Analysis of the Perceptron

The learning rule for a single output Perceptrotinwutput in {0, 1} is similar to the
Widrow-Hoff (or Delta) rule —

Wnew — V_Vold + (y _ y)g(

In order to facilitate our analysis of the Perceptwe shall redefine the binary {0, 1}
output value set to be {-1, +1}. The modified learule for a single output Perceptron
with output in {-1, +1} and a learning ratg, therefore becomes —

V_Vnew :V_Vold +,7 iy_ y)g(

Strictly speaking; should be 0.5, of course, but we can use this tervary the
proportion of the error which we remove at eachnea step if we do not insist on
fixing it at 0.5. We must, however, ensure that < 1.

Since the Perceptron’s output should now be Hiafweighted sum of the inputs is
negative and +1 otherwise we can combine these#ases into a single relationship —

wixliy>0

We note that the case when the weighted sum is@visanomalous but the bias input of
the Perceptron can be used to ensure that thatisitudoesn’t arise, even when all of the
actual inputs are required to be O.

If we now define —

z=xly
then every solution must satisfy the relationship —

wliz>0



Multiple Output Perceptrons

We now consider the more general form of Percepiritimnmore than one output unit.
The architecture of this system is simply an aoflyerceptrons which all receive the
same inputs (although multiplied by their own wegjtand generate their own particular
output.

y andy’ now become vectors amdandz become matrices —

V_Vnew — V_Vold + ,7 E(ﬂ— V_Vold EZ)EZ

Let us now relax the condition that the actual aut@lues must be -1 or +1. Suppose we
say that the outputs can be any sikig,above or below 0, whefis the number of

inputs ands is the margin size (cf. the arbitrary overshoogeain the Widrow-Hoff

Rule). We now have —

wIilz > Ns

as our criterion for solvability and we can rewtite Perceptron Learning Rule as —

Wnew:Wold+,7ED( NS—_V\PldD_% 0

Aw; =17 DB(NS_ Yi yil)Einj

for individual weight changes.

Note that the Heaviside function is defined as —

© (X) =1 whenx>0

=0 otherwise



Per ceptron Convergence Theorem

Theorem

If a solution to a classification problem existehthe general Perceptron learning rule
will find it in a finite number of steps.

Pr oof

Recall that a weightyy, is updated only when

Yiy; >Ns
Y, > Wi X > Ns
k

is NOT satisfied. If it is satisfied then we don&ed to update the weight.

We prove the result for a single output and sirahderceptron has its own individual
weight vector this will generalise to all outputs.

Let MP denote the number of times that a pattgrrhas been used to update the weights
at any stage in the learning process. At this time,

w=7D M° &’
P

i.e.w is the sum, over all patterns, of the weight clesnfgr each pattern.



Now, consider the quantity —

wv

wherew* is a solution (i.e. a set of weight values thatqens the required task).

wiw =n> Mz’ v
P

2nizme | e )
p

i.e. it is bigger than if all of the changes hadréhe size of the smallest change.

In other words, if the total number of weight ches@n route to a solution kept on
increasing , then so would the valueaoiv* so

WIW grows at the same rate ls where M = ZM P
P

Call thisRESULT A
XXXXXXXXXXXX



Now, consider the change in the magnitude squardteaveight vector at a single
update caused by a pattean;

awf = (w+nz*f - w’
- n‘?(;"")2 +2nw [z°

But

Ns>w Z°
and each

z, =+1
SO

[f =n

and therefore —
A\MZ < n°N +2nNs
=Nn(n +2s)

After M steps of incremental changes like this we have —

w|® < MNR(n +2s)

and thereforg¢w| grows no faster tha\.

Call thisRESULT B
XXXXXXXXXXXX



RESULT A andRESULT B together mean that

w W
w
grows at least as fast a#.
So, ifM kept on increasing then so would the above qubtien

But it can’t -w* is a solution and so won’t change amflv| is normalised so that can’t
grow either.

We therefore have to conclude théttannot keep increasing and this means that the
number of steps which the learning algorithm takest be finite.

QED.



