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Model of a Neuron (1943)

• Firing Rule

T is the threshold
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• Due to McCulloch and Pitts

• Organisation

xi are inputs, wi are weights



Hebb Rule (1949)

• Due to Donald Hebb

• Pre-empted by William James 
(1890)

• Hebb Rule
If a particular input is always 
active when a neuron fires then its 
weight should be increased

• Interpretation 
Classical conditioning -

When two things happen within a 
short time of each other, a re-
occurrence of one should make the 
other more likely to occur

Issues with Hebb

• Problems
a). No mechanism for weights to be 

decreased - they only go up!

b). Implies a degree of responsibility 
at the synapse. There was little 
evidence for this in 1949 but it has 
become clear that this is the case

• Other combinations of events
N e u r o n
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Delta Rule (1960)

• Due to Widrow and Hoff

• Also known as -
– Widrow-Hoff Rule

– Least Mean Square Rule

• General algorithm
1.Determine an error between the 

desired and actual outputs

2.Modify all of the “live” weights 
and the threshold so as to remove 
a portion of the error

3.Repeat until the error is reduced 
to an acceptable level

• Example AND gate

Formalised Delta Rule

• We can formalise the weight 
adjustment rule thus -

• It is often presented in another form 
from which it gets its name -

• We don’t actually need to update the 
weights on every presentation -
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Perceptron
(1957-1962)

• Firing Rule
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• Due to Rosenblatt, Wightman, et al.

• Organisation

xi are inputs, wi are weights,

y is desired output, y’ is actual output

A Perceptron Application

• An early and influential success 
story of the Perceptron was 
recognising letters of the alphabet

• A 20x20 input grid was used

• The 400 binary input values were 
weighted and summed into output 
units representing different letters 
of the alphabet
– Output 1 meant “A”

– Output 2 meant “B”

– Etc.



Perceptron Learning 
Rules

( )new oldw w y y xη ′= + ⋅ − ⋅

• Single output Perceptron

• Multiple output Perceptron

Or
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Perceptron
Convergence Theorem

• Theorem
If a solution to a classification 
problem exists then the general 
Perceptron learning rule will find it 
in a finite number of steps.

• Note that this theorem is qualified 
by the phrase

if a solution to a classification 
problem exists

• Not all classification problems are 
solvable with a Perceptron

• BUT, for a problem that is 
solvable, the learning rule will 
definitely find it in a finite time



XOR Problem (I)

• Truth table

Input 1 Input 2 Output

0                0                        0

1                0                        1

0                1                        1

1                1                        0

• Linearly inseparable (Graphically)

XOR Problem (II)

• Truth table

Input 1 Input 2 Output

0                0                        0

1                0                        1

0                1                        1

1                1                        0

• Linearly inseparable (Algebraically)

0 0 0 => w0 < 0                         (A)

1 0  1 => w0 + w1 >= 0              (B)

0 1  1 => w0 + w2 >= 0              (C)

1 1  0 => w0 + w1 + w2 < 0       (D)

Statement D is incompatible with Statements

B and C since it requires w1+w2 to be less

than a positive amount (w0 is -ve, see A)

which neither is less than individually


