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Abstract—Few machine learning applications applied to the
domain of programming languages make use of transfer learning.
It has been shown that in other domains, such as natural lan-
guage processing, that transfer learning improves performance
on various tasks and leads to faster convergence. This paper
investigates the use of transfer learning on machine learning
models for programming languages - focusing on two tasks:
method name prediction and code retrieval. We find that, for
these tasks, transfer learning provides improved performance,
as it does to natural languages. We also find that these models
can be pre-trained on programming languages that are different
from the downstream task language and that even pre-training
models on English language data is sufficient to provide similar
performance as pre-training on programming languages. We
believe this is because these models ignore syntax and instead look
for semantic similarity between the named variables in source
code.

Index Terms—machine learning, neural networks, clustering,
transfer learning

I. INTRODUCTION

The aim of transfer learning is to improve the performance
on task Ti by using a model that has been first trained on
task Tj , i.e. the model has been pre-trained on task Tj . For
example, a model that is first trained to predict a missing word
within a sentence is then trained to predict the sentiment of a
sentence. Pre-training and using pre-trained machine learning
models is commonly used in natural language processing
(NLP). Traditionally transfer learning in NLP only pre-trained
the embedding layers, those that transformed words into
vectors, using methods such as word2vec [1, 2], GloVe [3]
or a language model.

Recently the NLP field has moved on to pre-training all
layers within a model and using a task specific ”head” that
contains the only parameters that which not pre-trained. Ex-
amples of this approach are: ULMFiT [4], ELMo [5] and
BERT [6]. The use of these pre-trained models have been
shown to achieve state-of-the-art results in NLP tasks such
as text classification, question answering and natural language
inference.

There have been advances in applying machine learning to
modelling programming languages, specifically deep learning
using neural networks. Common tasks include method name
prediction [7, 8, 9] and code retrieval from natural language
queries [10].
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Pre-training models to be used for transfer learning requires
a substantial amount of training data. For example, BERT [6]
was trained on a dataset containing billions of words. There is
similar data available for programming languages, e.g. open
source repositories on websites such as GitHub, which can
be used to take advantage of pre-training and transfer learning
techniques. However, there has been little effort in this domain.

In this paper, we explore transfer learning on programming
languages. We test the transfer learning capabilities in two
common tasks in the programming language domain: code
retrieval and method name prediction. We pre-train our models
on datasets with different characteristics: one that is made
solely of the downstream task language, one that contains
data in the downstream task language and other program-
ming languages, a dataset of programming languages that
does not contain the downstream task language and also, a
dataset that does not containing any programming languages
at all. We show that transfer learning provides performance
improvements on tasks in programming languages. Our results
using models pre-trained on the different datasets suggest that
semantic similarity between the variables and method names
are more important than the source code syntax for these tasks.

Our contributions are: 1) We propose a method for perform-
ing transfer learning in the domain of programming languages.
2) We show that transfer learning improves performance across
the two tasks of code retrieval and method name prediction. 3)
We show that the programming language of the pre-training
dataset does not have to match that of the downstream task
language. 4) We show that the pre-training dataset English
language data provides comparable results to pre-trained on
programming languages data.

As far as the authors are aware, this is the first study into
the use of pre-training on code which investigates the use
of datasets containing data that does not match that of the
downstream task, and also datasets which do not contain data
in the downstream task language.

II. RELATED WORK

A. Transfer Learning

For transfer learning, the traditional methods, such as
word2vec [1, 2] and GloVe [3] are only able to pre-train the
embedding layers within a model. These methods have been
succeeded by recent research on contextual embeddings using
language models, such as ULMFiT [4], ELMO [5] and BERT
[6] which have shown to provide state-of-the-art performance



TABLE I
CODESEARCHNET CORPUS STATISTICS

Language Number of Examples

Go 347 789
Java 542 991
JavaScript 157 988
PHP 717 313
Python 503 502
Ruby 57 393

Total 2 326 976

in many NLP tasks, but have not yet been widely applied to
programming languages.

B. Machine Learning on Source Code

The use of machine learning on source code has received
an increased amount of interest recently [11]. On tasks such
as code retrieval [10], method name prediction [8, 9, 7],
generating natural language from source code or vice versa
[12, 13] and correcting errors in code [14].

C. Pre-training on Source Code

There has been little work on pre-training for source code.
Chen and Monperrus [15] have performed a literature study.
Wainakh et al. have evaluated [16] representations learned
from source code. Research that uses embeddings pre-trained
on source code which are then applied to downstream tasks
is limited. Two examples are NL2Type [17], which predicts
types for JavaScript functions and DeepBugs [18], which
detects certain classes of bugs within code. Both of these
works only use the word2vec algorithm for pre-training the
embeddings and do not perform transfer learning on separate
datasets. Recently Feng et al. [19] introduced CodeBERT,
which pretrains a Transformer model for the code retrieval
task, but does not perform experiments on the scenario where
there is a mismatch between pretraining and downstream task
languages.

III. TASKS

We perform two tasks: code retrieval and method name
prediction. Both tasks use the CODESEARCHNET CORPUS 1

[10], statistics for which are shown in table I. This corpus con-
tains 2 million methods and their associated documentation,
represented as a natural language query. The dataset contains
6 programming languages: Go, Java, JavaScript, PHP, Python
and Ruby. We evaluate both tasks only on the Java examples
within the dataset.

A. Code Retrieval

The code retrieval task is to accurately pair each method,
ci, with query, di, where both the method and query are a
sequence of tokens. This is done by encoding both the code
and query tokens into a high-dimensional representation and
then measuring the distance between these representations.

1https://github.com/github/CodeSearchNet

The goal is to have f(ci) ≈ g(di) and f(ci) 6= g(dj) for
i 6= j, where f and g represent the code and query encoders,
respectively. Performance is measured in MRR (Mean Recip-
rocal Rank) as in [10], measured between 0 and 1.

B. Method Name Prediction

The method name prediction task is to predict the method
name, ni given the method body, bi. The method body and
names are a sequence of tokens, where the method name has
been split into sub-tokens. Wherever the method name appears
in the method body it has been replaced by a <blank>
token. The model takes the method body as input and outputs
the method name sub-tokens, one at a time. Performance is
measured by F1 score as in [9], measured between 0 and 1.

IV. METHODOLOGY

A. Models

For both tasks we use both the Transformer [20] and neural
bag-of-words (NBOW) models. The Transformer uses multi-
head self-attention mechanisms and learns to attend over the
relevant tokens within the input sequence to produce a final
output representation for each token. We chose this model
for two reasons: it provided the best results, on average,
over the 6 programming languages in the CODESEARCHNET
CORPUS, and BERT [6], a variant of the Transformer, is
commonly used for state-of-the-art NLP tasks, especially when
pre-trained to be used for transfer learning. We use the default
hyper-parameters from the Transformer model provided for the
CODESEARCHNET CORPUS. The NBOW model is used as a
baseline and has a single embedding layer which embeds the
sequence of input tokens into a sequence of vectors.

For both tasks, only the task-specific head of the model
is changed. In the code retrieval task the head performs a
weighted sum over the outputs of the model, as in [10], where
the weights are learned by the head itself. For the method name
prediction task, the head is a gated recurrent unit (GRU) [21],
similar to the architectures used in [9] and [7], which uses
a weighted sum over the outputs of the model as its initial
hidden state.

For comparison we train both models without any transfer
learning, i.e. it is randomly initialized.

We pre-train the models as masked language models, fol-
lowing [6], with an affine layer head used to predict the
masked token. They are trained until convergence, i.e. until
the validation loss stops decreasing. For the code retrieval
task, only the code encoder is pre-trained, the query encoder
is learned from scratch every time.

To perform transfer learning, we take the pre-trained model,
replace its head with the task-specific head and fine-tune it on
the desired task. Again, it is trained until convergence. Each
experiment is ran 5 times with different random seeds, the
results of which are averaged together.

B. Datasets

We pre-train the model on 4 different datasets: Java, 6L,
5L and English. Java is only the Java code within the



Fig. 1. Test MRR on code retrieval task for the Transformer (top) and NBOW
(bottom) models.

TABLE II
TEST MRR ON CODE RETRIEVAL TASK FOR THE TRANSFORMER (LEFT)

AND NBOW (RIGHT) MODELS.

Initialization MRR

Random 0.6069
Java 0.6849
6L 0.7068
5L 0.6967
English 0.6789

Initialization MRR

Random 0.5191
Java 0.5598
6L 0.5721
5L 0.5643
English 0.5548

CODESEARCHNET CORPUS, and is the same data our model
will be fine-tuned on for each task, i.e. first the Transformer
is pre-trained as a masked language model and then trained
on the same data for the desired task.
6L is comprised of all 6 languages in the CODESEARCH-

NET CORPUS. 5L is made up of 5 languages from the
CODESEARCHNET CORPUS: Go, JavaScript, PHP, Python and
Ruby. It does not contain any Java code.

The English data is the WikiText-2 dataset [22], a col-
lection of 600 English Wikipedia articles, consisting of 2

Fig. 2. Test F1 score on method name prediction task for the Transformer
(top) and NBOW (bottom) models.

TABLE III
TEST F1 SCORE ON METHOD NAME PREDICTION TASK FOR THE

TRANSFORMER (LEFT) AND NBOW (RIGHT) MODELS.

Initialization F1

Random 0.4114
Java 0.4895
6L 0.5106
5L 0.5022
English 0.4796

Initialization F1

Random 0.2844
Java 0.3579
6L 0.3815
5L 0.3703
English 0.3511

million tokens. Each dataset is formed into a train/valid/test
proportional split of 80-10-10.

V. RESULTS

The test results for the code retrieval and method name
prediction tasks are shown in tables II and III, respectively.
The training curves for the code retrieval and method name
prediction tasks are shown in figures 1 and 2.

For the code retrieval task, all 4 forms of pre-training
achieve at least a relative 12% performance increase for the



Fig. 3. Two example functions in Java and their Python equivalents

Transformer model and 7% for the NBOW model. The 6L
data provides the best performance improvement for each
model, 16% and 10% for the Transformer and NBOW models,
respectively.

For the method name prediction task, again, all 4 forms
on pre-training provide an increase in performance over the
initialized parameters, with at least 16% relative improvement
for the Transformer and 23% for the NBOW model. Again,
the 6L data provides the best performance increase, 24% and
34% for the Transformer and NBOW models.

VI. DISCUSSION

A. Code Retrieval

Intuitively, the datasets that contain Java code, Java and
6L, should give the best results. This is because they have
been pre-trained on examples in the same language as the
downstream task. However, the results for the code retrieval
task show this is not the case, and that pre-training on data
without any Java code, and even pre-training on data that is
not in a programming language, give comparable results.

One potential reason for this is that the code retrieval task
does not actually use programming language related tokens
within the function. Consider the 2 Java methods in figure 3.
For the function getSurfaceArea a fitting query would be
”a method that calculates surface area”, similarly the function
getAspectRatio would match with the query ”a method
that calculates aspect ratio”. The semantic similarity between
the tokens in the function and query give a strong indication
about how well they match.

As these models only need to focus on the semantic similar-
ity between named variables and the query, the programming
language related tokens, such as the type definitions and
semicolons can virtually be ignored for this task. This implies
that the presence of semantically sensible method and variable
names, which match those in the query, are more important.

Thus, the reasons why the 6L, 5L and English datasets
provide a performance increase is that they contain more
examples of the context in which tokens appear. This increased
number of contexts allows the model learn more examples
of semantic similarity between tokens and then transfer this
knowledge when the model is being fine-tuned.

B. Method Name Prediction

Predicting the method name from the method body may
also largely rely on semantic similarity between tokens in the
method name and the variable names in the method body.
Models can learn to predict the method name largely based
on using the method variables that have been given sensible
semantic names, ignoring the programming language syntax.

Again, looking at the examples of figure 3, the model has to
learn that pi and radius relate to surface area and that height
and width are related to aspect ratio. Thus, the code specific
tokens, such as the braces and semicolons, are seemingly
irrelevant, which makes the Python functions shown in figure
3 identical to the Java functions.

This artifact of mainly needing to learn semantic similarity
would again explain why the 6L, 5L and English datasets
give a performance increase over the Java dataset. The
masked language model pre-training learns the context of
tokens, either within programming language functions or hu-
man language sentences. Knowing that the concept of surface
area appears in nearby contexts to pi and radius is useful in
the downstream task of predicting a method name from the
method body.

This could also explain why the model pre-trained on the
Java data did not manage to provide a larger improvement
increase than the model pre-trained on the 6L data - the model
was over-fitting to contexts within the Java language examples.

C. Further Discussion

A quick experiment carried to test our hypothesis about
code tokens being unnecessary was to train the model for each
task with randomly initialized embeddings on the Java dataset
with all of the code specific tokens removed. Concretely, we
removed all type declarations, semicolons and braces. We
carried out this experiment for both of the tasks described
in this paper and this achieved comparable performance to
the randomly initialized embeddings without the code specific
tokens removed.

These experiments show similar findings to Hindle et al.
[23]. The computer that will run the code does not need to
understand the semantic meaning of a method or variable
name, programs are written by humans to be understood by
humans. Naming variables inside methods with semantically
relevant names allows humans to understand the method’s
functionality easier. As long as humans continue to write
code, these patterns can be learned and exploited by machine
learning models to achieve beneficial results.

VII. LIMITATIONS

Although that we have shown that machine learning models
for code should be pre-trained, we have only focused on two
models, the Transformer and NBOW, and a single method of
pre-training, as a masked language model. The Transformer
model provides state-of-the-art transfer learning results for
natural languages, but there is no guarantee that is also true of
programming languages. Further work would perform transfer
learning with different models and methods, comparing how



each improves performance, as well as potentially inventing a
novel model or method of pre-training specifically for source
code.

Our experiments are also performed over a relatively small
dataset of 2 million functions, whereas models such as BERT
[6] are trained over billions of words. As the largest dataset,
6L in our experiments generally provided the best performance
improvements, we hypothesise that an even bigger dataset
to pre-train on would improve this further. However, these
datasets need to be of acceptable quality, containing many
functions with variables that have names which are semanti-
cally relevant to their method names in order to learn semantic
similarity.

We have also only experimented on two tasks within the
machine learning for programming languages domain. Another
common task not explored in this work is generating natural
language from source code and generating source code from
natural language.

We have also only focused on improvement in quantitative
metrics and would be interested to see how much these
translate into qualitative improvements by the use of human
graders on the outputs of the models for each task.

This work also only focuses on code represented as a
sequence of tokens, and not as a tree or graph like in [24,
8, 9, 25]. These models, when compared against token based
representation models, usually achieve a higher performance,
and have shown to give improved results when pre-trained
[26, 27]. However, different programming languages have their
own unique abstract syntax tree structure.

VIII. CONCLUSIONS

We have shown that applying transfer learning in the
programming language domain does provide performance im-
provements as it does to natural languages. This is true for the
two tasks explored in this paper, code retrieval and method
name prediction.

We show that a range of datasets can be used for transfer
learning in this domain. The dataset can be made of data
only in the downstream task language, a dataset containing
multiple programming languages - even if it does not contain
the downstream task language and when the dataset is solely
made up of languages from a different domain, namely natural
language. This is due to both tasks only needing to learn the
semantic relationships tokens.
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