Refereed Articles:

  1. A. Veveris and M. Schmuck, Computational investigation of porous media phase field formulations: microscopic, effective macroscopic, and Langevin equations , Journal of Computational Physics?:?accepted (2017), HAL preprint.
  2. M. Schmuck, Upscaling of solid-electrolyte composite intercalation cathodes for energy storage systems: Homogenized composite cathode equations , Applied Mathematics Research eXpress ?:?accepted (2017), HAL preprint.
  3. M. Schmuck,   and S. Kalliadasis, Rate of convergence of general phase field equations in strongly heterogeneous media towards their homogenized limit , SIAM Journal on Applied Mathematics ?:?accepted (2017), pure preprint.
  4. M. Schmuck,   and S. Kalliadasis, General framework for adsorption processes on dynamic interfaces , J. Phys. A: Math. Theor. 49(12):125502 (2016), pdf.
  5. M. Schmuck,   and M.Z. Bazant, Homogenization of the Poisson-Nernst-Planck equations for ion transport in charged porous media , SIAM J. Appl. Math. 75(3):1369-1401 (2015), pdf.
  6. M. Schmuck, Heterogeneous hard-sphere interactions for equilibrium transport processes beyond perforated domain formulations , Appl. Math. Lett. 49:78-83 (2015), pdf.
  7. M. Schmuck,   and P. Berg, Effective macroscopic equations for species transport and reactions in porous catalyst layers. , J. Electrochem. Soc. 161(8):E3323-E3327 (2014), pdf.
  8. M. Schmuck,   G. A. Pavliotis, and S. Kalliadasis, Effective macroscopic interfacial transport equations in strongly heterogeneous environments for general homogeneous free energies. , Appl. Math. Lett 35:12-17 (2014), pdf.
  9. M. Schmuck, M. Pradas, G. A. Pavliotis, and S. Kalliadasis, Derivation of effective macroscopic Stokes-Cahn-Hilliard equations for periodic immiscible flows in porous media , Nonlinearity 26:3259-3277 (2013), pdf.
  10. M. Schmuck, M. Pradas, G. A. Pavliotis, and S. Kalliadasis, A new mode reduction strategy for the generalized Kuramoto-Sivashinsky equation , IMA J. Appl. Math. ?:? accepted (2013), pdf.
  11. M. Schmuck, M. Pradas, S. Kalliadasis, and G. A. Pavliotis, A new stochastic mode reduction strategy for dissipative systems, Phys. Rev. Lett. 110:244101 (2013), pdf.
  12. M. Schmuck, A new upscaled Poisson-Nernst-Planck system for strongly oscillating potentials, J. Math. Phys. 54:021504 (2013), pdf.
  13. M. Schmuck and P. Berg, Homogenization of a catalyst layer model for periodically distributed pore geometries in PEM fuel cells, Appl. Math. Res. Express. 2013(1):57-78 (2013), pdf.
  14. M. Schmuck, M. Pradas, G. A. Pavliotis, and S. Kalliadasis, Upscaled phase-field models for interfacial dynamics in strongly heterogeneous domains, Proc. R. Soc. A 468:3705-3724 (2012), pdf.
  15. M. Schmuck, First error bounds for the porous media approximation of the Poisson-Nernst-Planck equations, Z. angew. Math. Mech. 92:304-319 (2012), pdf.
  16. M. Schmuck, Modeling and deriving porous media Stokes-Poisson-Nernst-Planck equations by a multi-scale approach, Commun. Math. Sci. 9(3):685-710 (2011), pdf.
  17. A. Prohl and M. Schmuck, Convergent finite element discretizations of the Navier-Stokes-Nernst-Planck-Poisson system, ESAIM, Math. Model. Numer. Anal. 44(3):531-571 (2010), pdf.
  18. A. Prohl, and M. Schmuck, Convergent discretizations for the Nernst-Planck-Poisson system, Num. Math. 111 (4):591-630 (2009), pdf.
  19. M. Schmuck, Analysis of the Navier-Stokes-Nernst-Planck-Poisson system, Math. Mod. Meth. Appl. S. 19(6):993-1015 (2009), pdf.

Books and electronic publications:

M. Schmuck, Modeling, analysis, and numerics in electrohydrodynamics, PhD thesis (2008).
Quotable link:

Symposia and proceedings:

M. Schmuck, G. A. Pavliotis, and S. Kalliadasis Effective macroscopic Stokes-Cahn-Hilliard equations for periodic immiscible flows in porous media, Springer Proceedings in Complexity - Proceedings of the European Conference on Complex Systems 2012 (2013), pdf.

Preprints submitted and in preparation:

  1. M. Schmuck and M. Z. Bazant, Homogenization of the Stokes-Poisson-Nernst-Planck equations for ion transport in charged porous media,, submitted.
  2. M. Schmuck and S. Kalliadasis, Rate of Convergence of General Phase Field Equations in Strongly Heterogeneous Media towards their Homogenized Limit, to be submitted, 2016.

Novel findings/results: