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Analysis of the Perceptron 
 
 

The learning rule for a single output Perceptron with output in {0, 1} is similar to the 
Widrow-Hoff (or Delta) rule – 
 

( ) xyyww oldnew ⋅−+= '
 

 
In order to facilitate our analysis of the Perceptron we shall redefine the binary {0, 1} 
output value set to be {-1, +1}. The modified learning rule for a single output Perceptron 
with output in {-1, +1} and a learning rate, η, therefore becomes – 
 

( ) xyyww oldnew ⋅−⋅+= 'η  
 
Strictly speaking η should be 0.5, of course, but we can use this term to vary the 
proportion of the error which we remove at each learning step if we do not insist on 
fixing it at 0.5. We must, however, ensure that 0 < η < 1. 
 
Since the Perceptron’s output should now be -1 if the weighted sum of the inputs is 
negative and +1 otherwise we can combine these two cases into a single relationship – 
 

0>⋅⋅ yxw  
 
We note that the case when the weighted sum is 0 is now anomalous but the bias input of 
the Perceptron can be used to ensure that this situation doesn’t arise, even when all of the 
actual inputs are required to be 0. 
 
If we now define – 

yxz ⋅=  
 
then every solution must satisfy the relationship – 
 

0>⋅ zw  
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Multiple Output Perceptrons 

 
 

We now consider the more general form of Perceptron with more than one output unit. 
The architecture of this system is simply an array of Perceptrons which all receive the 
same inputs (although multiplied by their own weights) and generate their own particular 
output. 
 
y and y’ now become vectors and w and z become matrices – 
 

( ) zzwww oldoldnew ⋅⋅−⋅+= 1η  
 
Let us now relax the condition that the actual output values must be -1 or +1. Suppose we 
say that the outputs can be any size, Ns, above or below 0, where N is the number of 
inputs and s is the margin size (cf. the arbitrary overshoot target in the Widrow-Hoff 
Rule). We now have – 
 

Nszw >⋅  
 
as our criterion for solvability and we can rewrite the Perceptron Learning Rule as – 
 

( )new old oldw w Ns w z zη= + ⋅Θ − ⋅ ⋅  

or 

( ) jiiiij xyyyNsw ⋅−Θ⋅=∆ 'η  

 
for individual weight changes. 
 
 
Note that the Heaviside function is defined as – 
 

( ) 1=Θ x   when x>0 

 0=   otherwise 
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Perceptron Convergence Theorem 

 
 

Theorem 
 
If a solution to a classification problem exists then the general Perceptron learning rule 
will find it in a finite number of steps. 
 
 
Proof 
 
Recall that a weight, wik, is updated only when 
 

Nsyy ii >'
 

i.e. 

Nsxwy
k

kiki >∑  

 
is NOT satisfied. If it is satisfied then we don’t need to update the weight. 
 
We prove the result for a single output and since each Perceptron has its own individual 
weight vector this will generalise to all outputs. 
 
Let Mp denote the number of times that a pattern , p, has been used to update the weights 
at any stage in the learning process. At this time, 
 

p

p

p zMw ⋅⋅= ∑η
 

 
i.e. w is the sum, over all patterns, of the weight changes for each pattern. 
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Now, consider the quantity – 
 

*ww⋅  
 
where w*  is a solution (i.e. a set of weight values that performs the required task). 
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i.e. it is bigger than if all of the changes had been the size of the smallest change. 
 
In other words, if the total number of weight changes en route to a solution kept on 
increasing , then so would the value of w.w*  so  
 

*ww⋅ grows at the same rate as M, where  ∑=
p

pMM . 

 
 
Call this RESULT A 

   XXXXXXXXXXXX 
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Now, consider the change in the magnitude squared of the weight vector at a single 
update caused by a pattern, a – 
 

 
But 

 
and each 

 
so 

 
and therefore – 
 

 
After M steps of incremental changes like this we have – 
 

 
and therefore |w| grows no faster than √M. 
 

Call this RESULT B 
   XXXXXXXXXXXX 
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RESULT A and RESULT B together mean that 
 

 
grows at least as fast as √M. 
 
So, if M kept on increasing then so would the above quotient.  
 
But it can’t - w*  is a solution and so won’t change and w/|w| is normalised so that can’t 
grow either. 
 
We therefore have to conclude that M cannot keep increasing and this means that the 
number of steps which the learning algorithm takes must be finite. 
 
QED. 
 

w
ww *⋅


