥L2(0,τ ;H2(Q)) ≤ C
(19)

for P -a.s. ω ∈ Ω and a constant C which is independent of ε.

Proof. Similarly to Theorem 3 we obtain the non-negativity and the estimates (7) and (8) for the L1-norms
of uε and vε.

Using the estimates for the derivatives of the Green function of the operator A = −∇ · (Dv(x)∇) (see,
e.g., [11,37,46]) we obtain

∥∇e−t(A+γ)φ∥Lr1 (Q) ≤ C1 t
− 1

2−
d
2


1
r2
− 1
r1


∥φ∥Lr2 (Q), t > 0,

for all 1 ≤ r2 ≤ r1 ≤ ∞ and φ ∈ Lr2(Q), and

∥∇e−t(A+γ)φ∥Lp(Q) ≤ C2∥∇φ∥Lp(Q),
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for 2 ≤ p ≤ ∞, φ ∈W 1,p(Q), and some constants C1 and C2 that depend on Q. Here, γ is the decay constant
in the second equation in (1). Applying the variation-of-constants formula, see e.g. [44], yields

vε(t, ·) = e−t(A+γ)v0(·) + α

 t
0
e(s−t)(A+γ)uε(s, ·)ds.

Then, for r1 and r2 such that 1
2 + d

2


1
r2
− 1
r1


< 1, we have

∥∇vε(·, t)∥Lr1 (Ω) ≤ Cv

∥∇v0∥Lr1 (Q) + sup

s∈(0,t)
∥uε(·, s)∥Lr2 (Q)


for all t ∈ (0, τ ]. (20)

We now consider |uε|p−1, for some p > 1, as a test function in (3) to obtain

d

dt


Q

|uε|pdx+ 4p− 1
p

d0
u


Q

∇|uε| p2 2dx ≤ 2(p− 1)χ1

Q

|uε|
p
2
∇|uε| p2 |∇vε|dx. (21)

The integral on the right-hand side can be rewritten as

I =

Q

|uε|
p
2
∇|uε| p2  |∇vε|dx ≤ ∥∇|uε| p2 ∥L2(Q)∥|uε|

p
2 ∥Lq1 (Q)∥∇vε∥Lq2 (Q),

where 1/q1 + 1/q2 = 1/2.

For d = 2 and any ζ > 0, we consider q2 = 2 + ζ and q1 = 2 + 4
ζ . Then, applying the Sobolev embedding

and estimate (20) with 1 + ζ
4+ζ < r2 ≤ 2, we obtain

I ≤ ∥∇|uε|
p
2 ∥L2(Q)∥ |uε|

p
2 ∥
L

2+ 4
ς (Q)
∥∇vε∥L2+ζ(Q) ≤ ∥∇|uε|

p
2 ∥L2(Q)

×Cb

∥∇|uε|

p
2 ∥L2(Q) + ∥ |uε|

p
2 ∥L1(Q)


Cv


∥∇v0∥L2+ζ(Q) + sup

s∈(0,t)
∥uε(s)∥Lr2 (Q)


,

where Cb is the embedding constant. If ∥∇|uε(t)|
p
2 ∥2L2(Q) ≥ 1 for t ∈ (0, τ ] and p = r2, using the estimate

for I and inequality (21) we obtain

d

dt


Q

|uε|r2dx ≤ 2(r2 − 1)∥∇|uε|
r2
2 ∥2L2(Q)


CbCvχ

1


1 + ∥u0∥r2/2L1(Q)|Q|
2−r2

2


×

∥∇v0∥L2+ζ(Q) + sup

s∈(0,t)
∥uε(s)∥Lr2 (Q)


− 2d0

u

r2


. (22)

If for some t ∈ (0, τ ] we have that ∥∇|uε(t)|
r2
2 ∥L2(Q) ≤ 1, then using the Gagliardo–Nirenberg inequality

(11) with s = 2, σ = 1/2, d = 2, l = 2, and q = 1 we obtain that

∥uε(t)∥r2Lr2 (Q) ≤ C̃

∥∇|uε(t)|

r2
2 ∥L2(Q)∥ |uε|

r2
2 ∥L1(Q) + ∥ |uε|

r2
2 ∥2L1(Q)


≤ Cg

∥u0∥

r2
2
L1(Q) + ∥u0∥r2L1(Q)


. (23)

For d = 3 we consider q2 = 3, q1 = 6, and we apply the Sobolev embedding theorem to obtain

I ≤ ∥∇|uε|
p
2 ∥L2(Q) Cb


∥∇|uε|

p
2 ∥L2(Q) + ∥ |uε|

p
2 ∥L1(Q)


Cv


∥∇v0∥L3(Q) + sup

s∈(0,t)
∥uε(s)∥Lr2 (Q)


, (24)

where Cb is the embedding constant and 3/2 < r2 ≤ 2. If ∥∇|uε(t)|
p
2 ∥L2(Q) ≥ 1 for t ∈ (0, τ ] and p = r2, we

have
d

dt


Q

|uε|r2dx ≤ 2(r2 − 1)∥∇|uε|
r2
2 ∥2L2(Q)

×

CbCvχ

11 + ∥u0∥r2/2L1(Q)|Q|
2−r2

2

∥∇v0∥L3(Q) + sup

s∈(0,t)
∥uε(s)∥Lr2 (Q)


− 2d0

u

r2


.
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If for some t ∈ (0, τ ] we have ∥∇|uε(t)|
r2
2 ∥L2(Q) ≤ 1, then using the Gagliardo–Nirenberg inequality (11)

with s = 2, σ = 3/5, d = 3, l = 2, and q = 1 we obtain that

∥uε(t)∥r2Lr2 (Q) ≤ C̃

∥∇|uε(t)|

r2
2 ∥

6
5
L2(Q)∥ |u

ε|
r2
2 ∥

4
5
L1(Q) + ∥|uε|

r2
2 ∥2L1(Q)


≤ Cg


∥u0∥

2r2
5
L1(Q) + ∥u0∥r2L1(Q)


. (25)

Thus, if

1 + ∥u0∥

r2
2
L1(Q)|Q|

2−r2
2

∥∇v0∥Lq(Q) + sups∈(0,t) ∥uε(·, s)∥Lr2 (Q)


is sufficiently small we obtain

that ∥uε(t)∥r2Lr2 (Q) is monotone decreasing for all t ∈ (0, τ ] such that ∥∇|uε(t)|
r2
2 ∥L2(Q) ≥ 1. Here,

q = max{2 + ζ, d} for any ζ > 0. For any t ∈ (0, τ ] such that ∥∇|uε(t)|
r2
2 ∥L2(Q) ≤ 1 we have

∥uε(t)∥Lr2 (Q) ≤ Cg

∥u0∥

2
d+2
L1(Q) + ∥u0∥L1(Q)


.

Hence, if v0 and u0 satisfy assumption (2), then

∥uε∥L∞(0,τ ;Lr2 (Q)) ≤ max

∥u0∥Lr2 (Q), Cg


∥u0∥L1(Q) + ∥u0∥

2
d+2
L1(Q)

. (26)

Using the last estimate together with estimate (20) and taking uε as a test function in (3) we have

∥uε∥L∞(0,τ ;L2(Q)) + ∥∇uε∥L2(Qτ ) ≤ C,

with a constant C independent of ε. Considering vε and ∂tv
ε as test functions in (4) we obtain

∥vε∥L∞(0,τ ;L2(Q)) + ∥∂tvε∥L2(Qτ ) + ∥∇vε∥L∞(0,τ ;L2(Q)) ≤ C1(∥uε∥L2(Qτ ) + ∥v0∥H1(Q)) ≤ C.

Taking |uε|p−1 as a test function in (3) with p > d yields

∥uε∥L∞(0,τ ;Lp(Q)) ≤ C. (27)

Thus, applying (20) and using the estimate (27) with p > d, we obtain

∥∇vε∥L∞(Qτ ) ≤ C1∥uε∥L∞(0,τ ;Lp(Q)) ≤ C2.

Then, considering ∂tuε as a test function in (3) ensure

∥∂tuε∥L2(Qτ ) + ∥∇uε∥L∞(0,τ,L2(Q)) ≤ C.

Taking ∆vε and ∆∂tvε as test functions in (4) and applying zero Neumann boundary conditions for uε
result in

∥∂t∇vε∥L2(Qτ ) + ∥∇2vε∥L∞(0,τ ;L2(Q)) ≤ C.

As in Theorem 3 we obtain the existence of a weak solution of (1) in Qτ by applying the Galerkin method
and a fixed point argument. Similarly, we show the uniqueness of the weak solution of (1) by considering the
equations for the difference of two solutions and showing that they are equal a.e. in Qτ and P -a.s. in Ω . �

4. Stochastic homogenization

In this section, we derive our main homogenization result for problem (1). The system of macroscopic
equations is obtained in Theorem 15 by using the concept of stochastic two-scale convergence introduced
in [52]. For the reader’s convenience we state the general definition of two-scale convergence by means of Palm
measures, and then apply it to the specific context of the problem studied in this paper. In the following,
we also make use of the notions of invariance and ergodicity, which we now define.
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Definition 5. A measurable function f on Ω is said to be invariant for a dynamical system T (x) if for each
x ∈ Rd, f(ω) = f(T (x)ω), P -a.s. on Ω .

Definition 6. A dynamical system T (x) is said to be ergodic, if every measurable function which is invariant
for T (x) is P -a.s. equal to a constant.

The random environment described by the coefficients in (1) can also be characterized in terms of a
random measure, which is defined as follows.

Definition 7. Let (Ω ,F) be a measurable space and B(Rd) be the σ-algebra of Borel sets in Rd. A mapping
µ̃ : Ω × B(Rd) → R+ ∪ {∞} is called a random measure on (Rd,B(Rd)) if the function µω(A) = µ̃(ω,A) is
F-measurable in ω ∈ Ω for each A ∈ B(Rd) and a measure in A ∈ B(Rd) for each ω ∈ Ω .

Even though more general definitions of a random measure exist in the literature (see, e.g., [14] or [28]),
in the remainder of the paper µω will always denote a random measure on (Rd,B(Rd)).

Definition 8. The Palm measure of the random measure µω is the measure µ on (Ω ,F) defined by the
relation

µ(A) =

Ω


Rd

I[0,1)d(x) IA(T (x)ω) dµω(x)dP (ω), (28)

where IK denotes the characteristic function of the set K.

The value of the notion of a Palm measure is that it allows for a generalization of Birkhoff’s ergodic
theorem for stationary random measures. Specifically, given a dynamical system T (x), we say that the
random measure µω is stationary if for every φ ∈ C∞0 (Rd)

Rd
φ(y − x) dµω(y) =


Rd
φ(y) dµT (x)ω(y).

The intensity m(µω) of a random measure µω is defined by

m(µω) =

Ω


[0,1)d

dµω(x) dP (ω). (29)

Theorem 9 (Ergodic Theorem [52]). Let the dynamical system T (x) be ergodic and assume that the stationary
random measure µω has finite intensity m(µω) > 0. Then

lim
t→∞

1
t |A|


tA

g(T (x)ω)dµω(x) =

Ω

g(ω)dµ(ω) a.s. with respect to P (30)

for all bounded Borel sets A, with volume |A| > 0, and all g ∈ L1(Ω ,µ).

We remark that for µ = P (i.e., dµω(x) = dx), Theorem 9 reduces to the classical ergodic theorem of
Birkhoff.

We now define the notion of stochastic two-scale convergence, which is one of the main tools used in
proving Theorem 15. We consider the family of random measures

dµεω(x) = εddµω

x
ε


.

We remark that an immediate consequence of Theorem 9 is that on every compact subset of Rd, the family
dµεω(x) converges weakly to the deterministic measure m(µω) dx a.s. with respect to P as ε → 0 (see,
e.g., [52]).
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Definition 10 (Stochastic Two-Scale Convergence [20,52]). Let Q be a domain in Rd, T (x) be an ergodic
dynamical system, and T (x)ω̃ be a “typical trajectory”, i.e. one that satisfies Eq. (30) for all g ∈ C(Ω).
Then, we say that a sequence {vε} ⊂ L2(0, τ ;L2(Q,µεω̃)) converges stochastically two-scale to v ∈
L2(0, τ ;L2(Q× Ω , dx× dµ(ω))) if

lim sup
ε→0

 τ
0


Q

|vε(t, x)|2 dµεω̃(x) dt <∞ (31)

and

lim
ε→0

 τ
0


Q

vε(t, x)ϕ(t, x)b(T (x/ε)ω̃) dµεω̃(x)dt =
 τ

0


Q


Ω

v(t, x, ω)ϕ(t, x)b(ω) dµ(ω)dxdt (32)

for all ϕ ∈ C∞0 ([0, τ)×Q) and b ∈ L2(Ω ,µ).

It is evident that if Q ⊂ Rd is bounded, each ϕ ∈ C∞(Qτ ) can be used as a test function in Definition 10.
The concept of a “typical trajectory” in Definition 10 extends to realizations ω̃ ∈ Ω . Specifically, we say
that ω̃ ∈ Ω is a “typical realization” if (30) holds true at ω̃ for all g ∈ C(Ω).

Theorem 11 ([20,52]). Every sequence {vε} ⊂ L2(0, τ ;L2(Q,µεω̃)) that satisfies (31) converges along a
subsequence to some v ∈ L2(0, τ ;L2(Q× Ω , dx× dµ(ω))) in the sense of stochastic two-scale convergence.

Before we proceed, we need to define a concept of stochastic derivative and the space H1(Ω ,µ) for the
Palm measure µ. First, we say that a function u ∈ C(Ω) belongs to C1(Ω) if the limit

∂jωu(ω) = lim
h→0

u(T (hej)ω)− u(ω)
h

exists and ∂jωu(ω) ∈ C(Ω). Then, the Sobolev space H1(Ω ,µ) is defined as follows.

Definition 12 ([52]). We say that a function u ∈ L2(Ω ,µ) belongs to H1(Ω ,µ) and ∂ωu is a (stochastic)
derivative of u if there exists a sequence uk ∈ C1(Ω) such that uk → u in L2(Ω ,µ) and ∂jωuk → ∂jωu in
L2(Ω ,µ).

In general, the stochastic derivative ∂ωu does not have to be unique (see [52] for counterexamples). We
remark, however, that the particular setting of our problem yields the uniqueness of ∂ωu. We also define
L2

pot(Ω ,µ) and L2
sol(Ω ,µ) to be the spaces of potential functions and divergence-free functions, respectively.

More precisely,

L2
pot(Ω ,µ) = {∂ωu : u ∈ C1(Ω)} and L2

sol(Ω ,µ) =

L2

pot(Ω ,µ)
⊥
,

where the closure in the definition of L2
pot(Ω ,µ) is with respect to the L2(Ω ,µ) norm.

We now state two compactness results for the notion of stochastic two-scale convergence to be used in
the following. Theorems 13 and 14 were proved in [52] in the more general setting of an arbitrary random
measure. Here, the theorems are stated in the context of our problem, i.e. for a non-degenerate random
measure µω (see [52] for the definition of non-degeneracy).

Remark. For a non-degenerate measure, ∂jω denotes the generator of a strongly continuous group of unitary
operators in L2(Ω ,µ) associated with T (x) along the ej direction. The domains of ∂jω, with j = 1, . . . , d,
are dense in L2(Ω ,µ). We let ∇ωu = (∂1

ωu, . . . , ∂
d
ωu)T and H1(Ω ,µ) = {v ∈ L2(Ω ,µ) : ∇ωv ∈ L2(Ω ,µ)}.

Theorem 13 ([52]). Let Q be a domain in Rd and assume that µω is a non-degenerate random measure and
that the sequence {vε} ⊂ H1(Q,µεω̃) is such that

∥vε∥L2(Q,µεω̃) ≤ C(ω̃), ∥∇vε∥L2(Q,µεω̃) ≤ C(ω̃).
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Then there exist functions v ∈ H1(Q) and v1 ∈ L2(Q;L2
pot(Ω ,µ)) such that, up to a subsequence, the

following hold:

vε ⇀ v stochastically two-scale,
∇vε ⇀ ∇xv + v1 stochastically two-scale.

(33)

Theorem 14 ([52]). Let Q be a domain in Rd and assume that µω is a non-degenerate random measure and
that the sequence {vε} ⊂ H1(Q,µεω̃) is such that

∥vε∥L2(Q,µεω̃) ≤ C(ω̃), ε∥∇vε∥L2(Q,µεω̃) ≤ C(ω̃).

Then there exists a function v ∈ L2(Q;H1(Ω ,µ)) such that, up to a subsequence, the following hold:

vε ⇀ v stochastically two-scale,
ε∇vε ⇀ ∇ωv stochastically two-scale.

(34)

Similar results hold for {vε} ⊂ L2(0, τ ;H1(Q,µεω̃)), where the time variable is considered as a parameter [20].
In the following theorems, the Palm measure reduces to the probability measure P , i.e., µ = P . We now

state and prove the main homogenization result of this paper.

Theorem 15. We assume that the dynamical system T (x) is ergodic and that the coefficients Dεu, χε, and
Dv along with the initial conditions u0 and v0 satisfy Assumption 1. Then, the sequence of weak solutions
{uε, vε} of the microscopic problem (1) converges strongly in L2(Qτ ) and weakly in L2(0, τ ;H1(Q)) to the
solution (u, v) ∈ L2(0, τ ;H1(Q))2 of the macroscopic model:

∂tu = ∇ · (D∗∇u− χ∗ u∇v) in Qτ ,

∂tv = ∇ · (Dv(x)∇v)− γv + αu in Qτ ,

(D∗∇u− χ∗ u∇v) · n = 0, ∇v · n = 0 on (0, τ)× ∂Q,
u(0, x) = u0(x), v(0, x) = v0(x) in Q,

(35)

P -a.s. in Ω . The effective (macroscopic) diffusion and chemotaxis matrices are defined as

D∗ξ =

Ω

Du(ω)(ū1,ξ + ξ) dP (ω), χ∗ξ = −

Ω

 Du(ω)û1,ξ − χ(ω)ξ

dP (ω) (36)

for any ξ ∈ Rd, where ū1,ξ, û1,ξ are solutions of the auxiliary problems

ū1,ξ ∈ L2
pot(Ω) such that Du(ω)(ū1,ξ + ξ) ∈ L2

sol(Ω) , (37)

û1,ξ ∈ L2
pot(Ω) such that Du(ω)û1,ξ − χ(ω)ξ ∈ L2

sol(Ω). (38)

Proof. From the a priori estimates in (5), we obtain that

uε,∇uε, ∂tuε, vε,∇vε,∇2vε, ∂tv
ε, ∂t∇vε



A. Matzavinos, M. Ptashnyk / Nonlinear Analysis 144 (2016) 58–76 71

are bounded sequences in L2(Qτ ) for P -a.s. ω ∈ Ω . Then, using Theorem 13 with µ = P , we obtain that,
up to a subsequence,

uε ⇀ u stochastically two-scale, u ∈ L2(0, τ ;H1(Q)),

∇uε ⇀ ∇u+ u1 stochastically two-scale, u1 ∈ L2(Qτ ;L2
pot(Ω)),

∂tu
ε ⇀ ũ stochastically two-scale, ũ ∈ L2(Qτ ;L2(Ω)),

vε ⇀ v stochastically two-scale, v ∈ L2(0, τ ;H1(Q)),

∂tv
ε ⇀ ṽ stochastically two-scale, ṽ ∈ L2(0, τ ;H1(Q)),

∇vε ⇀ v̂ stochastically two-scale, v̂ ∈ L2(0, τ ;H1(Q))

for all “typical” realizations ω.

Now, considering the stochastic two-scale convergence of uε and ∂tu
ε, we have that for ϕ ∈ C∞0 (Qτ ),

b ∈ L2(Ω) and any “typical” realization ω̃ ∈ Ω
Qτ


Ω

ũ(t, x, ω)ϕ(t, x)b(ω)dP (ω)dxdt = lim
ε→0


Qτ

∂tu
ε(t, x)ϕ(t, x)b(T (x/ε)ω̃)dxdt

= − lim
ε→0


Qτ

uε(t, x)∂tϕ(t, x)b(T (x/ε)ω̃)dxdt = −

Qτ


Ω

u(t, x)∂tϕ(t, x)b(ω) dP (ω)dxdt

=

Qτ


Ω

∂tu(t, x)ϕ(t, x)b(ω)dP (ω)dxdt.

Thus, ũ(t, x, ω) = ∂tu(t, x) for a.e. (t, x) ∈ Qτ and P -a.s. ω ∈ Ω . Similarly we conclude that ṽ(t, x) = ∂tv(t, x)
for a.e. (t, x) ∈ Qτ .

From the definition of stochastic two-scale convergence of ∇vε, we obtain that for ϕ ∈ C∞0 (Qτ ), b ∈ L2(Ω)
and any “typical” realization ω̃ ∈ Ω

lim
ε→0


Qτ

∇vε(t, x)ϕ(t, x) b(T (x/ε)ω̃) dxdt =

Qτ


Ω

v̂(t, x)ϕ(t, x)b(ω) dP (ω)dxdt .

The weak convergence of vε in L2(0, τ ;H1(Q)), which is ensured by the a priori estimates, implies that

lim
ε→0


Qτ

∇vε(t, x)ϕ(t, x) dxdt =

Qτ

∇v(t, x)ϕ(t, x) dxdt

for P -a.s. ω ∈ Ω and ϕ ∈ L2(Qτ ). Thus, by choosing b(ω) = 1, we conclude that v̂(t, x) = ∇v(t, x) for
a.e. (t, x) ∈ Qτ . Hence, the stated a priori estimates and the Aubin–Lions compactness lemma [33] ensure
that, up to a subsequence, uε → u, vε → v, and ∇vε → ∇v strongly in L2(Qτ ) as ε→ 0, P -a.s.

We now derive the macroscopic equations. Choosing ψ ∈ C∞(Qτ ) as test function in (4), and by
considering the weak convergence of uε and vε, we obtain

⟨vt, ψ⟩Qτ + ⟨Dv(x)∇v,∇ψ⟩Qτ + γ⟨v, ψ⟩Qτ = α⟨u, ψ⟩Qτ .

Now, we consider φ(t, x) = ϕ(t, x) + εϕ1(t, x)ϕ2(T (x/ε)ω), where ϕ ∈ C∞(Qτ ), ϕ1 ∈ C∞0 (Qτ ) and
ϕ2 ∈ C1(Ω), as test function in (3) and obtain

Dεu∇uε − χε uε∇vε,∇ϕ+ ε∇ϕ1 ϕ2(T (x/ε)ω) + ϕ1∇ωϕ2(T (x/ε)ω)

Qτ

+ ⟨uεt , ϕ+ εϕ1ϕ2(T (x/ε)ω)⟩Qτ = 0. (39)

The stochastic two-scale limit in (39) and the strong convergence of uε yield as ε→ 0

⟨ut, ϕ⟩Qτ + ⟨ Du(ω)(∇u+ u1)− χ(ω)u∇v,∇ϕ+ ϕ1∇ωϕ2(ω)⟩Qτ ,Ω = 0. (40)
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Choosing ϕ(t, x) = 0 for (t, x) ∈ Qτ we obtain

⟨ Du(ω)(∇u+ u1)− χ(ω)u∇v, ϕ1(t, x)∇ωϕ2(ω)⟩Qτ ,Ω = 0

for every ϕ1 ∈ C∞0 (Qτ ) and ϕ2 ∈ C1(Ω). Thus, we have that for dt× dx-a.e. in Qτ

⟨ Du(ω)(∇u+ u1)− χ(ω)u∇v,∇ωϕ2⟩Ω = 0. (41)

Due to the stated assumptions on Du and χ there exists a unique solution u1(t, x, ·) ∈ L2
pot(Ω) of (41) that

depends linearly on ∇xu(t, x) and u(t, x)∇xv(t, x) for a.e. (t, x) ∈ Qτ , see e.g. [50]. We consider

u1(t, x, ω) =
d
j=1

∂xju(t, x) ūj1(ω) + u(t, x)
d
j=1

∂xjv(t, x) ûj1(ω)

for a.e. (t, x) ∈ Qτ and P -a.s. ω ∈ Ω , and obtain from (41) that ūj1, û
j
1 ∈ L2

pot(Ω), for j = 1, . . . , d, are
solutions of the problems (37) and (38), respectively. Considering now ϕ1 = 0 in (40), and using the above
expression for u1, we obtain the macroscopic model (35) with effective coefficients D∗ and χ∗ given by (36).

By the stochastic two-scale convergence of uε and ∂tu
ε, and the initial condition uε(0, x) = u0(x), we

obtain for all ϕ ∈ C∞0 ([0, τ)×Q), b ∈ L2(Ω) and any “typical” realization ω̃ ∈ Ω that
Qτ


Ω

∂tu(t, x)ϕ(t, x)b(ω)dP (ω)dxdt = lim
ε→0


Qτ

∂tu
ε(t, x)ϕ(t, x)b(T (x/ε)ω̃)dxdt

= − lim
ε→0


Qτ

uε(t, x)∂tϕ(t, x)b(T (x/ε)ω̃)dxdt+ lim
ε→0


Q

u0(x)ϕ(0, x)b(T (x/ε)ω̃)dxdt

= −

Qτ


Ω

u(t, x)∂tϕ(t, x)b(ω)dP (ω)dxdt+

Q


Ω

u0(x)ϕ(0, x)b(ω)dP (ω)dxdt.

Similar calculations for vε ensure that the initial conditions u(0, x) = u0(x) and v(0, x) = v0(x) are satisfied
a.e. in Q.

The proof of the uniqueness of the solution is similar to the corresponding proof for the microscopic
problem, and hence the convergence of the whole sequences {uε} and {vε} follows. Since (35) has a unique
solution, and D∗ and χ∗ do not depend on ω, it follows that the solution of (35) does not depend on ω

either. �

5. Periodic approximation of the effective coefficients

We now turn our attention to the problem of approximating the homogenized coefficients shown in (36)
by means of a periodization procedure. The significance of such approximations is discussed in [8,42]. Here,
we build upon the methods developed in [8] and consider the following periodization procedure.

We let Sρ = [0, ρ]d for some ρ > 0, and for each ω ∈ Ω we consider the periodic functions

Dρu,per(z, ω) = Du(T (z( mod Sρ))ω), χρper(z, ω) = χ(T (z( mod Sρ))ω).

Then for P -a.s. ω ∈ Ω , we consider the equations

ūεt = ∇ · (Dρu,per(x/ε, ω)∇ūε − χρper(x/ε, ω)ūε∇v̄ε) in Qτ ,

v̄εt = ∇ · (Dv(x)∇v̄ε)− γv̄ε + αūε in Qτ ,

∇ūε · n = 0, ∇v̄ε · n = 0 on (0, τ)× ∂Q.

The equation for ūε has periodic coefficients, and hence we can employ methods pertaining to periodic
homogenization to obtain the effective coefficients for the corresponding macroscopic problem. However,
since Dρu,per(z, ω) and χρper(z, ω) are not ergodic anymore, the effective coefficients are not deterministic
(i.e., they depend on ω ∈ Ω).
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The unit cell problems that are obtained from the periodic homogenization approach are: Find η̄ρj , η̂
ρ
j ∈

H1
per(Sρ), for j = 1, . . . , d, such that

∇z · (Dρu,per(z, ω)(∇z η̄ρj + ej)) = 0 in Sρ,

∇z · (Dρu,per(z, ω)∇z η̂ρj − χ
ρ
per(z, ω)ej) = 0 in Sρ.

(42)

Given the corrector functions η̄ρ, η̂ρ ∈ H1
per(Sρ), the effective coefficients are then defined by

Dρω,ij = 1
ρd


Sρ


(Dρu,per(z, ω)∇z η̄ρi )j +Dρu,per(z, ω)δij


dz , (43)

χρω,ij = − 1
ρd


Sρ


(Dρu,per(z, ω)∇z η̂ρi )j − χ

ρ
per(z, ω)δij


dz, (44)

for i, j = 1, . . . , d, and the macroscopic equations read
∂tu
ρ = ∇ · (Dρω∇uρ − χρω uρ∇vρ) in Qτ ,

∂tv
ρ = ∇ · (Dv(x)∇vρ)− γ vρ + αuρ in Qτ ,

(Dρω∇uρ − χρω uρ∇vρ) · n = 0, ∇vρ · n = 0 on (0, τ)× ∂Q
for P -a.s. ω ∈ Ω .

The following theorem is the key result of this section. It guarantees the convergence of the effective
coefficients obtained by periodic approximation to the original effective coefficients obtained from the
stochastic homogenization in the previous section.

Theorem 16. Let Dρω and χρω be the effective coefficients obtained in (43) and (44), respectively. Then for D∗
and χ∗ as in (36), the following hold true

lim
ρ→∞

Dρω,ij = D∗ij P-a.s., lim
ρ→∞

χρω,ij = χ∗ij P-a.s., i, j = 1, . . . , d. (45)

Proof. First, we consider in S1 = [0, 1] the auxiliary problems
∇x ·

Dρu,per(ρx, ω)(∇xw̄ρj + ej)


= 0 in S1,

w̄ρj S1-periodic,

S1

w̄ρj (x) dx = 0,
(46)


∇x ·

Dρu,per(ρx, ω)∇xŵρj − χ

ρ
per(ρx, ω)ej


= 0 in S1,

ŵρj S1-periodic,

S1

ŵρj (x)dx = 0.
(47)

From the definition of Dρu,per we have that Dρu,per(ρx, ω) = Du(ρx, ω) in S1. Then, for ρ = 1/ε and
Q = S1, one can apply the stochastic homogenization results of Section 4 to problems (46) and (47) to
obtain the effective macroscopic equations

∇x · (D∗(∇xw̄j + ej)) = 0 in S1, w̄j S1-periodic,

S1

w̄j(x) dx = 0,

∇x · (D∗∇xŵj − χ∗ej) = 0 in S1, ŵj S1-periodic,

S1

ŵj(x) dx = 0,
(48)

where j = 1, . . . , d, and D∗ and χ∗ are given by (36).

We then consider the coordinate transformation y = z/ρ in Eqs. (42), transforming Sρ to the unit cube
S1. We let η̄ρ0,j(y) = 1

ρ η̄
ρ
j (ρy) and η̂ρ0,j(y) = 1

ρ η̂
ρ
j (ρy), and rewrite the equations in (42) as

∇y · (Dρu,per(ρy, ω)(∇y η̄ρ0,j + ej)) = 0 in S1, (49)

∇y · (Dρu,per(ρy, ω)∇y η̂ρ0,j − χ
ρ
per(ρy, ω)ej) = 0 in S1, (50)
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where η̄ρ0,j and η̂ρ0,j are S1-periodic functions, j = 1, . . . , d. The solutions of (49) and (50) are unique up to
an additive constant, which we fix by considering


S1
η̄ρ0,j(y)dy = 0 and


S1
η̂ρ0,j(y)dy = 0. Taking η̄ρ0 and

η̂ρ0 as test functions in (49) and (50), respectively, using Assumption 1 on the coefficients Du and χ, and
applying the Poincaré inequality we obtain the following a priori estimates uniformly in ρ

∥η̄ρ0,j∥H1(S1) ≤ C, ∥η̂ρ0,j∥H1(S1) ≤ C, j = 1, . . . , d. (51)

Thus, we have that η̄ρ0,j and η̂ρ0,j converge weakly in H1
per(S1) to η̄∞j and η̂∞j , respectively, as ρ → ∞,

with j = 1, . . . , d. We also have that η̄ρ0,j and η̂ρ0,j converge stochastically two-scale to the same limit
functions η̄∞j = η̄∞j (y) and η̂∞j = η̂∞j (y), with j = 1, . . . , d. Then, considering the results on the stochastic
homogenization of Eqs. (46) and (47), we obtain that η̄∞j and η̂∞j satisfy

∇y · (D∗(∇y η̄∞j + ej)) = 0 in S1, η̄
∞
j S1-periodic,


S1

η̄∞j (y)dy = 0,

∇y · (D∗∇y η̂∞j − χ∗ej) = 0 in S1, η̂
∞
j S1-periodic,


S1

η̂∞j (y)dy = 0.
(52)

Hence, we have that

Dρu,per(ρy, ω)(∇y η̄ρ0,j + ej) ⇀ D∗(∇y η̄∞j + ej) weakly in L2(S1),
Dρu,per(ρy, ω)∇y η̂ρ0,j − χ

ρ
per(ρy, ω)ej ⇀ D∗∇y η̂∞j − χ∗ej weakly in L2(S1),

(53)

as ρ → ∞, for P -a.s. ω ∈ Ω and j = 1, . . . , d. Finally, since the only periodic solutions of (52) with zero
average are η̄∞j (y) = 0 and η̂∞j (y) = 0 for y ∈ S1, it follows from (53) that

Dρω,j =

S1

Dρu,per(ρy, ω)(∇y η̄ρ0,j + ej) dy →

S1

D∗ej dy = D∗j ,

χρω,j = −

S1


Dρu,per(ρy, ω)∇y η̂ρ0,j − χ

ρ
per(ρy, ω)ej


dy →


S1

χ∗ejdy = χ∗j ,

as ρ→∞, for P -a.s. ω ∈ Ω and j = 1, . . . , d. This proves the convergence results stated in the theorem. �
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