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We use the periodic unfolding technique to derive corrector estimates for a
reaction—diffusion system describing concrete corrosion penetration in the
sewer pipes. The system, defined in a periodically perforated domain, is
semi-linear, partially dissipative and coupled to a nonlinear ordinary
differential equation posed on the solid—water interface at the pore level.
After discussing the solvability of the pore scale model, we apply the
periodic unfolding techniques (adapted to treat the presence of perfora-
tions) not only to derive macroscopic (upscaled) model equations, but also
to prepare a proper framework for obtaining a convergence rate (corrector
estimates) of the averaging procedure.

Keywords: corrector estimates; periodic unfolding; homogenization;
sulphate corrosion of concrete; reaction—diffusion systems

AMS Subject Classifications: 35B27; 47Q10; 74Q15; 35K57; 35K 60

1. Introduction

Concrete corrosion is a slow natural process that leads to the deterioration of
concrete structures (buildings, bridges, highways, etc.) leading yearly to huge
financial losses everywhere in the world. In this article, we focus on one of the many
mechanisms of chemical corrosion, namely the sulphation of concrete, and aim to
describe it macroscopically by a system of averaged reaction—diffusion equations
whose effective coefficients depend on the particular shape of the microstructure.
The final aim of our research is to become capable to predict quantitatively the
durability of a (well-understood) cement-based material under a controlled exper-
imental setup (well-defined boundary conditions). The striking thing is that in spite
of the fact that the basic physical-chemistry of this relatively easy material is known
[1], we have no control on how the microstructure changes (in time and space) and to
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which extent these spatio-temporal changes affect the observable macroscopic
behaviour of the material. The research reported here goes along the line open in [2],
where a formal asymptotic expansion ansatz was used to derive macroscopic
equations for a corrosion model, posed in a domain with locally periodic
microstructure (see [3] for a rigorous averaging approach of a reduced model
defined in a domain with locally periodic microstructures). A two-scale convergence
approach for periodic microstructures was studied in [4], while preliminary
multiscale simulations are reported in [5]. Within this article we consider a partially
dissipative reaction—diffusion system defined in a domain with periodically distrib-
uted microstructure. This system was originally proposed in [6] as a free-boundary
problem. The model equations describe the corrosion of sewer pipes made of
concrete when sulphate ions penetrate the non-saturated porous matrix of the
concrete viewed as a ‘composite’. The typical concrete microstructure includes solid,
water and air parts, see Figure 1. One could argue that the microstructure of a
concrete is neither uniformly periodic nor locally periodic, and the randomness of the
pores and of their distributions should be taken into account. Based on our
experience, periodic representations of concrete microstructures often provide good
qualitative descriptions. For what the macroscopic corrosion process is concerned,
the derivation of corrector estimates (for the periodic case) is crucial for the
identification of convergence rates of microscopic solutions. The stochastic geometry
of the concrete will be studied as future work with the hope to shed some light on
eventual connections between the role played by a locally periodic distributed
microstructure versus stationary random(-distributed) pores. In this spirit, we think
that there is much to be learnt from [7].

The main novelty of this article is twofold: on the one hand, we obtain corrector
estimates under optimal regularity assumptions on solutions of the microscopic
model and obtain the desired convergence rate (hence, we now have a confidence
measure of our averaging results); on the other hand, we apply for the first time an
unfolding technique to derive corrector estimates in perforated media. The main
ideas of the methodology were presented in [8,9] and applied to linear elliptic
equations with oscillating coefficients, posed in a fixed domain. Our approach
strongly relies on these results. However, novel aspects of the method, related to the
presence of perforations in the considered microscopic domain, are treated here for
the first time; see Section 3. The main advantage of using the unfolding technique to
prove corrector estimates is that only H'-regularity of solutions of microscopic
equations and of unit cell problems is required, compared to standard methods
(mostly based on energy-type estimates) used in the derivation of corrector estimates.
As a natural consequence of this fact, the set of choices of microstructures is now
much larger.

This article is structured as follows: after introducing model equations and the
assumed microscopic geometry of the concrete material, the Section 2 goes on with
the main assumptions and basic estimates ensuring both the solvability of the
microscopic problem and the convergence of microscopic solutions to a solution of
the macroscopic equations, as ¢ — 0. In Section 3, we state and prove the corrector
estimates for the concrete corrosion model, Theorem 3.6, determining the range of
validity of the upscaled model.

Note that the technique developed in this article can be applied in a
straightforward way to derive convergence rates for solutions of other classes
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of partial differential equations, posed in domains with periodically distributed
microstructures.

2. Problem description
2.1. Geometry

We assume that concrete piece consists of a system of pores periodically distributed
inside the three-dimensional cube Q =[a, b]® with @, b € R and b > a. Since usually the
concrete in sewer pipes is not completely dry, we consider a partially saturated
porous material. We assume that every pore has three distinct non-overlapping parts:
a solid part, the water film which surrounds the solid part and an air layer bounding
the water film and filling the space of Y as shown in Figure 1. Note that the dark
(black) parts indicate the water-filled parts in the material where most of our model
equations are defined. The reference pore, ¥ =[0,1]°, has three pairwise disjoint
domains Y,, Y; and Y, with smooth boundaries I'; and I'» as shown in the figure.
Moreover, ¥ = Yo U Y, U Y.

Let ¢ be a small factor denoting the ratio between the characteristic length of the
pore Y and the characteristic length of the domain . Let x; and x, be the
characteristic functions of the sets Y; and Y,, respectively. The shifted set Y’f is
defined by Y/ :=7Y, + Efzokjej for k= (ki,k,k3)€Z’, where ¢; is the jth unit
vector. The union of all ¥¥ multiplied by e that are contained within Q defines the
perforated domain Qf, namely Qf := U, _n{e Y\ |eYf C Q}.

Similarly, ©5, I'f and I'§ denote the union of eY5, eI'X and &I'4, contained in .

2.2. Microscopic equations

We consider the microscopic model
dut — V- (DEVu') = —f(',v) in(0,T) x Qf,
0,V = V- (DEVV) = f(u, ") in (0, 7) x Qf,
w® — V- (D5, Vw®) =0 in (0, 7) x 5,
o, = n(u®,r°) on (0, T) x I'Y,

(M

®
- 0

yﬂ..

Figure 1. Left: Periodic approximation of the concrete piece. Right: Our choice of the
microstructure. Yy, Y} and Y5 are the solid, water and air phases of Y, respectively.
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with the initial conditions
ue(()ax) = uo(x), VS(O: X) = VO(X) in Qiy
w0, x) =wo(x) in Q5, r°(0,x) =ro(x) onT}

2

and the boundary conditions
u*=0,v"=0 on(0,7)x 32N}, w' =0 on(0,7)x3a2NI3, (3)

together with

DIVt v = —en(u’,r) on (0,7) x I'{,
DV v =10 on (0,7) x I'{,
DiVu® -v=0 on (0,7) x I'5, 4)
DEVYE - v = g(a®(x)w® — b* (X)) on (0,7) x I'§,

DEVwe v = —g(a®(x)w® — b*(x)v*)  on (0,7) x T%.

Concrete corrosion is modelled by diffusion and reaction of three microscopically
active chemical species: sulphuric acid «°, hydrogen sulphide v* in water phase, and
hydrogen sulphide gas w® in air layers. The transfer of hydrogen sulphide from air
into a water film is modelled by interface reaction given by Henry’s law [6] where a®
and b° are mass-transfer coefficients. The catalysis of hydrogen sulphide into
sulphuric acid is defined via a nonlinear reaction. The mass concentration of a
chemical compound bound on surface (gypsum), produced through reaction of
sulphuric acid with solid matrix, is represented by °. The evolution of r* typically
define criteria on how important the corrosion process is [5]. We refer the reader to
[2,4] for the mathematical modelling of the corrosion mechanism as well as for
details on the structure of the bulk and surface production terms by reaction f{-) and

).
AssumMPTION 2.1

(Al) D, 8,D;e L=(0, T: LE(Y))™°, i€ {u, v, w}, (Di(t, )&, &) = DY|&|* for DY > 0,
for every E€R® and a.a. (t,x)€(0,T) x Y.

(A2) ke LX.(T'y) is nonnegative and n(o,B)=k(y)R()Q(B), where R: R—R,,
Q: R— R, are sublinear and locally Lipschitz continuous. Furthermore,
R(a) =0 for a <0 and Q(B) =0 for B> Bumax, With some Bpyax > 0.

(A3) fe C\(R?) is sublinear and globally Lipschitz continuous in both variables, i.e.
|fle, Bl < Cr(1 + || + 18D, | flen, B1) — floa, Bo)| < Crlloy — aal + |B1 — Bal) and
fla, B)=0 for a« <0 or B<0.

(A4) a,be L3 (T), a(y) and b(y) are positive for a.a. y € 'y and there exist M,, M,,
such that b(y)M,=a(y) M,, for a.a. y € '5.

(AS)  Initial data (ug, vo, wo, ro) € [H*(Q) N HY(Q2) N L®(Q)] x L (T'y) are nonneg-
ative and vy(x) <M, wo(x) <M, a.e. in Q.

We define the oscillating coefficients D(z, x) := D;(1, %), where i€ {u,v,w},
a*(x):=a(®), b(x):=b(), k°(x):=k(%), as well as the space H}o(Qf):=
{ue H'(Qf) :u=0o0n 0QN o}, i=1,2.

Definition 2.2 We call (u°,v",w",r®) a weak solution of (1)~(4) if u®,v* € L*0, T;
Ho(25) N HY 0, T: LX), w® e LX0, T; HLo(Q5)) N HY(0, T L*(225)), 1* € H'(0, T;
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L*(T'%)) and satisfies the following equations:

T T
/0 /? (B;usqﬁ + DVufVe + f(uf, v8)¢)dx dr = —8/(; /§ n®, )¢ dydi, (5

T T
/ / (0,v°¢ + DV VY — f(uf,v)g)dx dr = 8/ / (a° w* = b"v")pdydr,
0 J& o Jrs
(6)

[

T
(3w @ + D5,V Ve)dx di = —8/ / (a° w® — b*V)pdyds, (7)
0 Jr,

T T
e / / drfydyd = e / / @, )y dy dr (8)
0o Jrg 0 Jrg

for all ¢el?0,T; Hig(8)), ¢el?0,T; Hin(25), ¢ el?(0,T)xTI%) and
U (1) = ug, V(1) = vo in L2(225), w'(1) > wo in LA(Q5), r°(1) = ro in L*(I%) as t— 0.

3
2

LemMA 2.3 Under the Assumption 2.1, solutions of the problem (1)—~(4) satisfy the
following a priori estimates:

10 o0, 72220020 + VU 20, 7)x0) < €,

VNl 0. 72222y + IV Il 20.1)x0e) < €, ©)

Wl 0. 7:2202)) + VWl 20.1)x05) < €,

12 12

21 .2y + €219 20,1y < G
where the constant C is independent of e.

Proof First, we consider as test functions ¢ =u° in (5), ¢=1" in (6), ¥ =w* in (7)
and use Assumption 2.1, Young’s inequality and the trace inequality, i.c.

!
8// wSy*dydr
0 JI3
! !
< C/ (we)? + 2| VweP)dy dr + C/ f (V) + &2 |WeP)dy dr.
0 Jas 0 Jo

Then, adding the obtained inequalities, choosing & conveniently and applying
Gronwall’s inequality imply the first three estimates in the the lemma.

Taking ¥ =r° as a test function in (8) and using (A2) from Assumption 2.1 and
the estimates for u°, yield the estimate for r°. The test function ¥ =9, in (8), the
sublinearity of R, the boundedness of Q and the estimates for #° imply the

boundedness of &'/2(|9,7* || 2o, 7)xr)- [ |

LemmMmA 2.4 (Positivity and boundedness) Let Assumption 2.1 be fulfilled. Then the
following estimates hold.

(1) u* (1), v(1)=0 a.e. in Qf, w'(1)>0 a.e. in Q5 and u*(t), r°(1)> 0 a.e. on I', for
a.a. te(0,T).
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(i) u*(1) < Myet!, vé(1) < Mye?" ae. in QF , wi(l) < Mye™' ae. in Q5, and
ue(f) < Mye', ¥ () < Mye a.e. on T, for a.a. t € (0, T'), with some positive
numbers Aj;, M;, where j=u, v, w, r.

Proof (i) To show the positivity of a weak solution we consider »°~ as test function
in (5), v~ in (6), w*~ in (7) and #*~ in (8), where ¢~ = min{0, ¢} with ¢ ¢~ =0. The
integrals involving f(u®, v)u®™, f(u®, vV~ and n(’,r*)u®” are zero, since by
Assumption 2.1 f{u,v) is zero for negative u or v and n(u,r) is zero for negative u.
In the integrals over I'j we use the positivity of a and b and the estimate
V' =0T v’ < v . Due to the positivity of , the right-hand side in the
equation for ¢, with the test function ¥ =r°", is nonpositive. Adding the obtained
inequalities, applying both Young’s and the trace inequalities, considering &
sufficiently small, we obtain, due to positivity of the initial data and using
Gronwall’s inequality, that

™ (Dl 2ee) + 1V~ Ol 2@y + W (Dl 2@z) + 17 Dl 20y < 0,

for a.a. t€(0, T'). Thus, negative parts of the involved concentrations are equal to
zero a.e. in (0, 7) x QF, i=1, 2, or in (0, T) x I'], respectively.

(ii) To show the boundedness of solutions, we consider U5, = (u° — e/ M,)" as
a test function in (5), V5, = (v* — e M,)" in (6) W5, = (w* — e M,,)* in (7), where
(¢p— M)t =max{0,¢— M} and M, i=u,v,w, are positive numbers, such that
up(x) <M, vo(x) < M,, wo(x) <M, a.ein Q, also 4,=A4,, and M,, M,, are given by
(A4) in Assumption 2.1. Note U5, V5, € Hio(Q), W5, € Hio(Q5) [10]. Adding the
obtained equations and using Assumption 2.1 yield

T
f(f a,(|U£M|2+|VfM|2)+|VU;4|2+|VV8M|2dx+f 8,|WM|2+|VWM|2dx>dt
0 \Je Q3
T
<C / [ / ((ef‘”fMu(Cf— Au) + Cre™ M) Us, + U 1P + (V517 + VY5,
0 Q@

+ (Cre™ M, + e M(Cy— M,)) V8M> dx + f <| we, 1+ 82|VWSM|2)dx}dz,

3

2

Choosing 4,, M, such that Cpt'M,+ Cre™M,— A,e?"M, <0 and
Cre™' M, + Cre™ M, — Aye™ M, <0 for a.a. 1€(0,T), and ¢ sufficiently small,
Gronwall’s inequality implies the estimates for u°, v*, w*, stated in the lemma.

Lemma A.1 in the appendix and H'-estimates for «° in Lemma 2.3 imply () > 0
and u*(t) <e''M, ae on I'{ for a.a. r€(0,T). The assumption on n and
Equation (8) with the test function (r* — e4'M,)", where ro(x) < M, a.e. on T'y, yield

T 1
8/ / (5 01(r° — eArer)+|2 + AreArIMr(rg - eAr[Mr)_F)dV di
o Jr
= e/ / n@f, r)(rf — e M,)Tdydt < C,(A,, Mu)é:/ (r* — et M) Tdydr.
0 Jre o Jre

This, for 4, and M,, such that C, < 4,M,e*"”, implies the boundedness of r* on I}
for a.e. 1€(0, 7). |
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LemMA 2.5  Under Assumption 2.1, we obtain the estimates, independent of e:

||3zM€||L2((0,T)xsz§) + ||31V8||L2(0,T;H'(sz§)) + ”8[W£||L2(O,T;H‘(Q§)) <C

Proof We test (5) with ¢=20,u°, and using the structure of n, the regularity
assumptions on R and Q and the boundedness of u* and »* on I'¥, we estimate the
boundary integral by

s/ / n(w’, r*)ou’dy de
0 JIy

= 8/ / Kk (0, (R(u*)Q(r)) — R(u*)Q'(r*)0,r*)dy dt
0 Jre

T
< C/ (11 + VU > + uol* + &7 |Vu|*)dx + Ce/ / (1+ (3 )dy dt,
2 0 Jre

where R(«) = foa R(&)d&. Then, Assumption 2.1, estimates in Lemma 2.3 and the fact
that DY/2 — ¢ > 0 for appropriate & imply the estimate for 9,°.

In order to estimate 9,0° and 9,w°, we differentiate the corresponding equations
with respect to the time variable and then test the result with 9,v° and a,w°,
respectively. Due to assumptions on f and using the trace inequality, we obtain

/la,v’3|2dx+C// |V, |>dx dr
: 0 Jay

< C/ / (Ia,wglz+82|V3,w£|2)dxdt
0 J

+c// (|a,u€|2+|a,v8|2+|wf|2)dxdt+/ |9, (0)[*dx, (10)
0 Jor Q4
and

|8,w | dx—i—C/ IVa,w [*dx ds

< C/ / 901> + [Vwf ) dx dr
+ [ 19w (0)Pdx + c/ / (18,17 + €| Vo |*)dx dt. (11)
Q5 0 Jar

The regularity assumptions imply that |/9,v*(0)]| @) and || a,w?(0)|| ;) can be
estimated by the H*norm of vy, and w,. Adding (10) and (11), maklng use of
estimates for du°, Vv* and Vw® and applying Gronwall’s lemma, give the desired
estimates. |

Lemma 2.6 (Existence and uniqueness) Let Assumption 2.1 be fulfilled. Then there
exists a unique global-in-time weak solution in the sense of Definition 2.2.

Proof The Lipschitz continuity of f, local Lipschitz continuity of 5 and the
boundedness of »° and r* on I'{ ensure the uniqueness result. The existence of weak
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solutions follows by a standard Galerkin approach [11] using the a priori estimates in
Lemmas 2.3, 2.4 and 2.5. ]

2.3. Unfolded limit equations

Definition 2.7 [12-15] (1) For any function ¢ Lebesgue-measurable on perforated
domain ©f, the unfolding operator Teyi: QF = Qx Y, i=1,2, is defined

X
. qb(s[} +sy> a.e. foryey, er“ ,
T5,(0)(x,y) = ely "
0 ae. for ye Y, xeQ\ QF

int®

where k := [3] is the unique integer combination, such that x — [3] belongs to Y;, and
Q= Int(UkeZz{sYk ey C Q).
We note that for we H'(R) it holds that 7% (Wler) = T5Waxy,-
(2) For any function ¢ Lebesgue- measurable on oscillating boundary I'¢, the
boundary unfolding operator 7. : Tf — Q x T, i=1,2 is defined by

. ¢<8|:%:| —i—sy) a.e. foryeFl,erm,
Tr(P)x,y) = ly '

0 ae. for yel;, xe Q\ Q.

Lemma 2.8  Under  Assumption 2.1, there exist u,v,we L*0,T; H)(Q))N
H'(0,T; L*(R)), i, ve L*((0,T) x Q; per(Yl)) we L*(0,T) x @ H).(Y2)), and
re H'(0, T, L*(Q2 x T)) such that (up to a subsequence) for ¢ — 0

75 W) = u, T5 () —v in L*((0, T) x Q; H'\(Y})),
ATy, (W) — du, 8Ty () —dv in L*((0,T) x Q@ x Y)),
T5 ) = w, 3T5 W) —dw in L*((0, T) x Q; H'(Y>)),

i (12)
T5,(Vu*) = Vu+V,ii in L*((0,T) x Q x Y1),
T5 (V) = Vv 4 Vv in L*>((0,T) x Q x Y1),
T5, (VW) = Vw 4V, in L*((0,T) x Q x Y>),
and
T, —r, 3Ty () =, Tr () —u in L*((0,T) x @ x I'), 13)

Tr,0°) = v, Tp,(w*) —w in L2((0, T) x Q x Ty).

Proof  Applying estimates in Lemmas 2.3, 2.5 and convergence theorem [13,16] see
Theorem A.3 in the a.ppendix implies the convergences for u°, v*, w* in (12). The
strong convergence of 1* is achieved by showing that 7. () is a Cauchy sequence in
L*(0,T)x QxTy), for the proof see [4,17]. A4 przmz estimate for 9,° and the
convergence properties of 7. [13] imply the convergences of 9,7, (). To show
the other convergences in (13), we make use of the trace theorem [10],
and of the strong convergence of T% (u), ie. [Ty (u)— ulli20.r)xaxr) <
CIITY, () — ull 20,1y x 11 () —> 0 as & — 0



Downloaded by [University of Dundeg] at 10:01 20 August 2013

Applicable Analysis 1137
THEOREM 2.9  Under Assumption 2.1, the sequences of weak solutions of the problem
(1)—(4) converges as ¢ — 0 to a weak solution (u,v,w,r) of a macroscopic model, i.e.

u,v,we L0, T; Hy(Q) N H'(0, T; LX(Q), re H'(0, T, LX(Q2xT)) and u, v, w, r
satisfy the macroscopic equations

r " Qu ; ~ i
/ f dugy + Du(1, y) <V“ + Zg Vy%{) (Vo1 + V1) +/(u, v)p1 dy dx dr
0 Jaxy, =1 %

T
= _/ / n(u, r)¢1dy, dxdt,
0 JoxI

T oy . -
[ o D9+ 3 5,07 ) 91+ 9.) = iy
0o Jaxr =1 0%

T
=[] atom = bt dy dra
0 QxTI

T n
/ / ower + D, (1,y) (Vw + Z ow V}a)){> (Vo + V},(ﬁz)dy dxdt
0 Jaxv, j=1 Y

ox;

T
=- / / (a(y)w — b(y)n)pa dyy dx s,
0 QxI

T T
// 8,rwdyydxdt:// n(u, r)ydy, dxdz,
0 QxI'y 0 QxI'y

(14)

Jor ¢, ¢ L0, T; Hy(Q),  ¢1 € L2((0,T) x Qi Hy (Y1),  d2€ L2((0,T) x ;
Héer(Yz)) and € LZ((O, T)x QxTy), where w!, o] and wl, for j=1,...,n, are
solutions of the correspondent unit cell problems

. n k .
V(DL )Vy0)) =Y 0, DY(1y) in Yy, {=uv,
k=1

n
~De(t. 7))V -v=") D{(t.y)u onT1UTs, (15)
k=1

a){’ is Y-periodic, /Ya)g(y)dy:O,
1

—Vy(Du(t.)Vy0)) = Y8, D(t.y) in Y,
k=1

—D,(t, y)Vw;{, V= ZD{‘{(Z, Vv on Iy, w;{; is Y-periodic, / a)i{:(y)dy =0.
k=1 Y

_ (16)

Proof Due to considered geometry of Q] and €5 we have

T T
/ / uWodxdr = / T5. )Ty (p)dydxde, i=1,2.
0o Jar 0 Jaxy,
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Applying the unfolding operator to (5)—(8), using 7% Di(t, %) = Di(t,y),i € {u, v} and
T%,Dy(t, %) = Dy(t,y), considering the limit as & — 0 and the convergences stated in
Theorem 2.8, we obtain the unfolded limit problem. Similarly as for microscopic
problem, using local Lipschitz continuity of n and fand boundedness of macroscopic
solutions, which follows directly from the boundedness of microscopic solutions, we
can show the uniqueness of a solution of the macroscopic model. Thus, the whole
sequence of microscopic solutions converge to a solution of the limit problem. The
functions #, v, w are defined in terms of u, v, w and solutions /, w/, / of unit cell
problems (15) and (16), see [4,17].

3. Corrector estimates

First of all, we introduce the definition of local average and averaging operators.
After that, we show some technical estimates needed in the following. We define
(R =R"N{e(Y; +&), E€Z"}, fz“ {x e (R dist(x, Q?) < L/ne}, Q= (xeR":
dist(x, Q) < l/ne}, for [=1,2, and 8 = Upepr (eT%, e YE C Q) where i=1,2.

Definition 3.1 [8,14] (1) For any ¢ € LP(Qf), pe[l,00] and i=1,2, we define the
local average operator (‘mean in the cells’) M, : LF(Q}) — LP(2)

e _L € —
M@0 =g [ Tr@enr =g [ s ven

" Yil J
(2) The operator Q% : LI’(QE 2y — We(Q), for pe[l,o0] and i=1,2, is defined
as Q-interpolation of M (@), 1.e. 05 (9)(e&) = M’ (¢)(§) for é€Z" and

SO = > 05 (@)t + )TN L X for xee(Y +8), £€Z,

kef0,1)"
where for x € &(Y+§&) and k= (ky,...,k,) € {0, 1}" points )"cf’ are given by

x| — €&
ki g

X = _
1_36/_851’ if k) =
&

if k=1,

(3) The operator Q% : W'(Qf) — W'*(Q), pe[l,o00] and i=1, 2, is defined by
05,(¢) = 05.(P(¢))lq:, where Q5 is given in (2). and P: Wi (Q) — WIP((R")) is
an extension operator, in case there exists P, ||P(¢)||W1,,,((Ru)) < Cloll W)

Note T, o M, (¢) = M(¢) for ¢ € LP(Q) and M (¢)(X) My (T, (@)(x),
where My, is the mean value over Y, additionally 2 k0.1 Arod =1

Definition 3.2 [13,16] (1) For pe[l,+oo] and i=1,2, the averaging operator
Uy LP(Q x Y;) — LP() is defined as

1 X X
ue)’(cb)(x) = |_Y|/;’ (D(El:g] Y+EZ, {;} Y) dz for a.a.x € Ql int>
0 for a.a. x e Qf\ Qe

iint*



Downloaded by [University of Dundeg] at 10:01 20 August 2013

Applicable Analysis 1139

(2) Ur,: LP( x T;) — LP(T7) is defined as

1 X X B

— | ®|e|-| +ez, =t |Jdz foraa.xely,,,

uf‘,(cb)(x): |Y|/y < [e]y {8}y> Jint
0

for a.a.xeTl?% \ f*f,im.
) =5, (V.0/(2)) and

x
&€
¥), we  have that

For o' e H (Y), due to V,0(y)=V,T5 (o
Uy (V0 () = elly, (T, (Vo' (1)) = eV (¥) = V0! (;
Uy (Vo' () = Vya)’(';").

3.1. Basic estimates

In this section, we prove some technical estimates, used in the derivation of corrector
estimates.

ProposITION 3.3 For ¢, € L*(0, T; H'(Q)) and ¢, € L*(0, T; H'(Q2%)) we have

1 — M5 (DD 20.7)x2) =< €CIVD1 120, 1)%0)»
g2 — M5, (D)l 20.17)x) < €CINVP2 20,7y x2)-

Proof This proof is similar to [8]. For ¢; € L*0, T; H'()) we can write

(17)

X = Pileesr)(X) — MY ($1)(e§) € L*(0, T H' (e + €Y)) with e(§+ Y) C Q.

Using Y;C Y and applying Poincaré’s inequality, we obtain

T
/ / |1 — M5, (¢1)(e)|*dx dr
0 JeE+Y)

r 1
_/0 /w 1Yil Jery,
T T
< ce" f f V() Pdydr = Ce / / V.1 (x) Pl dr.
0 Jety 0 JeE+Y)

Then, we add all inequalities for & € Z", such that e(§+ Y) C 2, and obtain the first
estimate in (17). The second estimate follows from the decomposition of Q¢ into
Ugez7(£ + Y;) and Poincaré’s inequality as in the previous estimate. |

Lemva 34 For ¢eL*(0,T: HX(Q%?). ¢ € L*(0,T: H\(Q?)). we HL (Y. with
i=1, 2, we have the following estimates

Vo — M5 (VO 120,12 < €CIBN 20,7 12(52)5

[(M5,(3x,0) — O, (0D Vsl 20.7)x ) = CIDN 120 7 1@y I VOl 127

107, (#2) — M (D)l 20, 7)x ) < 8C||V¢2||Lz((oqr)xfzj-z),

105.(®) — Dl 20.7)x2) = ECNVPl 1201y xc202)

2
d1(ey) — ¢1(e2)dz| &"dyds




Downloaded by [University of Dundeg] at 10:01 20 August 2013

1140 T. Fatima et al.

10%,(92) — P2l 20.1)x0) = 8C||V¢2||Lz((oj)x§z§-2)y
16 — Tt (D 20.1)x2xry = ECIVPI 20, 1)x) T ECIVAl 20.7)x 02>
VO ()]l 20, 7)x2) < C||V¢2||Lz((oﬂr)ng-z),
My, (w) — oll 2y < CIV0ll 2y,
175.(0%.(#2)) — OF. (#2120, 7)x2x v) < eCIVll 120, 7yx i)
(18)

Proof  The first inequality follows directly from the first estimate in (17) applied
to V¢. To show the second estimate, we use the definition of the operator Q%,

the equality Y, o1 %' ... X = 1, and obtain
05, (@)(x) = MY ()x) = > (05, (@)e& + ek) — My ($)(e8)) )" ... 5o,
kef0,1}"

Then, it follows

2
/ |Q8y,.<¢>(x)—Msy,.(¢>(x)|2‘vvw(") dx
e(&+Yr)

&

<2 3 (05 @ek k) - 05 @60 [ 19,000 dr

kef0,1y"
For any ¢ € W'"(Int(Y; U (Y; + ¢;))), the following estimate holds:
Myt (@) — My (@) = My, (@(- +¢) — $())]
< l¢C+¢;) = ¢y = CUIVPlLr(vuy v )-
Thus, by the definition of Q% (¢) and by a scaling argument this implies

|0Y (9)(& + ek) — OF (A)(EE)] < eCIVPIl L2(oe+ vy Us(E+i+ v - (19)

We sum over & € Z" with e(§ + Y;) C Qf and obtain the desired estimate. Using (19)
we also obtain that

fQ 105, (62) — M5, () Pelx

2 2
<&C Y & Y IVl vuserht vy
s e kel

< szc/~ |V |*dx.
Qf?

In the same way, using the estimates stated in Proposition 3.3, the fourth and fifth
estimates in (18) follows from:

19%,(#2) — P2l 20.7)x )

=< 19%,(92) = M5, ()l 20.1)xe) + M5, (82) — Pl 20,7y <)
= 8C”V¢2 ||L2((O,T)X§Zf‘2)‘
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For ¢ € H'(Q) applying the trace theorem to a function in LT, yields
[ 1e-Tt@rayes
QxTI';
<[ (6= M3, @ + 1M )T @)y ax
<RI [ 199Pax+C [ (LM 0)=T5 @)+ 19,(M5 )= T @) )dyds

QxY;

< [ 199Pdv+C [ IMy @)= gPdr+ [ VT3 @)Fdyds

QxY;
< 82C(/ |Vo|*dx + |V¢|2dx>.
Q Q“‘

To obtain an estimate for the gradient of Q%(¢2), with ¢ e L*(0, T H'(Q)),
we define k7= (Ki.....kit.Kpstseeoskn)s ki = (Kieoo kit LKt k), hd =

(ki,....ki—1,0,kjt1,...,k,) and calculate
005,(92) _ Q5 (@2)(eE + k) = O3 @5+ 2k o i b,
8—xj_Z . S N REEE AR
ki

Now, applying (19) we obtain the estimates for VQ¥ (¢2) in L*((0,T) x Q).
The estimate for MY (w) — o follows directly by applying Poincaré’s inequality.
To derive the last estimate, we consider

17%,(0%,($2)) — 0%, (P )l 122x 1)
< 75,(0%.(#2) = M5.(Q%.(#))l 22 v + IM5.(OF.(¢2) — Oy (¢l 2ax v)
< CllQ%,(¢2) — M5 (0%, (@)l 12(r) + CIMY,(0F,(92) — O (#2)ll 120
< eC|VOy. ()l 2@ < eClIVhall 122 u

3.2. Periodicity defect

In the derivation of error estimates we use a generalization of Theorem 3.4 proved in
[8] for functions defined in a perforated domain:

THEOREM 3.5  For any ¢ € H'(Q), i=1,2, there exists J* € L*(; H . (Y))):
”1}8”L2(Q;H‘(Y;)) = ClIVoli 2y
||T§/,(V¢) — V¢ — Vy\/Afs”H Qi L2(Yy)) = C8||V¢”L2(SZ'-°)"
Here ¢* = 0%.(¢).

The proof of Theorem 3.5 goes the same lines as in [8, Theorem 3.4], using the
estimates

175 @Dll2@xry < Clldlg.  1VO5 @l = CIVE gy

For more details we refer to the appendix.
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3.3. Error estimates

Under additional regularity assumptions on the solution of the macroscopic
problem, we obtain a set of error estimates. We emphasize here again that only
H'-regularity for the solutions of the microscopic model and of the cell problems is
required.

THEOREM 3.6  Suppose (uf,v¢, w*, %) are solutions of the microscopic problem (1)—~(4)
and u,v,we L*0,T; HH(Q)NH'((0,T)x Q)), reH(0,T;LX(QxT,) are non-
negative and bounded solutions of the macroscopic equations (14). Then we have the
following corrector estimates:

n 2
i 1
I = ull 2oy + ‘ Vit = Vu =Y 0% (35, u)Vy0] < Ce,
i—=1 L2((0,T)x )
J 1
2

IA
a
C:'EJI»—-

n
IV = vl 20,7y + H VV* — Vy — Z 05,0, V)V, 0]
= L0.7) %)

2

11—

IA

Ce2,

T = T 305,09V
=1

W = wll 20,7y + ‘
J=

L2((0,T)x2%5)

1 1
ellr = Ur, ()l 2. ryxrs) < Ce.

4. Proof of Theorem 3.6
We define distance function p(x) = dist(x, 0$2), domains fz;m ={xeQ, p(x) < e} and
Qf’p’in = {xeQf, p(x) < e}, and p°(-) = inf{@, 1}. Definition of p° yields

1

196 i@y = 1V lm = €7 (20)

Then, for ®e H*(Q) and we H'(Y;), where i=1,2, we obtain the following
estimates [8]:

1
I9Pl 2y + 105 (VP e+ MG (VDN 2y < CoHl Pl

@ o, 176

1
(1 = pe) Vi@l 2@y < ”vx@HU(fzi.;n)” < C&||D|| )
1
[Vi(0e0y, @)l 2y < Ce72 + DIP ()
|e0.0.05, 0, ®)oo(2)

& H 12()

1
< Ce2 ||V}’w||LZ(Y,)’13

L2,

1
< Ca|| @l i@l 2(yys

< Cel|®ll e l@ll r2y-

2D
Note that for a bounded Lipschitz domain £ there exists an extension of @
frOm Q intO Qg,Z’ SuCh that ||7)((D)||L2(é52) S C(”@”LZ(Q) + 8||V®||L2(Q)") and
IVP(®) 2oy < CIVOIl2gay -

Hspgax,-Qi/,-(aqu))w( )

& HU(Q,?)
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Now, for ¢ € L*(0, T H.(225)) given by
n S x
$100 = 1) = ) = 09 Y 05, 8,
=

we consider an extension q}i of ¢, from (0, 7)) x Qf into (0, 7") x 2, such that

1611 20.1)x2) = Clidrll20.ryxes)  and  [IV@ll20.1)xe) = CIVOLI 20, 7)x2)-

Due to the presence of zero boundary conditions and since all phases are connected,
standard extension results apply [18]. We consider q35 € L*(0,T: H\(R)) and
1% eL*((0,T) x Q, per( Y1)), given by Theorem 3.5 applied to ¢4, as test functions
in the macroscopic Equation (14) for u:

T 5 n 9 ) B .
/ / dud + D(y) <Vu + Z % vyw;> (V@S + V, 95 )dy dxdr
0 JQxY, j j

+ / S, @i dydxdr + / / n(u, r)¢5dy dxdr = 0.
0 JQxY, QxI'y

In the first term and in the last two integrals, we repldce qgg by MY (#1), (/51 by
Tt (¢1), and u by T% (u). As next step, we introduce p° in front of Vu and 9,u, and
replace Vq)s by VO5, (q)l) Notice that Q% (dy,u) and Vu are in L0, T;H 1)), but not
in L*(0, T; HO(Q)) Now using Theorem 3. 5, we replace Vo[ + V, Wg, by 7% (Vo1),
where ¢f = 0%, (¢1), and obtain

f / 0T, ()M, (d1) + D 1)p° (w+2—vwl,)Tfy,(vmdydxdz
Qx Y

+/0 Qxle n (/) My (¢1)dydxdz+//Q n(u, T (¢1)dydxdr = R

><F1

where

R = / / [8,(u T )M (1) + B, — Moy (1)
Qx Yl
T Z—v ) (V5,6 = 6)-+ (TS, (900) = 965 - V,3)
ou
- I)DL,<Vu+ D V)98 + V00 M, (01) — 60
=1 %%

(T () - NIMG, (¢1>]dydxdt+ fo f 00, (T 1) — F)dy dedi,

XF]

Then we remove p°, replace Vu by M5 (Vu), oyu by M*}I(E)x/u) and, using
Y,(9) = TY, o My, (¢), we apply the i 1nverse unfolding

/ / (a,u/W (¢1)+DF<M8 (w)+ZM (0, 1) V0, ( ))V¢1>dxdt

+f / .f(u,v)/\/l‘g,,l(¢1)dxdt+//‘ n(u,r)Tf-l(q)l)dydxdt:RLI,+R5,
0 Jor o Jaxr,
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where
R = /0 / [(1 — 0)Du(») (Vu +y 3x,uV,l:w3(y))T?l(V¢l)
Qx Y j=1

+ Du(y)< § (Vi) — Vu + (/\/l”Yl (0,u) — 8Xju) V},wif( y)) ’TEYl (V¢1)i| dydxdz.
=1

J=

Introducing p° in front of M, (d,,u) and replacing M, (¢1) by ¢1, MYy, (Vu) by Vu,
My, (3y,u) by QF (9yu) yield

/r/ |:8,u¢1 + D (Vu + ZpSQ*;,l(ax/.u)Vwa{();))qul + £ (u, v)¢1]dx dr
0 Jog p=

= / / n(u, Ty (p)dydxdi+ R, + R, + R;, (22)
0 JOxI

where
R, = /0 / [(atu +/)(p1 — M5y (¢1) + (0" = DD, ZM‘;,I_(Z)X/.M)V_\:U)[{<Z>V¢I
: =1

+Di(w— (V) + 3 (05, (00 Syl(3x,u))Vya)if(§>>V¢1]dxdt.
Jj=1

Now, we subtract Equation (22) from Equation (5) for #° and obtain for the test
function ¢ = u® —u—ep° Y1 0% (95w the equality

/0 /] |:8[(u‘s —u) (uE —u—egp° ; Q‘g),l(ax/.u)wo

s (V(us Cw) =305 (0) vyw;) (w Cw e V0, (ax,.u)wg,')>
= =

Jj=

+ (f(us, V) — f(u, v)) <u8 —u—ep° i Q*}/_(Bx/.u)w{,)}dxdt
J=1

[ T T = a7y (e 0030 Jaydrdi =,
0 Jaxr, =

where R, = R! + R2 + R}.

We consider /* = 71, r* —r as a test function in the equations for r in (14) and
for 7T, (), obtained from (8) by applying the unfolding operator. Using the local
Lipschitz continuity of n and the boundedness of «°, u, r* and r, we obtain

/ / T ¥ — rl*dydxdr < Cf / (|’Z'fﬂlrS >+ |TT u* — u|2)dydxdt.
0 QXF[ 0 QXF[
Applying Gronwall’s inequality and considering 7. (r§)(x,y) = ro(y) yields

(T 5, () = D@y < CNT T @) = ull T2 0.z wasr T 1T5, 06 = roll T2 nr,)
. e 2 : 2
= C(”Tfrl(”g - u)”Lz((O,r)xQxFl) + ||T§‘1(”) - u||L2((0,r)><Q><F1))'
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Then, for the boundary integral, using the estimate in Lemma 3.4, follows
[ [ 0. 73w = )T o0 dy v
QXF]

1
< C(ITH, () = rll 2oy xexry + 1T1 () = ull i20,0x0xr) €161 ll22(0,0x¢)
< C(llu - ull20.0x0) T €IV = )l 20.0x00) + el Vull r2¢0.0)x )
x (Il l22¢0.0x0c) + €IV ||L2((o,r)xsz§))~ (23)

Therefore, the ellipticity assumption, the Lipschitz continuity of f, the estimate (23)
and Young’s inequality imply

T n n
f f <8,}128 —&p° Z 05, (Bx,,u)a),{}z + Vit — pf Z 05, (1) V0] 2)dx dr
0 J j=1 =1

T n n
< C/(; / ({LA{‘g _ 8,05 Z QSY] (ax/.lzl)(,()lfl'{2 + |{}5 _ 8108 Z Qng (ax/-V)CU‘{|2)dXdl
? =1 =

+ C£2||V”||iz((0.r)xsz) + R, + C,,
where 0°:=u® —u, 7°* :=1* — v, and
T n
Cim e [ [ 30105, (] + 1+ V05, 3] P+ 105, @]
0 L =1

1 j=
n

+ 105, (3 Vo] > +10%, (0, u)V,o] | )dxdi + C / /
0 JQ

£ -
Lpin J=

|05, (05 u)e] |2dxdz
T

2000012 2000112 2 2
< C(e Nl 220,722y € ||”||H1((0,T)xsz)+5||”||L2(0,T;H2(s2)))||wu||Hl(Y1)"
2010012 2
+ Ce V20,7 @l 2y
Here we used that
&2 ‘/.; |V(p8Q§,I(8x/u))a)l{ IPdx < &2 / |VQ8Y1(8x/u)a)i{ Idx + ﬁs IQSYI(B,\./u)a)i{ I*dx.
£ & $2 pin
The estimates of the error terms in Section 4.1 imply
IR, = R} + R, + Ry < &"2C(1 + llull i o.7yx 0 + Nl 20,7515
+ IVl 2072212y + 17l 20,7y 02 161 220,75 11020 -

Then, applying Young’s inequality, we obtain

T n n
/ / (a,ms —epf Z 0% (dww] > + Vi — p° Z 0%, (3, u)V, ] |2>dx de
0 Je J=1 =1

T n ;
< C/ / <|I:25 _8pSZQ§’|(8x/M)a)J |2+ |\’)\8 _EpSZQSYI(a\‘,V)le |2>dxdt
0 H = 5

+ C(e + 82)(1 + ||u||§{l((0,r)><g) + ||u||iz(o,T;H2(Q)))(1 + ”a)u”i[l(yl)”)

2 2 2 201,12
+ Ce 07 (T 1@l ) + 8171w 0,17y ey
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Similarly, estimates for v — v — & ), 05, (9, )/ and w* —w — e Y, OF, (9, w)w],
are obtained. The only difference is the boundary term. Applying the trace theorem
and estimates in Lemma 3.4, the boundary term can be estimated by

/Q ; ((a(y)w = bYW — (@ NT T, (0) = BT T, )T, ($2))dy dx

< C/Q N (Ilw = TH, W+ v = TH )T 5 (92) + (w + v)Ids — MYy, (62)]

+ (W + V)IMS, (92) — T, (¢2)])dy dx
< 8C(||V||H1(Q) + ”W”H‘(Q))”¢2||H‘(Q§)»

3 n /
where ¢ = v —v—ep® Y 7L OF (3 V)]
Thus, for ¥ =v* —v and W*=w" —w we have

[ G- or—ron o
2
<C/ /;( 0 —ep ZQ < ) ﬁg—apSZQ%(g_)w{ )dxdt

—I—C/ ‘/.e(w —&pf ZQ (an>w{;, Vi —p iQ57(8x¢)v !

+C(e +"32)(1 +l V||L2(0,T;H2(Q)) + "”Hl((o,T)xQ))(l + ”wV”H‘(YI)”)
+ C‘((‘?2 ”u”iz((),T;Hl (Q)) + 82 ” w’”%}((),T;H'(Q)) + CV)’

+&°

2
)dxdt

and

fff(al W —ep ZQ%(%) 7] +’VW —p ZQ%( .)sz
SC/O /7(98_EPS;Q?‘<8_;>w'5 pZQ ( )Va)/ >dxdt

T . n a A . 3 . 2
+ C/ / ( W —ep° Z 05, (;)wﬁ 2IViE —p Z 05, ( W )Vya){v )dxdt
0 Jag =1 N\

+ Cle+ &) (1+ W20, 7 2202 + W10 0,7700) (1 ||“’V”H1(Y v)
+ C‘(‘E‘2 ” v”%lz(O,T;H](Q) + Cw)a

where

oot [ S Z ) s (s (2
o (i el (o s [, ()4
o L5 (2 () Yoo

)dxdl

2

2

+(1+&%)

w!| dxdt
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2 2 2 2 2 2
< C(* VL0 1102 + & 0. 1yx ) + EV L0 12 2@ N0l vy
2 2 2 2
+¢ C(”u”LZ 0.7 H(Q ”a)u”LZ vy ”W”LZ 0.7 H\(Q ”a)w”i]l Y, ")'
O.T3H(9) (") O.T:1(@) ()

/. Q% by

For C,, we have the same expression as for C,, with v replaced by w, wvf by o/, Q]

Q5, and without the term |Q%, (3., u)w; |°. Thus, we can estimate
2 2
Cy=<e C”v”LZ(O’T;Hl(Q))||w1’||§~[1(Y])”
2 2 2 2 2
+ C(SHW”LZ(O’T;HZ(Q)) +e& ”M}”LZ(O’T;]{Z(Q» +¢ ||W||H|((0,T)XQ))||a)w||§{l(yz)”-

For sufficiently small ¢, adding all the estimates, removing p° by using the estimates
(21), applying Gronwall’s inequality and considering that u*(0)=ug, v*(0)=v,,
v¥(0) = vy we obtain the estimates for u*, v*, w®, stated in the theorem.

To obtain the estimate for r* —Ur. (r), we consider the equations for 77T, r°,
obtained from (8) by applying the unfolding operator, and the equation for r in (14)
with the test function 77 r® —r. Using the properties of Uf, , the local Lipschitz
continuity of n, and Gronwall’s inequality, yields

e / I — U ()P dy
Ie
< cf |T%. (rF) — r*dy dx
QxI'y
< C/ / |7 W) — ul*dy dxdr —l—/ ITT, (ro) — rol*dy, dx
0 JQxI QxT

< /(; /Q (1T () — My, @) + M5, () — ul)dy dx d
xI'y

A

+&2 Z (|Q‘§,l(8x/.u)a)i{|2 + 82|VQ§,1(8xfu)a)i{|2 + |Q§,l(8x/.u)Vyw,f|2)i|dx dr
=1

2 2
+£‘2

W —ey 0% (B uw] Vit = 0% (05 u)Vy0]
J=1 J=1

2 2 2 2
< Cle + &) (Ilull 0,720 + 11lin0.1)x0) + 17207222000

2 2 2 2
+ VIl 0.1yx2) T W20, 71202 + W0, 7)x2) + ||r||Lw<(0,T)xer1))~

4.1. Estimates of the error terms

Now, we proceed to estimating the error terms R}, R; and R;. Using the definition of
0°, the extension properties of ¢¢, Theorem 3.5 and the estimates (21) we obtain

[

n
= ClIVull 20, 7yx 01 (1 +> ”VWZHLZ(Yl)) IVl 20 + V¥l 22, v1))
=

dydxdz

" . - R
Dy(»)(p® — 1)(W + Z% Vy%’) (Ve + Vi)
=

n
12 j
< Ce"Plull 2ol T+ Y IViolllir) NIV 20.0xa )
. 1

j=1
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where Q2,=(0, 1) x . Theorem 3.5 and the estimates (20) and (21) imply

/ / 2 Do) (w +) ax,uv),,w;> <T5Y1 (V1) — Vet — Vﬂﬁi)dy dxds
0 Jaxy, —

Jj=

n
< Ce'"* + 8)||“||L2(0,T;H?(Q))(1 + Z ||Vyw,f||L2(y,)> V11l 120, 7)x2)-
=

We notice M, () = %,(¢1) and using estimates (20) and (21), Lemma 3.4, the
fact that ¢] is an extension of ¢, from @] into Q and ¢; = ¢; a.e in (0,7) x Qf,
implies

' " u . -
/’EDM<W+ —W)v () — ) dy dxdr
/O/QXYI ;3){/ Yu (er 1 ]) )
< “v(pepu<Vu+Z§_”v},wJ>>
j=1 Xj

n
< Ce(e ™ IVull oy, oy + ||V2u||Lz)(1 +3 ||Vw;||Lz(yl>) IV 1l )
=1

n
< Ce"? + 8)||“||L2(0,T;H2(Q))<1 + Z ”Vwa{”U(Y])) Vo1l 20,0 x2)-
=

105.(#) — ¢i 1l 120,)

L2((0,1)xQx Y1)

Applying the estimates in Lemma 3.4 yields

(0= T )M (1) + B — My (1)) dy ddr
0 QxY

< Ce(119,Vull 20, 1 220,00x0¢) + 10l 120, [ Vi ||L2((0,r)x9§)),

where Q7=(0, T') x Q. Due to Lipschitz continuity of f, we can estimate

[ (00 = st s, 0+ (0, @0 - 3y dxar
Qx Y[
< eC(IIVull 2y + IVl 260 11 Il 22¢0.0%2)
+ eC(1 + llull 2y + IVl 22¢020)) I V1 Il 220.0)x2)-

For the boundary integral we have

f / W, T (1) — §0))dy dedi
0 JOxI

< I ) 2g0,0pxaxr) (1T, (@1) — M5, (DD 120,01 051
+ M5, (¢1) — &?)HU((o,r)xerl))

< C(1+ llull 2ry + 17l zm(@yxrp) 1T 5, (61) = MG @D 1201110y
+ C(L+ ull 2@y + 17 @) MY, (@1 = $DI 2

< eC(1 + ull2py + 17l ze@pry) Ve Il 22¢0,0x20)-
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Thus, collecting all estimates from above we obtain for R!:
n

1 .
IR!| < C(e2 + 8)||”||L2(0,T;m(sz))(1 + ||Vyw,‘,’||L2(Y,))||V¢1 Il 220.0x )

j=1

+ Ce(llull g 0.1y ) + IVl 20,7 11 2)) |1 220,211 020) -

Using the estimates (21) implies

/ (1 — o)D" Z M () V0] (j)wl dxdr
0 Joi J=1

IA

IVl xer
Lz(Qi,p,in)

J

1 (x
”MEy,(a\/u) ”Lz(((),r)xfl‘i pin) H Vya),j <g)
=1 "

IA

n
eC Y Ml 0.1 Vo 2 1 V1| 20,02
=

Thus, the last estimate and the estimates (18), (21) yield
|R5| = ”Vu”LZ((O,r)xSAij_in)(l + ”Vya)u”LZ(Y])”X”)”TSYI (V(pl)”Lz((O,r)xQx Y1)
+ Cellull 20.2: 1202 (1 + IVy@ull 20y ) 1Ty, (VO 20,00 2x 1)
< ("7 + &) Cllull 20,1202 (1 + IVy@ull z20v, ) I Vb I 22¢0.0%2)-
Due to estimates in (21) and in Lemma 3.4 we also obtain

3
IR, < 8C(||3ru||L2((o,T)xsz§) + 1/ 20 myx ) + Nutll 20,7 2o ) IV y@ull L2y
2 2
+ IVoull z20.1yx0) + IV u||L2((0,T)xsz§)||Vywu||L2(y,)"X")||V¢1||L2((o,r)xszfl)-

In the similar way we show the estimates for the error terms in the equations for v
and w:

1
IR, < CeZ(1 + [Vl 20,7 122 + 1Vl 211021
+ lull 20, 7m0 ) + ||W||L2(0,T;Hl(sz)))||¢2||L2(o,r;Hl(Q§))a

1
|R,| < C82(1 + Wl 20, 7200 + Wl 02p) + ||V||L2(O,T;H‘(Q)))”¢3||LZ(0,1;H1(Q§))~
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Appendix

Lemma A.1  Let Q CR" be a bounded domain with Lipschitz boundary. If z € H'(Q) N L™(S),
then z € L*°(0R).

Proof Let ze H' (£2) N L>(L). Since C®(Q) is dense in H'(S2), we consider a sequence of
smooth functions {f;,} € C>(R), such that f, — z in HI(Q) and || full =) < 1zl 1) Applying
the trace theorem, see [10], we obtain f,— z in L*dQ). Thus, there exists a subsequence
{fu,} C {fu} converging pointwise, i.e. f,,(x) — z(x) a.e. x €9, and |f,,(X)| < [|zll () for a.a.
xedQ. The pointwise convergence and the estimate ||/l ~pa) < lzlli~g imply

Izl o) = Nzl e(@)-
LemMma 5.2 [12,14] (1) For we LP(K2), p€[l, 00), we have
1Ty Wli@xyy = NP0 5 < Y1771l
(2) Forue L/(I'%), pe[l, 0o), we have

1 1 1 1
175, ulgeery = 2101l ey < €210l ey

(3) If welLl(Q), pe[l, o0), then T w — w strongly in L'( x Y;) as ¢ — 0.
(4) For we W'(Q¢), 1 <p <+o00,

175wl p@xry) < C(”W”U)(Q:.’) + 8||VW||U(Q;‘)”)~
(5) For we W'"(Q¢) holds Ty (w)e L/(Q, Whr(Y;)) and V, T (w) = eT5 (Vw).
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(6) Letvelb (Y;) and v*(x) = v(3), then TSY’ )(x,y) = v(p).

per

(7 For v,well(Q) and ¢, yell(T}) holds T5(vw)=T5,0MTy(w) and
T (o) = TH(@OTTW).
Tueorem A.3 [13,16] Let pe(1, o0) and i=1,2.

(1) For {¢:} C W(Q¢), satisfies ||\ pellproey < C, there exists a subsequence of {¢°} (still
denoted by ¢,), and ¢ € W' (Q), ¢ € LP(2; Wll;el;(Yi)), such that

Ty, ¢e — ¢ strongly in Ly, (2 WP (Y))),
TS ¢ — ¢ weakly in LP(Q; W' (Y))),
T% (Vée) = Vo + Vyg[; weakly in LP(Q2 X Y)).
(2) For {¢°} C W(l)’p(Qf), such that ||¢€||W1.,;(Qg) < C, there exists a subsequence of {¢°}
A 0 i
(still denoted by ¢.) and ¢ € WI‘I'(Q), d e LP(S WP (Yy), such that
V 0 per
T5.9° — ¢ strongly in LF(Q; WP(Y))),
T4 (V') — Vo + Vyp  weakly in L'(Q x Y)).
(3) For {y*) C LP(T%), such that e'P||[y*|| Lyrey < C, there exists a subsequence of {*°} and
i T7)
e LP(2 x T;) such that

T (%) — ¥ weakly in LF(Q x Ty).

ProposiTioN A.4 [13,16] (1) The operator Uy, is formal adjoint and left inverse of T‘SYI, i.e for

¢ € LP(Q2), where p [1, c0),

P¢(x) a.e. for € Qiima
a.e. for €\ QF

iint*

Uy (T (#)(x) =

(2) For ¢ L7(Q x Y;) holds ||u€y,(¢)||U(Q§) = |Y|7l/p||¢||u(nx OF
TueoreM A.5 [8] For any ¢ € H\(Q), there exists ¢, € H_(Y; LA(R)):

per
||</§s||Hl(Y;L2(Q)) < CIIVll 2y
IT(Ve$) = Vo — Videll v @y < Cell VBl 2

The proofs of Theorems A.5 and 3.5 are based on the following results:

THEOREM A.6 [8] For any ¢ € W'"P(Y)), with i=1,2 and p € (1,00, there exists g[;e W;;g’r( Y
such that

l—l./) 7y
WY

n
16 = Bllwisry < C Y 1Dl,1yr — Syl
Jj=1

where Y/ = rey; ly; =0}, for j=1,...,n, and C depends only on n.

1

Lemma A7 [8] For any ¢ € WhP(Y)), where pe(1,00], i=1,2, and for ke {l,...,n}, there
exists ¢ € Wi = {¢pe W'(Y)), () = ¢(- + ej).jefl,....k}}, whereas Wy= w! P(Y;), such that

k
19— ellwocry < CZ 19y = Byl rongy -
]:

The constant C is independent on n.

TueorEM A8 [8] For any p€ H Yy, X) and X separable Hilbert space, there exists a unique
pe H\(Yi, X). i=1,2, such that ¢ — p € (H}, (Y;, X))" and

per

n
161mxn < NDlmyns 16 = Bllancrn < C YN8l y = Byl x-
J=1
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Lemma A.7, Theorems A.6 and A.8 follow directly from the corresponding Lemma 2.2.,
Theorems 2.1 and 2.3 in [8], replacing Y by Y| and Y».

The proof of Theorem 3.5 relies also on the following generalization of the Proposition 3.3
in [8].

PRrOPOSITION A.9  For ¢ € H'(Q) there exists a unique 1/}8 e LX(2; H' (Y))), such that

per
||1/;8||L2(Q-H‘(Y)) < C(||¢||L2(Qf) + 8||V¢||L2(szf)“),
175.(#) — Vell - W (v) = C8(||¢||L2(Q§) +8||V¢||L2(Q§)”)-
Proof The proof follows the same lines as [8]. We consider K;=Int(Y,U(Y;+4¢;)) and
e(K; +[x/¢ly) C Q% for xeQf, where Q* are introduced in Section 2.3. Then for all
¢ e LX) we define

TS},‘/(¢)(x,y) = ¢(x, e[ﬂ +ey> for xeQ and a.e.yeK;.
i Y

For a.e. y€ Y; and ¢ € H)(RQ), extended by zero to R" \ Q, we obtain

fg TY@)(x,y + e)P(x)dx = / T (@)(x, »)Y(x — ee; )dx.

+ee;

Notice that T”(d))(x y+e) =d(x, 2y + ey + g¢) = P(x, e[”ee’] +ey) =
Tg”(t;&)(x +¢gej,p) for xeQ and yeK;and TY (¢)|Qxy = T%(¢). Thus

‘ / (TDC.y +6) — T ) dx — f TGN — ee)) — P)dx

=< C||T£)?].(¢)(',y))||Lz(fzs.l)||1//|\L2(Q\(Q+se,))»

where Q&F = {erR” dist(§2, x) < key/n}. The Lipschitz continuity of 9Q and ¥ € H)(S)
imply, for j=1,.

1V 2@\ @tee ) < CelVEI 2y 1W(—g¢) — Vi) < Celldg ¥l o)

Due to Lipschitz continuity of dQ2¢ a function ¢ € H'(Q¢) can be extended into H' (fz;?’z), such
that [Pl 22 < CI8ll ) + Vel @) and IVP@) gy < CIVOl 2y
Hence for ¢ € H'(Qf) and ¢ € H)(Q) it follows, for a.a. ye Y,

(TP, - +¢) = T ) V) e, e
= /Q (T D)y + ) = TG )Y dx < Cell Vil ey 1T @) ) e
The last estimate, the definition of 7° Eyf and the extension properties yield
1T @) - +e) = THAC 120
< CEl TV 2oy,
= C5||¢||L2(Qf-2) = C€(||¢||L2(Qf) + 8||V¢||L2(Qf))»
ITY (VO - +e) = TYVAC M- @rary < €CIVON -
Applying V, T5(¢) = ¢T5/(V4), we obtain the estimate in H'(Y)), i.c.

ITE@B)C - +¢) = THDC Mi@mvy < Colldll e + 1Vl 2qr)-
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This implies also the estimate for the traces of y — 77 (¢) on Y[ and ¢; + Yi’
||T€J;(¢)('» te) — Tg‘j(q))(', Mu-v@mriiy = C8(||¢||L2(Qj) + eVl 2 )

Using Theorem A. 8 we decompose 7% () = wg + ¢°, where 1&5 e (% H
¢° € (LX(Q: H).(Y;))" such that

(Y;)) and

per

16° 2@ vy + 197 N 2@un vy < € (Hd)an(gn) T elVBla ).
16 1 1@ vy < € Z 175G - 4e) = T5,CMp@umn)

< C8(||¢||Lz(97) + s||V¢IIL:(Q¢>)~
[ |

Proof (of Theorem 3.5) The proof is similar to the proof of Theorem A.5, see [8, Theorem
A 4]. For ¢ € H'(Q{) we consider ¢ = ¢° + £¢, where ¢ = 0 (¢) and ¢ = 1 (¢ — O (¢)). Then,
it follows

||V¢g||L2(QS) + 1Pl 2 + €IVl 2@y = ClIVR 2 (0s)- (24)
For ¢ € HY(Q¢), using Proposition A.9 and (24), there exists W‘ e LX(Q; per(Y))
IT5,(@®) — ¥ ll 1@ vy < CellVoll 120 1 Wl g vy < ClIVell 12 (25)
Definition and properties of Mfyi and Q% see Section 3, imply
10y,8° — MY, (05,0l -1 (0) < Cell V' ll 2@y = CellVoll ey - (26)

For ¢ € H}(Q2) we consider
(T(;/,(ax,vd’s) - Mﬁ,’_(ax/(ﬁs)), W)Hfl(sz), H()
= [ (730,00 - 5,0,6 )
= /Q <T£Y,(ax,¢€)('aY) - ng,(ax,ﬁ)))/\/ley,.(l/’)d%
Then, due to the definition of TEY’(SX/ 0%,(¢)), it follows, in the same way as in [8],

fg (T*;,.(ax/w)(-,y) - M*;,(ax/w))mf(w)dx
_ oy M@)ot o) = Myt

&

- 1 S\ L
3 (5 e - e - FZMS (e =i ).

where (kl)" j lvkj+15}(~~ kﬂ% P (k1>~* ] 1515kj+17'-~9k11)a ~g:
(kl,.. ki 1,0 Kip1,..., k w)s V=" yJLl')?]j:I . yn”. Thls applying the estimates for
%.» see Section 3, 1mplles for every y € Y}, the inequality

(T;(ax_/d)g)(-,y) - Mey,.(ax,(lss)a W)H*I(Q)A,H(‘?(Q) = C5|J7 |||V¢||L2(Q§)”||V1//||L2(Q)"
and the estimate

17%5,(35,9) — MY, (05,8 122y = Cell VoIl 2 ()
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Using the last estimate, and the estimate (25) and (26), together with V¢ = V¢ + eVg®, yield

IT5,(V$) = V¢* — Vil ez
< IT5,(9) = Vo @y + 19T 5, @) = Vb a2y
= CelVll o).



