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a b s t r a c t

In this article the process of nutrient uptake by a single root branch is studied. We consider
diffusion and active transport of nutrients dissolved in water. The uptake happens on the
surface of thin root hairs distributed periodically and orthogonal to the root surface. Water
velocity is defined by the Stokes equations. We derive a macroscopic model for nutrient
uptake by a hairy-root from microscopic descriptions using homogenization techniques.
The macroscopic model consists of a reaction-diffusion equation in the domain with hairs
and a diffusion-convection equation in the domain without hairs. The macroscopic water
velocity is described by the Stokes system in the domain without hairs, with no-slip
condition on the boundary between domain with hairs and free fluid.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

As a result of root damage, certain species of plant can be genetically transformed by the bacterium Agrobacterium
rhizogenes. This transformation causes the plant to produce ‘‘hairy-roots’’ — dense, highly branched root structures. Of
particular interest is that hairy-roots can produce certain metabolites, which have beneficial pharmaceutical properties. In
an attempt to intensify the production of thesemetabolites, experiments concerning the growth of hairy-roots in bioreactors
are now underway. In order to optimize this process, it is necessary to obtain a better understanding the metabolism and
growth of these root structures. Here, as a first step, we develop and analyse a mathematical model for the nutrient uptake
by a single branch of a hairy-root. The surface of a hairy-root is covered with fine ‘‘hairs’’ (micro-scale roots), which enlarge
the active surface area of roots and thus increase the uptake of nutrients. However, due to their high density, the hairs are a
significant obstacle to the flowofwater. Themodelwepropose is defined in apartially perforateddomain.We considerwater
flow around the root structure and diffusion of nutrientmolecules dissolved inwater. Substrates diffuse and are transported
by the flow in the fluid part and are absorbed on the surface of the hairs, i.e. on the boundary of the microstructure. Flow
velocity of the water can be defined by the Stokes system. The scale of hairs is too small for accurate numerical computation
of the full problem and the derivation of a macroscopic model is required.
The derivation of macroscopic equations for the fluid flow in partially perforated domains was considered in [1–3]. As

a zero order approximation, a solution of Stokes or Navier–Stokes system in a free fluid domain with no-slip boundary
conditions on the interface between two domains was obtained. Higher order approximations and effective boundary
conditions at the interface between homogeneous and perforated domainswere derived using boundary layers. In thiswork,
these ideas are applied to amore general geometry. To derivemacroscopic equations for the velocity fieldwe have to assume
C2 regularity of the interface between free fluid and perforated domain, which implies the regularity of a Stokes solution
needed for the analysis. As a macroscopic model, we obtain Stokes equations in the domain without hairs with no-slip
condition on the interface between two domains. A better approximation for the water velocity requires the construction of
boundary layers, see [3]. For themore complicated geometry considered here, boundary layer correction can be constructed
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only locally and hence will not be considered further here. A macroscopic model for the nutrient concentration consists of a
diffusion equation with a reaction describing the uptake process on hair surfaces in the perforated domain and a diffusion-
convection equation in the homogeneous domain. Both the partial heterogeneity of the domain and the convective term
make the analysis of the equations for the concentration proposed here, non-standard. In the estimates for the convective
term, the regularity of the velocity field and the error estimate for the difference of microscopic and macroscopic velocities
are used. To derive a macroscopic equation for the nutrient concentration we use the technique of two-scale convergence,
which was introduced in [4,5] and extended to sequences of functions defined on surfaces in [6,7]. This extension and
a compactness argument are used here to obtain the convergence of the nonlinear function defined on the surface of
the microstructure. There are many results on homogenization of parabolic equations defined in completely perforated
domains. The two-scale convergence was used in [7] to homogenize diffusion-reaction processes in a catalyst consisting
of periodic distributed bars. A similar model with convection defined in a porous medium was studied in [8] using an
energymethod. Amacroscopicmodel describing diffusion, convection and nonlinear reaction in a periodic array of cells was
derived in [9]. Two-scale convergence coupled withmonotonicity methods and compensated compactness were used there
to show the convergence in the nonlinear terms. Homogenization of reaction-diffusion and reaction-diffusion-convection
equations coupled with linear or nonlinear ordinary differential equations on the surface of the microstructure was studied
in [10,11]. Macroscopic equations for reaction-diffusion between periodic distributed soil grain with nonlinear monotone
kinetics on the grain surface and for reaction-diffusion processes both inside and outside grains were derived in [12,13].
The effective behavior of solutions of Laplace equation in a partially perforated domain and the contact problem between
a porous medium and a non-perforated domain were studied in [14,15]. Derivation of macroscopic equations in a domain
with a microstructure consisting of thick junctions is based on the construction of a proper extension operator, [16].
The paper is organized as follows: First, we present a description of the considered geometry, define a microscopic

model, and formulate existence and uniqueness results for solutions of the microscopic model. In Section 3 we show a
priori estimates for the water velocity and derive macroscopic equations for the velocity field. In Section 4 we prove a
priori estimates for the nutrient concentration and, after extension of the solutions from the perforated domain to the
whole domain, using there estimates, we show the convergence of solutions of the microscopic problem to a solution of
a macroscopic model.

2. Problem formulation

We consider a single root with hairs orthogonal to the root surface and distributed periodically. For the sake of simplicity
we replace the cylindrical geometry of a root surface by a rectangle and pose periodic boundary conditions on the sides.
We define a domain Ω = (0, 1) × (0,M)2 with inflow boundary Γin = (0, 1) × {M} × (0,M), outflow boundary
Γout = (0, 1) × {0} × (0,M), and Γ1 = (0, 1) × (0,M) × {M}, Γ3 = (0, 1) × (0,M) × {0}. For 0 < m1 < m2 < M
and a smooth (C2), positive, 1-periodic in x1 function G : (0, 1) × (m1,m2)→ R with supx1,x2 G < M , G = 0 for x2 = m1,
x2 = m2, we defineΩ1 = {(x1, x2, x3) ∈ (0, 1)× (m1,m2)× (0,G(x1, x2))},Ω2 = Ω \Ω1, Γ2 = ∂Ω1 \ Γ3. We can extend
G to R2 by zero in x2 and periodically in x1. We define also

• Unit cell Z = [0, 1]2, repeated periodically over R2, Y0 ⊂ Z , an open compactly included in Z subset with a smooth
boundary R = ∂Y0, Y = Z \ Ȳ0.
• Zk = Z +

∑2
i=1 kiei, Y

k
0 = Y0 +

∑2
i=1 kiei, Y

k
= Y +

∑2
i=1 kiei, R

k
= R +

∑2
i=1 kiei for k ∈ Z2; Z∗ = ∪{Zk, k ∈ Z2};

Γ ∗ = ∪{Rk × (0, Lk), k ∈ Z2}, Lk are the lengths of the hairs, Lk = inf(x1,x2)∈εZk G(x1, x2) − ε, and ε > 0 is the ratio
between the radius of a root hair and the size ofΩ1.
• Q = ∪{εZk|εZk ⊂ Ω1 ∩ {x3 = 0}}; Q ε = ∪{εY k|εZk ⊂ Q };

Rε = ∪{εRk|εZk ⊂ Q };Rε
= ∪{εRk × {x3 = Lk}|εZk ⊂ Q };

Γ ε
= ∪{εRk × (0, Lk)|εZk × (0, Lk) ⊂ Ω1}; Υ ε

= ∪{εȲ k0 × {L
k
}|εZk ⊂ Q }.

• Ωε
0 = ∪{εY

k
0 × (0, L

k)|εZk × (0, Lk) ⊂ Ω1}, Ωε
1 = Ω1 \ Ω̄

ε
0 andΩ

ε
= Ωε

1 ∪Ω2.
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We consider water flow and diffusion and active transport of nutrients along the single root. The water velocity is given
by the Stokes equations

−∆uε +∇pε = 0 inΩε,
div uε = 0 inΩε,
pε = pi, uε × ν = 0 on Γin,
pε = po, uε × ν = 0 on Γout,
uε = 0 on Γ ε

∪ Υ ε and Γ1 ∪ Γ3,
uε, pεare 1-periodic in x1,

(1)

where pi and po are given constants.

Remark. For the flat boundary div uε = 0, pε = pi, uε × ν = 0 on Γin is equivalent to (∇uε − pεI)ν · ν = pi, uε × ν = 0
on Γin. The same holds for Γout.
For the nutrient concentration we have

∂tcε −∇ · (Dε∇cε)+ uε · ∇cε = 0 in (0, T )×Ωε,
cε = cD on (0, T )× Γin,
(Dε∇cε − uεcε) · ν = 0 on (0, T )× Γout,
∇cε · ν = 0 on (0, T )× Γ1 ∪ Γ3 ∪ Υ ε,
−Dε∇cε · νε = εf ε(t, x, cε) on (0, T )× Γ ε,
cε is 1-periodic in x1,
cε(0) = c0 in Ωε.

(2)

The diffusion coefficient and the reaction term are defined by Z-periodic functions Dεij(t, x) = Dij(t, x,
x̄
ε
) in Ω1 × Z∗,

Dεij(t, x) = Dij(t, x) in Ω2, and D
ε
ij are 1-periodic in x1, f

ε(t, x, ξ) = f (t, x̄
ε
, x3, ξ) on Γ ∗, where x̄ = (x1, x2). In general

applications diffusion coefficients are constant. However, we will consider here a general case, because we can conduct our
analysis and also we can envisage a case when diffusion depends on nonhomogeneous chemical properties of the medium.

Assumption 2.1. (1) The diffusion coefficient D, ∂tD ∈ L∞((0, T ) × Ω × Z)3×3, is uniformly elliptic, i.e. D(t, x, y)ξ · ξ ≥
d0|ξ |2, d0 > 0, ξ ∈ R3, y = (y1, y2).

(2) The reaction term f (t, y, x3, ξ) : (0, T )×Γ ∗×R→ R is sublinear, i.e |f (t, y, x3, ξ)| ≤ µf (1+|ξ |), Lipschitz continuous
in ξ , differentiable in t , and measurable in (y, x3) ∈ Γ ∗.

(3) The boundary condition cD ∈ H1(0, T ;H2(Ω)) ∩ H2(0, T ; L2(Ω)), the initial condition c0 ∈ H2(Ω), cD and c0 are 1-
periodic in x1, and c0|∂Ω = cD(0, x).

We define the spaces

V (Ωε) = {v ∈ H1(Ωε)3, v = 0 on Γ1 ∪ Γ3, v × ν = 0 on Γin ∪ Γout,
v = 0 on Γ ε

∪ Υ ε, v is 1-periodic in x1};
Vd(Ωε) = {v ∈ V (Ωε), div v = 0};
W = {w ∈ H1(Ωε), w = 0 on Γin, w is 1-periodic in x1}.

Definition 2.2. A weak solution of (1), (2) is a triple (uε , pε , cε) such that uε ∈ Vd(Ωε), pε ∈ L2(Ωε), cε − cD ∈
L2(0, T ;W ), cε ∈ H1(0, T ; L2(Ωε)) and∫

Ωε
∇uε ∇φ dx−

∫
Ωε
pε div φ dx = −

∫
Γin

pi φ · ν dσ −
∫
Γout

po φ · ν dσ , (3)∫ T

0

∫
Ωε
(∂tcε ψ + Dε∇cε∇ψ − uε cε∇ψ) dxdt = −ε

∫ T

0

∫
Γ ε
f ε(t, x, cε)ψ dσdt, (4)

for all functions φ ∈ V (Ωε) and ψ ∈ L2(0, T ;W ).

Theorem 2.3. Let Assumption 2.1 be satisfied. Then, for any ε there exists a unique weak solution of the problem (1)–(2) such
that uε ∈ Vd(Ωε) ∩ H2(Ωε

δ ), p
ε
∈ L2(Ωε) ∩ H1(Ωε

δ ), c
ε
− cD ∈ L2(0, T ;W ), cε ∈ H1(0, T ; L2(Ωε)), whereΩε

δ is the domain
without a neighbourhood of Rε .

Proof idea. The existence of a solution of the Stokes or Navier–Stokes system with boundary conditions for the pressure
is shown in [17,18,1,2]. The existence and regularity theory for the Stokes and Navier–Stokes equations with Dirichlet
boundary conditions can be found in [19]. The proof relies on using Lax Milgram and DeRham theorems and thus a solution
uε ∈ Vd(Ωε) and pε ∈ L2(Ωε) is obtained. The solution is uniquely defined due to the boundary conditions for uε and pε .
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The regularity of the solution follows from the regularity for elliptic equations and boundary condition uε = 0 on Γ1 ∪ Γ3
(such a boundary condition allows the extension of the solution across the boundaries) [19,1].
The existence of a solution, cε , of the parabolic equation for a give uε can be shown using the Galerkin method based on a

priori estimates, similar to those in Lemma 4.1, [20]. The a priori estimates imply also the regularity cε ∈ H1(0, T ; L2(Ωε)).
The only deviation from the standard situation is the presence of the convective term, which can be estimated in the
following way∫ T

0

∫
Ωε
uεcε∇(cε − cD) dxdt ≤

∫ T

0

∫
Γout

uε(cε − cD)2 · ν dσdt +
∫ T

0

∫
Ωε
uεcD∇(cε − cD) dxdt

≤ µ1 sup
Γout

|uε|‖cε‖L2((0,T )×Ωε)‖c
ε
‖L2(0,T ;H1(Ωε))

+µ2 sup
(0,T )×Ωε

|cD|‖uε‖L2(Ωε)‖c
ε
− cD‖L2(0,T ;H1(Ωε))

≤ µ3δ‖cε‖2L2(0,T ;H1(Ωε)) + µ4/δ
(
1+ ‖cε‖2L2((0,T )×Ωε) + ‖u

ε
‖
2
L2(Ωε)

)
.

Here we use the regularity of uε ∈ Vd∩H2(Ωε
δ ), cD ∈ H

1(0, T ;H2(Ω)) and the embeddingH2(Ωε
δ ) ⊂ C

α(Ω̄ε
δ ), α ∈ [0, 1/2),

for dim(Ωε
δ ) ≤ 3, [20]. The same calculations hold for

∫ T
0

∫
Ωε
uε∂tcε∇∂t(cε − cD) dxdt in estimates for the time derivative

∂tcε . The uniqueness of the solution cε follows from the Lipschitz continuity of f and can be shown by considering the
equation for the difference of two solutions cε1 and c

ε
2 . �

3. Macroscopic equations for the fluid flow

We assume the following macroscopic model for the water flow

−∆u0 +∇π0 = 0, div u0 = 0 inΩ2,
u0 = 0 on Γ1 ∪ Γ2 ∪ Γ3,2,
u0 × ν = 0, π0 = pi on Γin,
u0 × ν = 0, π0 = po on Γout,
u0, π0 − 1-periodic in x1.

Here Γ3,2 = Γ3 ∩ Ω2 and Γ2 is the boundary between Ω1 and Ω2. There exists a unique solution u0 ∈ Vd(Ω2) ∩ H2(Ω2),
π0 ∈ H1(Ω2), [17–19,1,2].
We extend u0 by zero intoΩ1. To show that u0 is a macroscopic approximation of the microscopic velocity uε we need

to estimate the difference u0 − uε . For this we will make use of the following estimates in the porous medium.

Lemma 3.1 ([14,2,10]). Let φ ∈ H1(Ωε
1 ) be such that φ = 0 on Γ

ε
∪ Υ ε . Then, the following estimates hold

‖φ‖L2(Ωε1 )
≤ Cε‖∇φ‖L2(Ωε1 ), ‖φ‖L2(Γ2) ≤ Cε

1/2
‖∇φ‖L2(Ωε1 )

.

Proof idea. The first estimate follows from Poincaré’s inequality. The second inequality hold true due to the estimate

dist(Γ2,Γ ε
∪ Υ ε) ≤ max

εZk⊂Q
| sup
(x1,x2)∈εZk

G− Lk| + Cε ≤ C(sup |∇G| + 1)ε ≤ Cε.

Lemma 3.2. For the solutions of the Stokes problems uε and u0 we have

‖∇(uε − u0)‖L2(Ωε)3×3 ≤ C
√
ε, ‖uε‖L2(Ωε1 )3 ≤ Cε

√
ε, ‖uε‖L2(Γ2)3 ≤ Cε,

‖uε − u0‖L2(Ω2)3 ≤ Cε, ‖pε − π0‖L2(Ω2) ≤ C
√
ε,

where C is a constant independent of ε.

Proof. For the proof we use the ideas from [2]. We consider the equation for the difference uε − u0 and use the estimates
in Lemma 3.1∫

Ωε
∇(uε − u0)∇φ dx−

∫
Ωε
(pε − π0χ(Ω2))∇ · φ dx =

∫
Γ2

(∇u0 − π0I) ν φ dγ

≤
1
2
‖∇u0 − π0I‖L2(Γ2)‖φ‖L2(Γ2) ≤ Cε

1/2
‖∇u0 − π0I‖L2(Γ2)‖∇φ‖L2(Ωε1 )

for φ ∈ V (Ωε). The estimate ‖∇u0 − π0I‖L2(Γ2) ≤ C follows from the regularity of u
0 and π0 in the domainΩ2. Then using

uε − u0 as test function, div uε = 0 and div u0 = 0, the Poincaré’s inequality and the trace inequality inΩε
1 from Lemma 3.1

Please cite this article in press as: M. Ptashnyk, Derivation of a macroscopic model for nutrient uptake by hairy-roots, Nonlinear Analysis: Real World
Applications (2009), doi:10.1016/j.nonrwa.2008.10.063



ARTICLE  IN  PRESS
M. Ptashnyk / Nonlinear Analysis: Real World Applications ( ) – 5

yield the first three estimates of the lemma. To obtain the last two estimates we consider the equations for wε = uε − u0
and π ε = pε − π0

−∆wε +∇π ε = 0, divwε = 0 inΩ2,
wε = uε onΣ = Γ2,
wε = 0 on Γ1 ∪ Γ3,2,
wε × ν = 0, π ε = 0 on Γin ∪ Γout,
wε, π ε are 1-periodic in x1.

(5)

Now, we use the estimate for a very weak solution wε of the Stokes system, [21,22]. We seek a solution (wε, π ε) ∈
L2(Ω2)× H−1(Ω2) using the transposition method (for the definition of very weak solution see Appendix). Thus,

‖wε‖L2(Ω2) ≤ C‖u
ε
‖L2(Γ2) ≤ Cε.

The first equation in (5), the estimate for the velocity, and the Nečas’s inequality, i.e. ‖π ε‖L2(Ω2) ≤ C(Ω2)‖∇π
ε
‖H−1(Ω2),

[2,23], imply

‖π ε‖L2(Ω2) ≤ C‖∇w
ε
‖L2(Ω2) ≤ Cε

1/2. �

4. Derivation of macroscopic model for concentration

Macroscopic equations are derived using the method of two-scale convergence, [4,6,7,5].

4.1. A priori estimates for solutions of microscopic model

Lemma 4.1. For ε ≤ d20/4 solutions of the microscopic model (2) satisfy

‖cε‖L∞(0,T ;L2(Ωε)) + ‖∇c
ε
‖L2(0,T ;L2(Ωε)) ≤ µ,

‖∂tcε‖L∞(0,T ;L2(Ωε)) + ‖∂t∇c
ε
‖L2(0,T ;L2(Ωε)) ≤ µ,

where µ is a constant independent of ε.

Proof. We choose cε − cD as a test function in (4) and calculate for τ ∈ [0, T ]∫ τ

0

∫
Ωε
∂tcε(cε − cD) dxdt +

∫ τ

0

∫
Ωε
Dε∇cε∇(cε − cD) dxdt −

∫ τ

0

∫
Ωε
uεcε∇(cε − cD) dxdt

= −ε

∫ τ

0

∫
Γ ε
f ε(t, x, cε)(cε − cD) dσxdt.

Applying the Young inequality we estimate the above integrals as∫ τ

0

∫
Ωε
Dε∇cε∇cD dxdt ≤ δ

∫ τ

0

∫
Ωε
|∇cε|2dxdt +

µ

δ

∫ τ

0

∫
Ωε
|∇cD|2dxdt,∫ τ

0

∫
Ωε
∂tcεcDdxdt =

∫
Ωε
(cε(τ )cD(τ )− c0cD(0)) dx−

∫ τ

0

∫
Ωε
cε∂tcDdxdt

≤
1
2

∫
Ωε

(
1
2
|cε(τ )|2 + 8|cD(τ )|2 + |c0|2 + |cD(0)|2

)
dx+

1
2

∫ τ

0

∫
Ωε

(
|cε|2 + |∂tcD|2

)
dxdt.

Using the estimate for ∇(uε − u0), the regularity of u0 ∈ H2(Ω2) and the embedding H2(Ω2) ⊂ Cα(Ω̄2), α ∈ [0, 1/2), for
dim(Ω2) ≤ 3, [20], we obtain∫ τ

0

∫
Ωε
uεcε∇(cε − cD) dxdt =

∫ τ

0

∫
Ωε
(uε − u0 + u0)cε∇(cε − cD) dxdt

≤ µε1/2‖cε‖2L2(0,τ ;H1(Ωε)) + sup
Ω2

|u0|
∫ τ

0

∫
Ωε

(
1
δ
|cε|2 + δ|∇(cε − cD)|2

)
dxdt.

In estimates for boundary integrals we apply

‖cε‖2L2(Γ ε) ≤ µ‖c
ε
‖
2
L2(Ωε) + ε

2µ‖∇cε‖2L2(Ωε). (6)

The inequality (6) follows from the trace theorem in H1(Y ) and the scaling argument

ε

∫
Γ ε
|cε|2 dγ ≤ µ1

∑
εZk⊂Q

∫ Lk

0

∫
εY k

(
|cε|2 + ε2|∇x̄cε|2

)
dx ≤ µ2

∫
Ωε

(
|cε|2 + ε2|∇cε|2

)
dx.
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Then, the sublinearity of f ε and (6) imply

ε

∫ τ

0

∫
Γ ε
f ε(t, x, cε)(cε − cD) dσxdt ≤ µ1

∫ τ

0

∫
Γ ε
ε
(
1+ |cε|2 + |cε||cD|

)
dσxdt

≤ µ2

∫ τ

0

∫
Ωε

(
1+ |cε|2 + ε2|∇cε|2 + |cD|2 + ε2|∇cD|2

)
dxdt.

Using the ellipticity assumption on Dε , regularity of the initial and boundary conditions and Gronwall’s Lemma, we obtain
the first estimate in the lemma. To derive the estimate for the time derivative, we differentiate the equation with respect to
t and choose ∂t(cε − cD) as a test function. Similar calculations as above and the inequality∫ τ

0

∫
Ωε
∂2t c

ε∂tcD dxdt ≤
∫
Ωε

(
1
4
|∂tcε(τ )|2 + 4|∂tcD(τ )|2

)
dx

+
1
2

∫
Ωε

(
|∂tcε(0)|2 + |∂tcD(0)|2

)
dx+

1
2

∫ τ

0

∫
Ωε

(
|∂tcε|2 + |∂2t cD|

2) dxdt
imply the required estimate. Here we used, due to the assumptions c0 ∈ H2(Ω), c0|∂Ω = cD(0), and cD ∈ H1(0, T ;H2(Ω)),
that ∫

Ωε

(
|∂tcε(0)|2 + |∂tcD(0)|2

)
dx ≤ µ

(
‖c0‖H2(Ω) + ‖cD‖H1(0,T ;H2(Ω))

)
. �

4.2. Convergence of solutions of microscopic model

To obtain a priori estimates for functions defined in the domain independent of εweextend cε defined onΩε to a function
defined on the wholeΩ . The main ideas of the extension are presented in [24,25,8].

Lemma 4.2. 1. For c ∈ H1(F i), where F i = Y × (0, Li] ∪ Z × (Li, Li + δ) for some 0 < δ < (M − sup(x1,x2) G)/4, there exists
an extension c̃ from F i to Z × (0, Li + δ)

‖c̃‖L2(Z×(0,Li+δ)) ≤ µ‖c‖L2(F i) and ‖∇ c̃‖L2(Z×(0,Li+δ)) ≤ µ‖∇c‖L2(F i).

2. For cε ∈ H1(Ω̃ε) there exists an extension c̃ε into Ω̃ ,

‖c̃ε‖L2(Ω̃) ≤ µ‖c
ε
‖L2(Ω̃ε), ‖∇ c̃ε‖L2(Ω̃) ≤ µ‖∇c

ε
‖L2(Ω̃ε).

Here Ω̃ = (0, 1)× (m1,m2)× (0,G+ δ), Ω̃ε
= Ω̃ \ Ω̄ε

0 , and µ is a constant dependent on G, Y , Y0, but independent of ε, c
ε .

Proof. For a connected, with Lipschitz-continuous boundary domain F i, we can use the extension result from [24,25,8].
The proof is based on the reflection technique. We extend c from F i into neighbourhood U of R × (0, Li) ∪ Y0 × {Li} by
reflection and further into all Y0 × (0, Li) in any smooth manner, and define this extension by c∗. For x3 < Li we have to
extend only in x̄ direction and the Neumann boundary conditions on Γ3 does not cause any problems. Then we consider
c̃ = (1 − ψ)(c∗ − m) + m, where ψ is a smooth function on Z × (0, Li + δ) with compact support in the interior of
Y0 × (0, Li), such that ψ ≡ 1 in Y0 \ U , and m = 1

|F i|

∫
F i c
∗(y)dy. The estimate for the L2-norm follows directly. Since

‖∇ c̃‖L2(Z×(0,Li+δ)) = ‖∇c‖L2(F i) + ‖∇ c̃‖L2(Y0×(0,Li)) we have to estimate the last term. Using Poincaré’s inequality we obtain∫
Y0×(0,Li)

|∇ c̃|2dy ≤ µ1‖∇(1− ψ)‖L∞(Y0×(0,Li))

∫
Y0×(0,Li)∩U

|c∗ −m|2dy

+µ2‖(1− ψ)‖L∞(Y0×(0,Li))

∫
Y0×(0,Li)∩U

|∇c∗|2dy ≤ µ3

∫
F i
|∇c|2dy.

To obtain the estimates in Ω̃ we use the scaling argument

‖∇ c̃ε‖L2(Ω̃) =
∑
εZk⊂Q

∫ G+δ

0

∫
εZk
|∇ c̃ε|2dx

≤

∑
εZk⊂Q

∫ G+δ

Lk+δ

∫
εZk
|∇cε|2dx+

∑
εZk⊂Q

∫ Lk+δ

0

∫
εZk
|∇ c̃ε|2dx

≤

∑
εZk⊂Q

∫ G+δ

Lk+δ

∫
εZk
|∇cε|2dx+

∑
εZk⊂Q

∫ Lk+δ

0

∫
Zk
(ε−2|∇yc̃ε|2(εy, x3)+ |∂x3 c̃

ε
|
2)dydx3
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≤

∑
εZk⊂Q

(
µ1

∫ Lk+δ

0

∫
Y k
(ε−2|∇ycε|2 + |∂x3c

ε
|
2)dydx3 +

∫ G+δ

Lk+δ

∫
εZk
|∇cε|2dx

)

≤

∑
εZk⊂Q

(
µ1(Y , Y0, Lk)

∫ Lk+δ

0

∫
εY k
|∇cε|2dx+

∫ G+δ

Lk+δ

∫
εZk
|∇cε|2dx

)
≤ µ(∇G, Y , Y0) ‖∇cε‖L2(Ω̃ε).

The estimate for ‖c̃ε‖L2(Ω̃) follows from similar calculations. �

The extension into Ω̃ implies the extension into allΩ .

Remark. For cε ∈ L2(0, T ;H1(Ωε)) we define c̄ε(·, t) := c̃ε(·, t). Since the extension operator is linear, c̄ε ∈
L2(0, T ;H1(Ω)). We identify cε with c̄ε .

To show the compactness of cε in L2((0, T )× Γ ε)we use the following space

Definition 4.3 ([26]). LetWβ,2(Ω)with β ∈ R, β > 0 be a Hilbert space defined as the completion of C∞(Ω)with respect
to the norm

‖u‖Wβ,2(Ω) = ‖u‖W k,2(Ω) +
{∫

Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2(β−k)
dxdy

} 1
2

, k = [β], n = dim(Ω).

Lemma 4.4. For a function vε ∈ Wβ,2(Ωε
1 ),

1
2 < β < 1

ε

∫
Γ ε
|vε|2 dσx ≤ µ1

(∫
Ωε1

|vε|2dx+ ε2β
∫
Ωε1

∫
Q ε

|vε(x̄1, x3)− vε(x̄2, x3)|2

|x̄1 − x̄2|2+2β
dx̄1dx̄2dx3

)
≤ µ2‖v

ε
‖Wβ,2(Ωε1 )

.

Proof. For a function v ∈ Wβ,2(Y ) the trace theorem implies∫
R
|v|2 dσy ≤ µ1

∫
Y
|v|2dy+ µ2

∫
Y

∫
Y

|v(y1)− v(y2)|2

|y1 − y2|2+2β
dy1dy2.

Changing variables, y = x̄/ε with x̄ = (x1, x2), we obtain∫
εRi
|vε|2

dσx̄
ε
≤ µ1

∫
εY i
|vε|2

dx̄
ε2
+ µ2

∫
εY i

∫
εY i

|vε(x̄1, x3)− vε(x̄2, x3)|2

|x̄1 − x̄2|2+2β
ε2+2β

dx̄1

ε2

dx̄2

ε2
.

Integrating the inequality over x3 from 0 to Li, multiplying by ε2 and summing up over i, εZ i ∈ Q , we obtain the estimate in
the lemma. �

Lemma 4.5. There exist functions c and c1 such that

cε → c weakly in L2(0, T ;H1(Ω)), weakly- ∗ in L∞(0, T ; L2(Ω))
∂tcε → ∂tc weakly in L2(0, T ;H1(Ω)), weakly- ∗ in L∞(0, T ; L2(Ω)),

cε → c strongly in L2(0, T ;Wβ,2(Ω)),
1
2
< β < 1,

lim
ε→0

ε

∫ T

0

∫
Γ ε
|cε − c|2dσxdt = lim

ε→0
‖cε − c‖2L2((0,T )×Γ ε) = 0,

cε → c, ∂tcε → ∂tc in two-scale sense inΩ1,
∇cε → ∇xc +∇yc1 in two-scale sense, c1 ∈ L2((0, T )×Ω1;H1per(Z)/R).

Proof. From the a priori estimates in Lemma 4.1, which imly the correspondent estimates for the extension inΩ , we obtain
a weak convergence cε ⇀ c and ∂tcε ⇀ ∂tc in L2(0, T ;H1(Ω)) and weak-∗ convergence in L∞(0, T ; L2(Ω)). The strong
convergence of cε in L2(0, T ;Wβ,2(Ω)), 12 < β < 1 follows from the compact embedding of Wβ,2(Ω) in H1(Ω) and the
Lions–Aubin Lemma, [27], with B = Wβ,2(Ω). The Lemma 4.4 implies ‖cε − c‖L2((0,T )×Γ ε) ≤ µ1‖c

ε
− c‖2

L2(0,T ;Wβ,2(Ωε1 ))
≤

µ2‖cε − c‖2L2(0,T ;Wβ,2(Ω)) → 0 for ε→ 0.
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The boundedness of cε in L2(0, T ;H1(Ω)) and the Compactness Theorem (see Theorem A.2 in Appendix) imply the two-
scale convergence of cε to c and existence of a function c1 ∈ L2((0, T )×Ω1;H1per(Z)/R) such that, up to a subsequence,∇c

ε

two-scale converges to ∇xc(t, x) + ∇yc1(t, x, y), ∇yc1 = (∂y1c1, ∂y2c1, 0). Using the a priori estimates and applying again
the Compactness Theorem (see Theorem A.2) we obtain the two-scale convergence of ∂tcε to ∂tc. �

4.3. Macroscopic equations

We define the space

K = {(φ, ψ), φ ∈ H1(Ω1), ψ ∈ H1(Ω2), ψ = 0 on Γin, φ = ψ on Γ2, φ, ψ are 1-periodic in x1}.

Theorem 4.6. The solutions of the microscopic problem cε converge as ε→ 0 to the solution (c1 − cD, c2 − cD) ∈ L2(0, T ;K),
∂tc1 ∈ L2((0, T )×Ω1), ∂tc2 ∈ L2((0, T )×Ω2), of the following macroscopic problem

|Y |∂tc1 −∇ · (Dhom∇c1)+
∫
R
f (t, y, x3, c1) dσy = 0 in (0, T )×Ω1,

∂tc2 −∇ · (D∇c2)+ u0 · ∇c2 = 0 in (0, T )×Ω2,
Dhom∇c1 · ν = D∇c2 · ν, c1 = c2 on (0, T )× Γ2,
c2 = cD on (0, T )× Γin,
(D∇c2 − u0c2) · ν = 0 on (0, T )× Γout,
∇c1 · ν = 0 on (0, T )× Γ3,1, ∇c2 · ν = 0 on (0, T )× Γ1 ∪ Γ3,2,
c1, c2 are 1− periodic in x1,
c1(0) = c0 inΩ1, c2(0) = c0 inΩ2,

where Dhomij =
∑2
k=1

∫
Y (Dij(t, x, y)+ Dik(t, x, y)∂yksj) dy and sj are the solutions of the cell problems

−∇y · (D̄∇ysj) =
2∑
k=1

∂ykDkj in Y , −D̄∇ysj · ν =
2∑
k=1

Dkjνk on R,

and D̄ = (Dij) for i, j = 1, 2.

Proof. First we choose φ ∈ C(0, T ; C∞0 (Ω2)) as a test function in the Eq. (4). The estimate ‖u
ε
− u0‖L2(Ω2) ≤ µε and the

convergence of cε imply∫ T

0

∫
Ω2

uεcε∇φ dxdt →
∫ T

0

∫
Ω2

u0c∇φ dxdt.

Due to the weak convergence of cε inΩ2 we obtain∫ T

0

∫
Ω2

ct φ dxdt +
∫ T

0

∫
Ω2

D∇c∇φ dxdt −
∫ T

0

∫
Ω2

u0c∇φ dxdt = 0.

To show the convergence in Ωε
1 we use the extension of c

ε from Ωε to Ω and the two-scale limit with a test function
φ = φ1 + εφ2, where φ1 ∈ C(0, T ; C∞0 (Ω1)), φ2 ∈ C(0, T ; C

∞

0 (Ω1); C
∞
per(Z)) and obtain∫ T

0

∫
Ω1

χε cεt (φ1 + εφ2)dx dt →
∫ T

0

∫
Ω1

|Y | ct φ1 dx dt,∫ T

0

∫
Ω1

χε uε cε∇(φ1 + εφ2)dx dt → 0,∫ T

0

∫
Ω1

χε Dε∇cε∇(φ1 + εφ2)dxdt →
∫ T

0

∫
Ω1

∫
Y
D (∇c +∇yc1)(∇φ1 +∇yφ2)dxdtdy.

Here χε is the characteristic function ofΩε
1 . Using strong convergence of c

ε and two-scale convergence of f ε(t, x, c) on Γε ,
and Lipschitz continuity of f , we obtain

ε

∫ T

0

∫
Γε

f ε(t, x, cε)(φ1 + εφ2)dσxdt = ε
∫ T

0

∫
Γε

(f ε(cε)− f ε(c))(φ1 + εφ2)dσxdt

+ ε

∫ T

0

∫
Γε

f ε(t, x, c)(φ1 + εφ2)dσxdt ≤ µ1‖cε − c‖L2((0,T )×Γ ε)‖φ‖L2((0,T )×Γ ε)

+ ε

∫ T

0

∫
Γε

f ε(t, x, c)(φ1 + εφ2)dσxdt →
∫ T

0

∫
Ω1

∫
R
f (t, y, x3, c) φ1 dσydxdt.
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Then, the limit equation reads∫ T

0

∫
Ω2

ctφdxdt +
∫ T

0

∫
Ω2

D∇c∇φdxdt −
∫ T

0

∫
Ω2

u0c∇φdxdt + |Y |
∫ T

0

∫
Ω1

ctφ1dxdt

+

∫ T

0

∫
Ω1

∫
Y
D(∇c +∇yc1)(∇φ1 +∇yφ2)dxdtdy = −

∫ T

0

∫
Ω1

∫
R
f (c)dσyφ1dxdt.

To determinate the unknown function c1 ∈ L2((0, T )×Ω1;H1per(Z)/R)we set in the last equation φ = 0, φ1 = 0 and obtain
for all φ2∫ T

0

∫
Ω1

∫
Y
D(t, y)(∇c(t, x)+∇yc1(t, x, y))∇yφ2(t, x, y) dx dt dy = 0.

From the structure of the equation follows that c1 depends linearly on∇xc and can be written in the form c1 =
∑3
j=1 sj∂xjc,

where sj are solutions of

−∇y(D̄∇ysj) =
2∑
k=1

∂ykDkj in Y , −D̄∇ysj · ν =
2∑
k=1

Dkjνk on R,

sj are periodic in Z . Then the macroscopic equation for c reads∫ T

0

∫
Ω2

ct ϕ dxdt +
∫ T

0

∫
Ω2

(D∇c − u0 c)∇ϕ dxdt + |Y |
∫ T

0

∫
Ω1

ct ϕ dxdt

+

∫ T

0

∫
Ω1

Dhom∇c∇ϕ dxdt = −
∫ T

0

∫
Ω1

∫
R
f (t, y, x3, c) dσy ϕ dxdt,

for ϕ ∈ L2(0, T ;K) and Dhomij =
∑2
k=1

∫
Y (Dij + Dik∂yksj) dy. We denote the concentration of nutrients in Ω1 and Ω2 by c1

and c2 respectively and obtain the continuity condition in the weak sense c1 = c2 and Dhom∇c1 · ν = D∇c2 · ν on Γ2. �
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Appendix

We recall the compactness results for two-scale convergence of functions dependent on parameters, [7], the proofs of
which are straight-forward modifications of the proofs for the two-scale convergence presented in [4,6,7,5].

Definition A.1. 1. A sequence {vε} ⊂ L2(Λ×Ω) converges two-scale to v ∈ L2(Λ×Ω×Z) iff for anyφ ∈ D(Λ×Ω, C∞per(Z))

lim
ε→0

∫
Λ

∫
Ω

vε(λ, x)φ
(
λ, x,

x
ε

)
dx =

∫
Λ

∫
Ω

∫
Z
v(λ, x, y)φ(λ, x, y) dxdy.

2. A sequence {vε} ⊂ L2(Λ× Γ ε) converges two-scale to v ∈ L2(Λ×Ω × Γ ) iff for ψ ∈ D(Λ×Ω, C∞per(Γ ))

lim
ε→0

ε

∫
Λ

∫
Γ ε
vε(λ, x)ψ

(
λ, x,

x
ε

)
dγx =

∫
Λ

∫
Ω

∫
Γ

v(λ, x, y)ψ(λ, x, y)dxdγy.

Theorem A.2 ([4,5]).

1. Let {vε} be a bounded sequence in L2(Λ,H1(Ω)), which converges weakly to a limit function v ∈ L2(Λ,H1(Ω)). Then there
exists v1 ∈ L2(Λ×Ω,H1per(Z)/R) such that, up to a subsequence, vε two-scale converges to v and ∇vε two-scale converges
to ∇v(λ, x)+∇yv1(λ, x, y).

2. Let {vε} and ε∇vε be bounded sequences in L2(Λ × Ω). Then there exists v0 ∈ L2(Λ × Ω,H1per(Z)/R) such that, up to a
subsequence, vε and ε∇vε two-scale converge to v0(λ, x, y) and ∇yv0(λ, x, y) respectively.

Theorem A.3 ([6,7]). From each bounded sequence {vε} in L2(Λ×Γ ε)we can extract a subsequence which two-scale converges
to v ∈ L2(Λ×Ω × Γ ).
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For very weak solution we seek a solution (w, π) ∈ L2(Ω2)× H−1(Ω2) of

−∆w +∇π = f , divw = 0 inΩ2,
w = ξ on Γ1 ∪ Γ2 ∪ Γ3,
w × ν = ζ1, π = πi on Γin,
w × ν = ζ2, π = πo on Γout,
w, π is 1-periodic in x1.

Let {φ, q} be given by

−∆φ +∇q = g, div φ = h inΩ2,
φ = 0 on Γ1 ∪ Γ2 ∪ Γ3 = Γ ,
φ × ν = 0, q = 0 on Γin ∪ Γout,
φ, q is 1-periodic in x1.

For g ∈ L2(Ω2)3, h ∈ H = {h ∈ H10 (Ω2),
∫
Ω2
h dx = 0} we have the solution φ ∈ H2(Ω2)3, q ∈ H1(Ω2). Now we test the

equations forw and π by φ and using
∫
Ω2
w∇q dx =

∫
Γ
qIνw dσ obtain∫

Ω2

f φ dx =
∫
Ω2

(−∆w +∇π)φ dx =
∫
Ω2

(−w∆φ + w∇q− π div φ) dx

+

∫
Γ

(∇φ − qI)νw dσ −
∫
Γin

(ζ1∇φν + πiφν) dσ −
∫
Γout

(ζ2∇φν + πoφν) dσ .

We consider the linear continuous form l : L2(Ω2)3 × H → R

l(g, h) = 〈f , φ〉 −
∫
Γ

(∇φ − qI)νξ dσ +
∫
Γin

(ζ1∇φν + φiφν) dσ +
∫
Γout

(ζ2∇φν + φoφν) dσ .

Definition A.4 ([21]). We define a pair (w, π) as a very weak solution if (w, π) ∈ L2(Ω2)3 × H∗ and∫
Ω2

wg dx− 〈π, h〉H∗,H = l(g, h) for all (g, h) ∈ L2(Ω2)3 × H.

Due to the linearity and continuity of l, the Riesz theorem implies

Proposition A.5 ([21]). There exists a unique very weak solution (w, π),

‖w‖L2(Ω2)3 ≤ C
(
‖f ‖L2(Ω2)3 + ‖ξ‖L2(Γ2)3 + ‖ζ1‖L2(Γin) + ‖ζ2‖L2(Γout) + ‖πi‖L2(Γin) + ‖πo‖L2(Γout)

)
.
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