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Mathematical model of a simplest gene regulatory network:
canonical Hesl GRN

Plant hormones: Modelling of Auxin signalling pathway

Intercellular transport of signalling molecules



The Cell (from Latin cella, meaning "small room") is the basic
structural, functional, and biological unit of all known living
organisms. Cells are the smallest unit of life that can replicate

independently, and are often called the "building blocks of life".
Wikipedia
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Cell signalling and Gene regulatory networks

Cell signalling: the ability of cells to perceive and correctly
respond to their microenvironment is the basis of development,
tissue repair, and immunity as well as normal tissue homeostasis.

Errors in cellular information processing are responsible for diseases
such as cancer, autoimmunity, abnormal growth in plants. By
understanding cell signalling, diseases may be treated effectively.

Signaling molecules interact with a target cell as a ligand to cell
surface receptors, and/or by entering into the cell through its

membrane or endocytosis for intracellular signaling.
Wikipedia

Gene regulatory networks are at the heart of intercellular signal
transduction and control many important cellular functions.



Modelling of Signaling Pathways
and Gene Regulatory network
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Modelling of signaling processes

>

Logical models: the state transition from time t to time t + 1
is defined for each x; by a Boolean function f

(t+ ) f(()) i:].,...,N, X:(Xl,...,XN)

Differential equations: using the Law of Mass Action
dx(t)
—= = F(t,x(t
) = F(tx(1)

Stochastic models: chemical master equation

M
= [a(x = v)P(x — v, t) — 3;(x)P(x, t)]

j=1
the probability of the system being in a particular state x over dt,
aj probability for a reaction to occur in the interval [t, t + dt).

Bayesian models is a probabilistic graphical model: to analyse
gene expresion data.



Gene

Regulatory Network

Gene regulatory network (GRN): collection of DNA segments
in a cell which interact with each other to govern the gene
expression levels of mMRNA and proteins

Hesl contributes to heterogeneous differentiation responses of
embryonic stem cells (nervous and digestive systems)

Hesl enhances the self-renewal and tumourigenicity of
stem-like cancer cells in colon cancer

Hesl can repress its own expression by directly binding to
N-box target sequences in its own promoter



Hesl gene expression
Negative feedback
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» transcription of Hesl mRNA by a transcription factor
» translation of Hesl protein from Hesl mRNA
» decay of Hesl mRNA and protein

— (m) — Hesl protein (p)



ODE model

Negative feedback
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ODE model - (m) — Hes1 protein (p)
Negative feedback dm
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ODE model

Notch and others
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ODE model
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Stability analysis for ODE

Steady state solutions (m*, p*), i.e. 47 =0, % =0,
G(m*ap*) = Oa m* = &p*v
p
F(m*, p*) =0, p*+(p*)"t = Gm%p choose p* >0

HpHm ’



Stability analysis for ODE

Steady state solutions (m*, p*), i.e. C:TT =0, & =0,

dt
G(m*ap*) =0, m* = &p*v
Qp
F(m*, p*) =0, p*+(p*)"t = Gmp choose p* >0
HpHm

Consider small perturbations of the steady state

m(t) = m* 4+ m(t),  p(t) = p* + p(t), with |||, [|p]l < 1
.
(TT = F(m" + i, p* + p)
dp ,



Stability analysis for ODE

Steady state solutions (m*, p*), i.e. 92 =0, % =0,

dt dt
G(m*, p*) =0, m* = Lepr,
Qp
F(m*,p*) =0, p* 4 (p)tt = w, choose p* >0
HpHm

Consider small perturbations of the steady state

m(t) =m"+m(t),  p(t)=p"+p(t), with [|ml], [|p]] < 1
dm . OF(m*,p*) .  OF(m*,p*) .
dp P oG(m*,p*) .  0G(m*, p*).

apply Taylor expansion about (m*, p*)



Stability analysis for

ODE

Steady state solutions (m*, p*), i.e. ‘ZT’;' =0, % =0,
* x\ * ,up *
G(m7p)_0a m =—p,
Qp
F(m*, p*) =0, P+ (p*) = w, choose p* >0
Hptm
Consider small perturbations of the steady state
m(t) =m" +m(t),  p(t)=p" + p(t), with [[m], [[5]] <1
dm OF(m*,p*) . OF(m*,p*) .
dp oG(m*,p*) . 90G(m*,p*).
priai om m op p+...
Linearised system
OF(m*,p*) OF(m*,p*)
d (m\ w oy [ kY Om op
i (5) =21 (3) 1= s ociers)
am op



Stability analysis for ODE

Small perturbations are solutions of the linear system
d (m
el =y m*7 *
o ( p) (m*, p*) (

m(t) = eMm, p(t) = ep, m, p € R,

Consider



Stability analysis for ODE

Small perturbations are solutions of the linear system

£(5)- (3

Consider

)—O and  det (J(m*, p*) — Al) = 0.

where « %\ _ [ MHp —OmTm
J(m,p)—(ap i >

with v, = —f'(p*) = h[p*]"~*/(1 + [p*]")? and s > 0.



Stability analysis for ODE

Small perturbations are solutions of the linear system
d (m m
— | . ] =J(m*, p") | .
dt <P) (.7 (P)

m(t) = eMm, p(t) = ep, m, pER, Mm#£0, p#£0

Consider

Then
o) = 1)

= 3

):0 and  det (J(m*, p*) — Al) = 0.

det (J(m*, p*) = M) = N + (ftm + 1o)X + (UmQpYm + fimftp) =0

1
)\1,2 = 5 |:_(Mm + Mp) + \/(,um + /~Lp)2 - 4(amap7m + ,um,up)

— Re(M12) <0 = (m*, p*)is stable.



Negative feedback
Notch and others
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DDE model - Monk (Current Biology 2003)
Negative feedback
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Adding delay produces oscillatory dynamics

dm(t) _ &m — Umm
s -1 pmm(t),  h>1
dZ—(tt) = apm(t —17p) — ppp(t)

m(t) = mo(t) te[—mm,0], p(t)=po(t) te[-7p,0]



DDE model - Monk (Current Blology 2003)

Negative feedback
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Adding delay produces oscillatory dynamics

dm(t) _ &m — Umm
= T p—1 pmm(t),  h>1
dZ—(tt) = apm(t —7p) — ppp(t)

m(t) = mo(t) te€[—mm,0], p(t)=po(t) te[-7p,0]



Stability analysis of delay differential equations
Small perturbations m(t) = m* + m(t), p(t) = p* + p(t):

d’%t) = Bt — ) — fim (1)
df/(tt) = apm(t—7p) — ppp(t)

where v, = —f'(p*) = h[p*]" /(L + [p*]")?,  m > 0.



Stability analysis of delay differential equations
Small perturbations m(t) = m* + m(t), p(t) = p* + p(t):

d’%t) = Bt — ) — fim (1)
df/(tt) = apm(t—7p) — ppp(t)

Consider m(t) = e*trir and p(t) = e’ p and obtain

_ _ _ —ATm
det < Mm_)\TA Tm&m € ) = 0
ape TP —Up — A

—

N+ (pm + Ep) A+ Lmitp + vmamape*” =0, T=Tm+Tp



Stability analysis of delay differential equations
Small perturbations m(t) = m* + m(t), p(t) = p* + p(t):

dﬁdﬂ'ii(rt) = _am’Ymﬁ(t - T’") o Mmfh(t)
dl::l(tt) = apr"r'](t — Tp) - /ipﬁ(t)

Consider m(t) = e and p(t) = e*'p and obtain
det —Hm — A —YmQm e ATm -0
ape T —pp — A
=
A2+ (m + o)A + tmftp + Vmozmozpe*’\T =0, T="Tm+Tp

For  vmamap > jimp,  there exist  wp >0 such that

A= tiwg single pair of pure imaginary eigenvalues

1
for 1= —[sin_1 (Mwo) +27Tj}, Jj=012...
wo OtpOlm"}/m



Stability analysis of delay differential equations
Small perturbations m(t) = m* + m(t), p(t) = p* + p(t):

dﬁdﬂ'ii(rt) = _am’Ymﬁ(t - T’") o Mmfh(t)
dl::l(tt) = apr"r'](t — Tp) - /ipﬁ(t)

Consider m(t) = e and p(t) = e*'p and obtain
det —HMm — A —YmQm e~ ATm -0
ape T —pp — A
=

A2+ (m + o)A + tmftp + Vmozmozpe*’\T =0, T="Tm+Tp

For  vmamap > jimp,  there exist  wp >0 such that

A= tiwg single pair of pure imaginary eigenvalues

m(t) = erm, p(t) = e p, e“°t = cos(wot) + isin(wot)



Stability analysis of delay differential equations
A2+ (m + 1p)A + fimptp + YmOmape ™ =0
Considering the eigenvalues A = A(7) as functions of 7 we have
d

dT(ReA)(Tj) >0, j=0,1,2,... = (m", p*) unstable for all 7 > 79



Stability analysis of delay differential equations
A2+ (m + 1p)A + fimptp + YmOmape ™ =0

Considering the eigenvalues A = A(7) as functions of 7 we have

d
E(RGA)(TJ') >0, j=0,1,2,... = (m", p*) unstable for all 7 > 79

Theorem (Hopf Bifurcation)
> (F, G) is continuously differentiable in (m, p) and 7.
> (m*(7), p*(7)) isolate stationary solution for 7 > 0

» for 7 = 7; there exists a simple pair of pure imaginary eigenvalues
A = tiwg with wg # 0

> forall ne€ Z\ {1,—1}, i nwy are not eigenvalue
> near 7; we have the eigenvalues A = r(7) %+ iw(7), with r and w are
continuous and r(7j) =0, w(7j) = wo
d
> transversality condition: . —(ReA)(7}) = (TJ) #0

Then the system has periodic solutions in a nelghborhood of 7,
bifurcating from the stationary solution.



Hesl gene expression oscillation

Negative feedback
Notch and others
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Interaction between cell nucleus and cell cytoplasm:
transcription (mRNA production) in nucleus and
translation (protein production) in cytoplasm



Model Schematic
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Mathematical Model GRN: spatial movement
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Mathematical Model GRN: spatial movement
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Mathematical Model GRN: spatial movement
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Mathematical Model GRN: spatial movement
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Numerical simulations for
D=3-10"%
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Numerical simulations for
D=3-100"and D=32-10"*
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Numerical simulations D =7.5-1073,
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Numerical simulations D=75-10"3, D=84.10"3
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Hopf Bifurcation for GRN

Eigenvalue problem
AE = Dy — pi + apf(p:(x. D)) 05, 5 in (0,1)

/\56 = Dﬁix - /-”36 + (ng( ) in (07 1)
+ zero-flux b.c.

For A € C such that Re(\) > —u or Zm(\) # 0:
m°(x) = am(M — Ao) ™" (F'(pL(x, D)) 5 (x) &, (x))
— d2 p* — *\ =€ ¢€ =
AT =D apamg () (M — Ao) L (FI(p2) P65, ) — 1P
p2(0) = 5(1) = 0.

dx?
where A = (D45 — p).

dx?

Theorem For & > 0 small there exist two critical values Df_ and
D3 . for which a Hopf bifurcation occurs in the canonical Hesl
GRN model.



A bit more complicated network: Auxin signalling

> Auxins belong to the most important plant hormones and play a
central role in growth and development regulation.
(direction of growth, changes in shoot and root branching and
changes in vascular differentiation).

> Transcription factor ARF (auxin response factor) activates Aux/IAA
gene and the transcription of Aux/IAA mRNA

> The accumulation of Aux/IAA protein stimulates the formation of
ARF:Aux/IAA protein complexes, which repress Aux/IAA genes and
inhibits the production of Aux/IAA mRNA.

> When the levels of Aux/IAA proteins fall, the concentration of free
ARFs increases, enhancing Aux/IAA transcription and translation.

» Auxin functions by mediating the activation of the Aux/IAA family
of genes by auxin mediating turnover of Aux/IAA proteins
(ubiquitination)

> The instability of Aux/IAA proteins is required for normal auxin
signalling.



Auxin signalling
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Middletona, King, Bennett, Owena, Bull. Math.Biol. 2010
Vernoux et al. Molecular Systems Biol. 2011



Auxin (A) binds to its receptor TIR1 (rf) forming Aux:TIR1 complex (rp)

Ba
Aux+ TIR1 = Aux:TIR1

YA



Auxin (A) binds to its receptor TIR1 (rf) forming Aux:TIR1 complex (rp)

Ba
Aux+ TIR1 = Aux:TIR1

VA
Aux:TIR1 (r,) targets Aux/IAA protein (p) by forming

Aux:TIRL:IAA (pp) whose dissociation results in the ubiquitin-tagged
protein Aux/IAA* (p,)

Br 5pb
Aux : TIR1 +IAA = Aux:TIR1:IAA — Aux:TIR1 +IAA*

Ir



Auxin (A) binds to its receptor TIR1 (rf) forming Aux:TIR1 complex (rp)

Ba
Aux+ TIR1 = Aux:TIR1

VA
Aux:TIR1 (r,) targets Aux/IAA protein (p) by forming

Aux:TIRL:IAA (pp) whose dissociation results in the ubiquitin-tagged
protein Aux/IAA* (p,)

51’ 5pb
Aux : TIR1 +IAA = Aux:TIR1:IAA — Aux:TIR1 +IAA*
Yr

Auxin synthesised and degrade at the constant rates a4 and pa

Qp Ha Hu
— Aux — 0, TAA* — @



Auxin (A) binds to its receptor TIR1 (rf) forming Aux:TIR1 complex (rp)

Ba
Aux+ TIR1 = Aux:TIR1

VA
Aux:TIR1 (r,) targets Aux/IAA protein (p) by forming

Aux:TIRL:IAA (pp) whose dissociation results in the ubiquitin-tagged
protein Aux/IAA* (p,)

51’ 5pb
Aux : TIR1 +IAA = Aux:TIR1:IAA — Aux:TIR1 +IAA*
Yr

Auxin synthesised and degrade at the constant rates a4 and pa

Qp Ha Hu
— Aux — 0, TAA* — @

ARF monomer (R) can homodimerise or bind Aux/IAA protein (p)

ﬂR 5p
ARF + ARF = ARF;, IAA + ARF = ARF :TAA

TR Vp



Auxin Signalling Network: Law of Mass Action

dA A re A I
E:OCA—/,LAA—BAArf‘I"YArb Aux 4+ TIR1 = Aux:TIR1
YA



Auxin Signalling Network: Law of Mass Action

dA A rf A I
d—:ozA—,uAA—BAArf+’yArb Aux + TIR1 = Aux:TIR1
t va
dr: Aux : TIRI + TAA
2 _B,A
dt BaArs +yarp B, N
dry = Aux:TIR1:TAA
E:BAArf*’YArb*ﬂrrprr(’YrﬂLﬁpb)Pb Yr
dpb /pr rp P

W =Brrpp— (7r + pr) Pb —  Aux:TIR1 + IAA*



Auxin Signalling Network: Law of Mass Action

dA A rf A I
d—:aA—,LLAA—ﬁAArf+’yArb Aux + TIR1 = Aux:TIR1
t 7
b p
d Aux : TIR1 + TAA
e _ —Ba Ars + yar
gt = ~PaAr o+ an N
drp, = Aux:TIR1:IAA
E:5AAff*’YArb*ﬂrerJr(’YmLﬁpb)Pb o
dpb ﬂpb r Pu
W =Brrpp— (7r + pr) Pb — Aux :bTIRl + TAA™
dm mRNA (m roduction by ARF, ARF
E8 — (R, Ry, R2) — fimm mRNA (m ) P ’ :
dt inhibition by ARF:IAA (R;)
dp
dr :Olpm—ﬁrbe‘F’Yer—ﬁpPR‘f"YpRp
Br
ARF + ARF = ARF»,
YR
Bp

TAA + ARF = ARF :TAA
L



Auxin Signalling Network: Law of Mass Action
dA
——=aa—paA—BaArrtyan

dt
d
g = —BaArs +yarp
dr
7: = BaArs —yars — Brrop+ (7 + Bpb)Pb
d
% =Brrp— (’Yr +/8pb)Pb
dm (R, Ry, Ro) — pimm mRNA (m ) production by ARF, ARF2
dt inhibition by ARF:IAA (R,)
d
7? =apm—=LBrrop+7po—BpP R+ Rp
dR . 2 BR
Gt = 2RREA 2R = Bpp R+ Ry | ARE | ARF — ARF,
dR, YR
g PR R, 8,
IAA + ARF = ARF :IAA

dR:
—2 =BrR?— R R -

dt



Auxin Signalling Network: Law of Mass Action

dA
E:OéA—MAA—ﬂAAFf—FVAfb
dr,
L= _8a Arf + yarp

dt
drp | dry | dy _ g

drb
m = BaArs—vars— Br o P+ (7 + Bpb)Pb g gk T g T
d,
% =Brrop— (v + Bob) Po
dﬂ — F(R, Ry, Rs) — ftmm mRNA (m ) production by ARF, ARF»
dt inhibition by ARF:IAA (R,)
d
CT? :O‘pm_ﬁrrbp'f")’rpb_ﬂppR'f"YpRp
dR
dr = —20r R? +29rR2 _ﬁpPR""VpRp
dR, dR dR, dR>
2 _ _ — 4+ —4+2—==0
dt FopR =R dt = dt dt
dR» 5
— = R —vr R:
g Br VR R2

where f(R, Ry, R2) = (m R+ 2 Bm Ra + ymR?) /(L + tim Rp + Cm P R)



Auxin Signalling Network
Assume that total concentrations of TIR1 (r¢) and ARF (T) are constant:

dA
dt
dl’f
dt
drb
dt
dm
dt
dp
dt
dR
dt
dR,
dt
dpu
dt

Po+re+ 1 =rrint, R+ Rp+ 2Ry = Rint.
= —PaArs+yarm+aa—paA,
= —BaArf +yarb
= BaArs—var—Brrop+ (v + Bob)(reint — b — )
= F(R, Ry, Rint) — ttm m,
=apm—LBrtop+ Y (trine — o — 1) — Bp PR+ 7y Rp,
= -26r R®+ YR(Rint — Ro — R) = Bo PR+ 7 Ry
=BppR="pRp

= /pr (rf,int — I — rf) — My Pu,

F(R, Rp, Rint) = (amR+5m(Rint - Rp_ R)+’7mR2)/(1+Kme+CmPR)



» Non-dimesionalization: rates of formation and dissociation of ARF,
and the effective rate of Aux/IAA translation (translation rate/
production of ubiquitin-tagged protein) are key parameters

» Long time behaviour: exists a single steady-state.

» Stability analysis: three parameter regimes
» mono-stable: steady-state is stable or it is unstable and there
exists a stable limit-cycle (slow formation and dissociation of
ARF; and large effective rate of translation)
» bi-stable: steady-state is stable and there exist a stable and an
unstable limit-cycles

0_;: [ARF-TAA]

08

0.7
206 Middletona, King,
§ 05 Bennett, Owena,
504 Bull.Math.Biol. 2010

0.3




Intercellular transport of signalling molecules

EXTRACELLULAR CYTOPLASM
FLUID
——Plasma membrane
)
y S o 4 l © Reception I l @ Transduction [
2 y : > 4
TR Activation
- - —> = of cellular
response
Relay in a signal

pathway

http://www.quia.com/jg/1225839list.html

Signalling molecules interact with a target cell

» as a ligand to cell surface receptors

» and/or by entering into the cell through its membrane or
endocytosis for intracellular signaling



Intercellular transport of signalling molecules

>
>
>
Intracellular
(cytoplasmic
e
Dockir roteins
>
J. Downward, Nature 2001
>
>

Consider signalling molecules
(ligands) / in the intercellular
space and receptors on the cell
membrane

Free and bound receptors
re and rp,

Cells produce new receptors rf
and signalling molecules (ligands)
/

Ligands / diffuse in the
intercellular space and bind to the
receptors on the membrane

Bound receptors r;, dissociate
back to free receptors and ligands

All the considered molecules
undergo natural decay



Mathematical model

» Diffusion, production and decay of signalling molecules
(ligands) in the intercellular space bound ecepors

0
51! =V (DY) +pill) =l

| density of ligands i rate of decay of ligands,
p; production of ligands, D  diffusion coefficient.



Mathematical model

» Diffusion, production and decay of signalling molecules
(ligands) in the intercellular space bound ecepors

0
51! =V (DY) +pill) =l

> Interaction between a signalling molecule L [
and a free receptor Rr results into a bound %t

receptor R A AR AR ABIAN

b
L+R = Ry

binding process is governed by the Law of Mass Action

| density of ligands i rate of decay of ligands,
p; production of ligands, D  diffusion coefficient.



Mathematical model

» Diffusion, production and decay of signalling molecules
(ligands) in the intercellular space bound ecepors

0
51! =V (DY) +pill) =l

0&' 03] B IREEO

> Interaction between a signalling molecule L [
and a free receptor Rr results into a bound @t

receptor R A AR AR ABIAN

b
L+R = Rp
d
binding process is governed by the Law of Mass Action
» Binding on the cell surfaces
DVI-v=—-blrr+dr on [

| density of ligands i rate of decay of ligands,
p; production of ligands, D  diffusion coefficient.



Mathematical modelling of signalling processes

» Reaction equations for the receptors on the cell surface I'

0
arf =—brel4+dr,— prrf onl, t>0
0
arb = brel—dry— uprp onl, t>0

bound receptors

with initial conditions

re(0,x) = rf int(x) onl
r6(0, x) = rpint(x) onTl

re, 1, density of free and bound receptors

1f, fp  rates of decay of free and bound receptors
d rate of dissociation of bound receptors

b rate of binding of ligands and free receptors




Cell to cell transport of plant hormones
Polar transport of auxin

» Auxin (IAA) is mostly produced in the
plant shoot and is transported polar from
cell to cell through the shoot and stem
towards the roots.

» Plant hormones (signalling molecules)
regulate plant growth, determine the
formation of flowers, stems, leaves, the
shedding of leaves, and the development
and ripening of fruit

» Aim: To determine the distribution and
the transport velocity of the auxin




rd
IAAH = IAA~ + HY

rr

Cross-Section of a Plant Cell

Auxin (IAA) is a weak acid which dissociates into ions e

Cytoplasm

Amyloplast

Mitochondrion

rq and r, are dissociation and recombination rates.
» IAAH predominates in cell wall due to acidic pH

» |AA~ predominates in cytoplasm due to neutral pH

» |AAH is uncharged and can diffuse through
membrane

» membrane is impermeable to IAA~ due to charge
> influx protein AUX1 transports IAA~ into cytoplasm

> efflux PIN proteins transport IAA~ out of cell

tonoplast

plasma membrane

Due to the negative charge, the electric potential differences across the
plasma membrane and tonoplast produce an additional flux of IAA™.

(membrane potential acts on changed IAA™: ca. —120 mV between cell wall

and cytoplasm and 50 mV between cytoplasm and vacuole).



Mathematical model

rd
IAAH = IAA~ + HF,

rr

» u the concentrations of the auxin ions TAA™

» v the concentrations of the protonated auxin TAAH



Mathematical model

rd
IAAH = IAA~ + HF,

rr

» u the concentrations of the auxin ions TAA™

» v the concentrations of the protonated auxin TAAH

Oru = rqv—reu

Opv = —rqv+rou



Mathematical model

rd
IAAH = IAA~ + HF,

rr
» u the concentrations of the auxin ions TAA™

» v the concentrations of the protonated auxin TAAH

Otu= V- (D, Vu) + rgv—rru
orv=V-(D,Vv) —rqv+rou

v

The mobility of the ions is given by the permeability P

v

¢ is the electric field, assume ¢ cell is independent of u
(concentration of other ions is much larger as of u).



Mathematical model

rd
IAAH = IAA~ + HF,

rr
» u the concentrations of the auxin ions TAA™

» v the concentrations of the protonated auxin TAAH

Oru=V-(D,Vu) =V -(Pdu) + r4yv—rru
orv=V-(D,Vv) —rqv+rou

v

The mobility of the ions is given by the permeability P

v

¢ is the electric field, assume ¢ cell is independent of u
(concentration of other ions is much larger as of u).

P ¢ u is the electric flux.

v

v

Initial and boundary conditions



Model parameters and scaling

» DVug =~ 16 ug in wall
~ 240 ug in cytoplasm
~ 10~%up in plasma membranes
» P(on ~ 0.3UO ~ 30U0
in plasma membrane.

tonoplast

» Reaction rates:
rg~510%h71 and r, ~5-10° ~ 5-10% h~ 1.

plasma membrane

Time scale in the model is the characteristic reaction time
the flux terms have to be scaled by ¢ = 1073.

ohu = eV-(DyVu)—eV-(Popu)+ Ryv— R u,
orv = ediv (D, Vv) —Ryv+Ru

where Ry=cry, R =cr,



Microscopic structure

tonoplast

plasma membrane

0.0016

in cell wall,

3.6-107'2 in plasma membrane,

0.024

in cytoplasm,

3.6-107* in tonoplast,

0.024

in vacuole

in cell wall,

in plasma membrane,

in cytoplasm, 10}

in tonoplast,

in vacuole

D,

0.0016 in cell wall,
2.1077 in plasma membrane,
= ¢ 0.024 in cytoplasm,
2-1077 in tonoplast,
0.024 in vacuole
0 in cell wall,
120-10® in plasma membrane,
0 in cytoplasm,
50-10° in tonoplast,
0 in vacuole




Homogenization




Homogenization

» The aim of homogenization is to give the macroscopic
properties by taking the properties of the microscopic structure
into account.

» To link macroscopic parameters with microscopic properties of
the system.

» Derivation of macroscopic models simplifies numerical
simulation.



Solve cell problems

and calculate effective coefficients using physiological data
> Y =(0,20pum) x (0,1001m)

> Cell wall and cytoplasm are 1um

> AUXL: {y € Y|ya=1,1<y; <19}um
with permeability 0.2cm h~!

> PIN: {y € Y|y =99,1<y; <19}um
with permeability 0.1 cmh™!.

100 pm

» Permeability of tonoplast transport protein: 0.2 cmh™1!

» Scalar diffusivity: cytoplasm and vacuole: D,, = 0.024 cm?s™1;

cell wall: D,,/15; membrane: 2-10~7 cm?s~! for IAAH and
3.6-10712cm?s7! for IAA~.

» Cell wall pH = 5.8, vacuole pH = 5.7 cytoplasm pH =7.6 =
Re = Ry 10PKa=PH" where Ry = 5-10° h~! = const.

» The constant approximation for the electric field:
membrane potential: —120mV ; tonoplast potential: 50mV



Numerical results: Auxin transport velocity
) ~  Solutions of the
' - " cell  problems:
: o (diffusion),

" Z,, (transport).

As 1.37 0(1071?) 103 A 2.85 o(10 10-3
D, \ 0O(107'?) 6.7 "D, \ 010 21.6 '

Viu = ( O(107%) ) cmh™ |V, = ( ((99((11%:171)) > cmh™

0.638
Vo = o(0) cmh™! Voo = 0(107%) cmh™!
= o@o) 7= L o107 '

Value V,, ~ 0.6 cm h~! near published experimental value.

(measurements of pulses of radioactivelly labeled auxin; 1.2.~ 1.5 cmh_l).



Conclusion

» Different modelling approaches can explain oscillatory
behaviour of gene regulatory networks with negative feedback

» Spatial models on the scale of a single cell are considered to
describe the intercellular transport of signalling molecules in a
plant tissue

Thank you very much for your attention
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