Biologically Inspired Computation F21BC2

Artificial Neural Networks

Nick Taylor Room EM 1.62 Email: N.K.Taylor@hw.ac.uk

Computational Neuroscience

Computational neuroscience is characterised by its focus on understanding the nervous system as a computational device rather than by a particular experimental technique.

Experimentation and Modelling

- Neuronal Networks
- Sensory Systems
- Motor Systems
- Cerebral Cortex

Two Disciplines

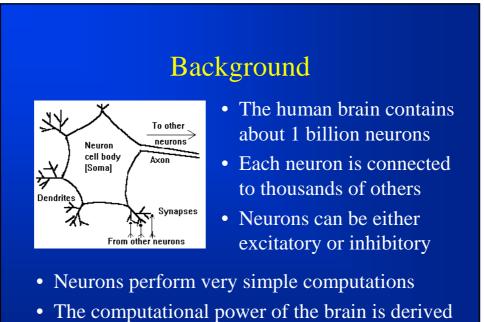
- Neurophysiology
 - Province of Biological Neuronal Network (BNN) Experimenters
- Connectionism
 - Province of Artificial Neural Network (ANN) Modellers

Differing Perspectives

- BNN Experimenters' agenda
 - Understanding
 - Neurogenesis; Neurotransmitters; Plasticity
 - Pathology
 - Neuronal dysfunction; Diagnosis; Treatments
- ANN Modellers' agenda
 - Performance
 - Training/execution speeds; Reliability; Flexibility
 - Applicability
 - Architectures; Complexity; Fault tolerance

Neurophysiology

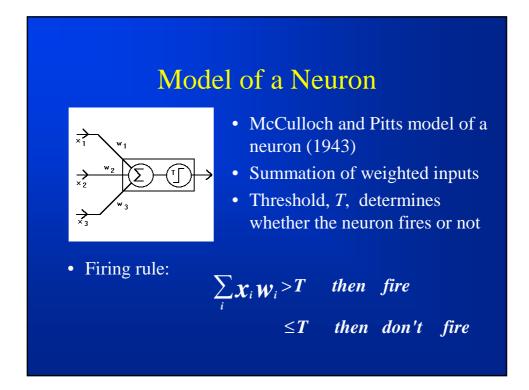
- Background
- Axons, synapses & neurons
- Learning & synaptic plasticity
- Problems
- Summary



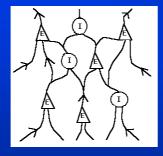
from the complexity of the connections

Axons, Synapses and Neurons

- The primary mechanism for information transmission in the nervous system is the **axon**
- An axon relays all-or-nothing (binary) impulses
- Signal strength is determined from the frequency of the impulses
- An axon signal eventually arrives at a synapse
- A synapse may either attenuate or amplify the signal whilst transmitting it to a neuron
- A neuron accumulates the modified signals and produces an impulse on its own axon if the total synaptic input strength is sufficient



Assemblies of Neurons



- Modifications to neuron assemblies can only be achieved by adjusting the attenuation or amplification which is applied at the synapses
- Hebb Rule (1949) [after James (1890!)]
 - If a particular input is always active when a neuron fires then the weight on that input should be increased
- Learning is achieved through synaptic plasticity

Learning & Synaptic Plasticity I

- Long-Term Potentiation (LTP)
 - Hebbian increases in synaptic efficacy (amplifications) have been recorded on
 - Active excitatory afferents to depolarised (firing) neurons
- Long-Term Depression (LTD)
 - Decreases in synaptic efficacy (attenuations) have been recorded on
 - Inactive excitatory afferents to depolarised (firing) neurons
 - Active excitatory afferents to hyperpolarised (non-firing) neurons
 - Active inhibitory afferents to depolarised (firing) neurons

Learning & Synaptic Plasticity II

- Nitric Oxide
 - Post-synaptic messenger discovered in 1990
 - Released by depolarised (firing) neurons
 - Can affect all active afferents in a local volume
- Consequences
 - NO makes it possible for one or more firing neurons to increase the synaptic efficacy of nearby neurons even if those nearby neurons aren't firing
 - NO can boot-strap synaptic efficacies which have dropped beyond redemption back to viability

Problems

- Hebbian learning paradigm inadequate
- Scant information on plasticity of inhibitory synapses
- Little known about the implications of the NO discovery for more global forms of plasticity
- Frequency-based models and analyses practically non-existent
- Behaviour of populations of neurons very complex and difficult to investigate

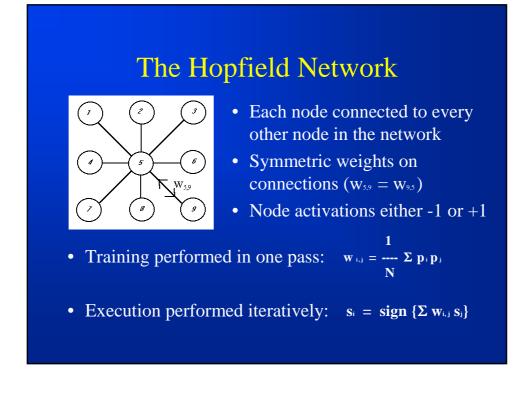
Neurophysiology Summary

- Much is already known
 Enough to build models
- Neurophysiological correlates for many computational requirements have been found – LTP, LTD, NO
- Much is still unknown
 Enough to severely restrict the models
- NO research is still in its infancy
 Wider implications yet to be investigated

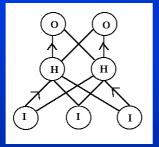
- Background
- Architectures
- Applications
- Problems
- Summary

Background

- Artificial Neural Networks (ANNs) are inspired, but not constrained, by biological neuronal networks
- Two very commonly used architectures
 - The Hopfield Network
 - Single layer, total connectivity within layer, auto-associative
 - The Multi-Layer Perceptron
 - Multiple layer, total connectivity between adjacent layers, no connectivity within layers, hetero-associative



The Multi-Layer Perceptron



- Each node connected to every node in adjacent layers
- Connections feed forward from input nodes (I), through hidden nodes (H) to output nodes (O)
- Training performed iteratively: $\Delta \mathbf{w}_{j,i} = \mathbf{\eta} \, \mathbf{\delta}_j \, \mathbf{s}_i$
- Execution performed in one pass: $\mathbf{s}_i = \mathbf{f} (\Sigma \mathbf{w}_{i,j} \mathbf{s}_j)$

Hopfield Applications

- Content Addressable Memory
 - Partial patterns can be completed to reproduce previously learnt patterns in their entirety
 - Partially incorrect patterns are simply partial patterns
- Optimisation
 - Learnt patterns are simply attractors minima of some energy function defined in terms of the w_{i,j} and s_i variables
 - Using the objective function in an optimisation problem as the energy function, with suitably defined weights and activation equations, a Hopfield network can find minima of the objective function

MLP Applications

• Classification/Mapping

 Kolmogorov's Mapping Neural Network Existence Theorem (Hecht-Nielsen)

Any continuous function, $f : [0,1]^n \to \Re^m$, can be implemented exactly by a three-layer MLP having n input units, (2n+1) hidden units and m outputs.

- Applications are legion
 - Classification into categories by attribute values
 - Character recognition
 - Speech synthesis (NETtalk)
 - Vehicle navigation (ALVINN)

Problems

- Local minima
 - Hopfield: Linear combinations of learnt patterns or optimal solutions become attractors
 - MLP: Gradient descent training is the inverse of Hill-climbing search and is just as susceptible to local minima as the latter is to local maxima
- Limited storage capacity (Hopfield)
 - Less than N/ln(N) patterns can be memorised safely
- Over-training (MLP)
 - Too many free variables $(w_{i,j})$ thwart generalisation

Connectionism Summary

- Neurologically inspired
 Biological neurons and assemblies of neurons
- Broad applicability
 - Various architectures and training paradigms
- Readily implemented
 - Simple algorithms and data structures
- Reliability problems
 - Sub-optimality, capacity limitations, overtraining, *Black Box* naivety