Artificial Neural Networks

The Early Years [From McCulloch & Pitts to Minsky & Papert]

> Nick Taylor N.K.Taylor@hw.ac.uk EM 1.62

Hebb Rule (1949)

- Due to Donald Hebb
- Pre-empted by William James (1890)

• Hebb Rule

If a particular input is always active when a neuron fires then its weight should be increased

• Interpretation

Classical conditioning -

When two things happen within a short time of each other, a reoccurrence of one should make the other more likely to occur

Issues with Hebb				
• Problems				
 a). No mechanism for weights to be decreased - they only go up! 				
 b). Implies a degree of responsibility at the synapse. There was little evidence for this in 1949 but it has become clear that this is the case Other combinations of events 				
Neuron				
	Active	Inactive		
I Active	Hebbian	Anti-Hebbian		
n	Increase	Decrease		
р				
u Inactiv	re??	??		
t	(Decrease?)) (No Change?)		

Perceptron Learning Rules • Single output Perceptron $\underline{w}^{new} = \underline{w}^{old} + \eta \cdot (y - y') \cdot \underline{x}$ • Multiple output Perceptron $\underline{w}^{new} = \underline{w}^{old} + \eta \cdot \Theta (Ns - \underline{w}^{old} \cdot \underline{z}) \cdot \underline{z}$ Or $\Delta w_{ij} = \eta \cdot \Theta (Ns - y_i y_i') \cdot y_i x_j$

XOR Problem (II) Truth table 				
Input 1	Input 2	Output		
0	0	0		
1	0	1		
0	1	1		
1	1	0		
• Linearly inseparable (Algebraically)				
0 0 0 =>		w0 < 0	(A)	
1 0 1 =>		w0 + w1 >= 0	(B)	
0 1 1 =>		w0 + w2 >= 0	(C)	
1 1 0 =>	>	w0 + w1 + w2 < 0	(D)	
Statement D is incompatible with Statements B and C since it requires w1+w2 to be less than a positive amount (w0 is -ve, see A) which neither is less than individually				