Publications

Refereed Articles:

  1. A. Veveris and M. Schmuck, Computational investigation of porous media phase field formulations: microscopic, effective macroscopic, and Langevin equations , Journal of Computational Physics?:?accepted (2017), HAL preprint.
  2. M. Schmuck, Upscaling of solid-electrolyte composite intercalation cathodes for energy storage systems: Homogenized composite cathode equations , Applied Mathematics Research eXpress ?:?accepted (2017), HAL preprint.
  3. M. Schmuck,   and S. Kalliadasis, Rate of convergence of general phase field equations in strongly heterogeneous media towards their homogenized limit , SIAM Journal on Applied Mathematics ?:?accepted (2017), pure preprint.
  4. M. Schmuck,   and S. Kalliadasis, General framework for adsorption processes on dynamic interfaces , J. Phys. A: Math. Theor. 49(12):125502 (2016), pdf.
  5. M. Schmuck,   and M.Z. Bazant, Homogenization of the Poisson-Nernst-Planck equations for ion transport in charged porous media , SIAM J. Appl. Math. 75(3):1369-1401 (2015), pdf.
  6. M. Schmuck, Heterogeneous hard-sphere interactions for equilibrium transport processes beyond perforated domain formulations , Appl. Math. Lett. 49:78-83 (2015), pdf.
  7. M. Schmuck,   and P. Berg, Effective macroscopic equations for species transport and reactions in porous catalyst layers. , J. Electrochem. Soc. 161(8):E3323-E3327 (2014), pdf.
  8. M. Schmuck,   G. A. Pavliotis, and S. Kalliadasis, Effective macroscopic interfacial transport equations in strongly heterogeneous environments for general homogeneous free energies. , Appl. Math. Lett 35:12-17 (2014), pdf.
  9. M. Schmuck, M. Pradas, G. A. Pavliotis, and S. Kalliadasis, Derivation of effective macroscopic Stokes-Cahn-Hilliard equations for periodic immiscible flows in porous media , Nonlinearity 26:3259-3277 (2013), pdf.
  10. M. Schmuck, M. Pradas, G. A. Pavliotis, and S. Kalliadasis, A new mode reduction strategy for the generalized Kuramoto-Sivashinsky equation , IMA J. Appl. Math. ?:? accepted (2013), pdf.
  11. M. Schmuck, M. Pradas, S. Kalliadasis, and G. A. Pavliotis, A new stochastic mode reduction strategy for dissipative systems, Phys. Rev. Lett. 110:244101 (2013), pdf.
  12. M. Schmuck, A new upscaled Poisson-Nernst-Planck system for strongly oscillating potentials, J. Math. Phys. 54:021504 (2013), pdf.
  13. M. Schmuck and P. Berg, Homogenization of a catalyst layer model for periodically distributed pore geometries in PEM fuel cells, Appl. Math. Res. Express. 2013(1):57-78 (2013), pdf.
  14. M. Schmuck, M. Pradas, G. A. Pavliotis, and S. Kalliadasis, Upscaled phase-field models for interfacial dynamics in strongly heterogeneous domains, Proc. R. Soc. A 468:3705-3724 (2012), pdf.
  15. M. Schmuck, First error bounds for the porous media approximation of the Poisson-Nernst-Planck equations, Z. angew. Math. Mech. 92:304-319 (2012), pdf.
  16. M. Schmuck, Modeling and deriving porous media Stokes-Poisson-Nernst-Planck equations by a multi-scale approach, Commun. Math. Sci. 9(3):685-710 (2011), pdf.
  17. A. Prohl and M. Schmuck, Convergent finite element discretizations of the Navier-Stokes-Nernst-Planck-Poisson system, ESAIM, Math. Model. Numer. Anal. 44(3):531-571 (2010), pdf.
  18. A. Prohl, and M. Schmuck, Convergent discretizations for the Nernst-Planck-Poisson system, Num. Math. 111 (4):591-630 (2009), pdf.
  19. M. Schmuck, Analysis of the Navier-Stokes-Nernst-Planck-Poisson system, Math. Mod. Meth. Appl. S. 19(6):993-1015 (2009), pdf.

Books and electronic publications:

M. Schmuck, Modeling, analysis, and numerics in electrohydrodynamics, PhD thesis (2008).
Quotable link: http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-36306.

Symposia and proceedings:

M. Schmuck, G. A. Pavliotis, and S. Kalliadasis Effective macroscopic Stokes-Cahn-Hilliard equations for periodic immiscible flows in porous media, Springer Proceedings in Complexity - Proceedings of the European Conference on Complex Systems 2012 (2013), pdf.


Preprints submitted and in preparation:

  1. M. Schmuck and M. Z. Bazant, Homogenization of the Stokes-Poisson-Nernst-Planck equations for ion transport in charged porous media, http://arxiv.org/abs/1202.1916arXiv:1202.1916, submitted.
  2. M. Schmuck and S. Kalliadasis, Rate of Convergence of General Phase Field Equations in Strongly Heterogeneous Media towards their Homogenized Limit, to be submitted, 2016.


Novel findings/results: