
Associative Memory

• Mnemonists or “Memory men”
– Can perform amazing feats of 

memory

– Use the Method of Loci developed 
in Ancient Greece

• Draws upon our exceptional ability to 
build spatio-cognitive maps

– To memorise a list of items -
• Think of a walk or route you know 

very well

• Visualise successive items at places 
along the route

– To recall the list of items
• Take a mental stroll along the route 

retrieving the items as you go

• This is memory by association or 
Associative Memory

Hopfield Nets (1982)

• Due to John Hopfield

• Did much to restore the 
credibility of ANNs following 
Minsky & Papert’s book

• Hopfield’s key contribution was 
to provide an analysis of the 
network he devised in terms of 
the energy of the system

• His analysis was applied to 
many other types of ANN, such 
as Multi-Layered Perceptrons

• Hopfield Nets are associative 
memory devices



The Hopfield Network

• Each node is connected to every other 
node in the network

• Symmetric weights on connections 
(w5,9 = w9,5 )

• Node activations are either -1 or +1

• Execution involves iteratively re-
calculating the activation of each 
node until a stable state (assignment 
of activations to nodes) is achieved

The Hopfield Equations

• Training performed in one pass:

where,

wij is the weight between nodes i & j

N is the number of nodes in the network

n is the number of patterns to be learnt

pi
k is the value required for the i-th node 

in pattern k

• Execution performed iteratively:

where,

si is the activation of the i-th node
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Analysis of the Hopfield 
Network

• Does the equation used to set the 
weights make stable states of 
patterns to be memorised?
– The Generalised Hebb Rule ensures 

that this is the case

• Does the equation used to 
determine the activations of the 
nodes converge on stable states?
– Hopfield’s energy analysis enables 

us to prove that convergence occurs

• There has to be an upper limit on 
the number of patterns which can 
be memorised. What is it?
– What is the memory capacity of an 

N node Hopfield network?

Hopfield Applications

• Pattern Completion
– Content Addressable Memory

– Partial patterns can be completed to 
reproduce previously learnt patterns in 
their entirety

• Incorrect patterns (patterns with errors 
or noise in them) can be corrected if 
they contain enough correct “bits” in 
partial patterns for pattern completion

• Combinatorial Optimisation
– Learnt patterns are simply attractors

– These are minima of some energy function 
defined in terms of the wij and si variables

• Hopfield networks can be used to find 
the minima of the objective function of 
an optimisation problem if  we equate 
the objective function to Hopfield’s 
energy function and define weights, 
thresholds and activations accordingly



Pattern Completion (I)

Learn this
pattern

Inverse
learnt too

Present these two patterns and iterate ...

Both converge on top-left memory

Pattern Completion (II)

Learn this
pattern

Inverse
learnt too

Present these two patterns and iterate ...

Converges on top-left Converges on top-right



Pattern Completion (III)

64 pixel image of an “H”

Same image with 10 pixels altered
(I.e. approximately 16% noise added)

Pattern Completion (IV)
Food for thought - flight of fancy?

Memories of a deceased dog named Tanya ...

– Suppose we could create an associative 
network which enabled a small subset of the 
nodes below to trigger all of the other nodes

– Nodes could also make connections with 
other ANNS or (brain areas) so that the 
“Dog” node triggered the recall of “data”
about dogs, etc. and vice versa



Combinatorial Optimisation
• The aim of optimisation is to find 

values for the input parameters of a 
system which yield a best, or optimal, 
output from that system
– This normally boils down to minimising or 

maximising some cost, or objective, 
function of the input parameters

• Problems in which the input values are 
finite in number, or discrete, rather than 
infinite, or continuous, are known as 
combinatorial optimisation problems

• Hopfield Networks and, in particular, 
Hopfield’s energy analysis offer a 
potential tool for solving non-linear 
combinatorial optimisation problems
– The form of Hopfield’s energy function 

limits the optimisations which can be 
addressed to those with quadratic objective 
functions - but this is not a huge limitation

Hopfield’s Energy Function 
and Objective Functions

• Hopfield’s energy function is a 
quadratic in the activations of 
connected nodes

• If we can form a quadratic objective 
function, O, for an optimisation 
problem we can use it in place of 
Hopfield’s energy function

– Coefficients of the quadratic terms 
in O can become weights in the 
Hopfield network

– Coefficients of the linear terms in O
can become the thresholds of nodes 
in the Hopfield network
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Optimisation Example (I)

• Task Assignment Problem
– x people are to perform x tasks

– The rate at which each person can 
perform each task is known (not all 
the same of course)

– Determine the most efficient 
allocation of people to tasks

– I.e. maximise the overall rate for 
performing all of the x tasks

1 2 3 4 5 6

Anne 10 5 4 6 5 1

Brian 6 4 9 7 3 2

Clive 1 8 3 6 4 6

Dora 5 3 7 2 1 4

Edith 3 2 5 6 8 7

Fred 7 6 4 1 3 2

Optimisation Example (II)
• For the Task Assignment Problem a 

valid solution will have exactly one node 
in each row and column firing
– First we relax the condition that node 

activations must be in {-1, +1} 

– We shall let them vary within [0, 1] by using 
a new problem-specific activation equation

– A necessary (but not sufficient) condition 
for a valid solution is that the sum of all the 
activations should be x

• We need to minimise (overall_sum-x)2

• Our objective function should seek to 
maximise -
– For each person (row), the sum of each node 

activation multiplied by the associated rate
• We need to minimise  row_sum*-1

– For each task (column), the sum of each 
node activation multiplied by the associated 
rate

• We need to minimise  column_sum*-1



Optimisation Example (III)

We now construct our energy function as 
a weighted sum of the three terms 
identified earlier -

A*(overall_sum-x)2 - B*row_sum - C*column_sum

– If we can determine suitable values for A, B
& C then we can define a Hopfield Network 
which will minimise this expression and thus 
deliver a solution to our optimisation problem

– Note that row_sum and column_sum can be 
viewed as inhibitory inputs to a nodei from 
the other nodes in the same row and column

• We can therefore equate the rate at which person i
does task j to our weightswij

– A change in the activation of a node changes 
the energy as defined by the above expression

• The new activation for a node can thus be obtained 
simply by adding the result of the above expression 
(for an energy change) to the current activation

– Initial activations are set randomly

Optimisation Example (IV)

• A student project investigating the 
Task Assignment Problem gave 
the solution reproduced below 
after 73 iterations through the 
activation equation for each node

• The total rate for this solution is 44 
which is, indeed, the maximum 
achievable

1 2 3 4 5 6

Anne 1.00 0.02 0.02 0.03 0.02 0.04

Brian 0.02 0.06 0.07 1.00 0.04 0.10

Clive 0.03 0.19 0.07 0.10 0.061.00

Dora 0.03 0.06 1.00 0.06 0.05 0.13

Edith 0.02 0.04 0.04 0.041.00 0.10

Fred 0.04 1.00 0.08 0.08 0.07 0.15



More Optimisation 
Examples

Other classic examples include -
– Travelling Salesman Problem

• Find the most efficient tour of N
locations such that each location is 
visited just once 

– Graph Partitioning Problem
• Divide a graph intoK partitions such 

that the number of connections 
between partitions is minimised

– Knapsack Problem
• Given a utility measure and a space 

requirement for each of M items which 
might be packed into a knapsack 
which is not large enough to hold them 
all, select a set of items which will 
maximise the overall utility of the 
knapsack’s contents

Local Minima

• We know each memory we store in 
a Hopfield Network also makes its 
inverse a memory - these are global 
minima of the energy surface

• Linear combinations of memories 
also become minima of the energy 
surface - local minima



Linear Combinations

• These “false” memories are of 
great concern because there are a 
lot of them -
– Suppose we wish to store the 

following three memories

Pattern 1 -1, +1, -1

Pattern 2 +1, +1, -1

Pattern 3 +1, -1, +1

– The linear combinations of these 
memories include

+1, +1, -1 P1+P2+P3

-1, -1, +1 P1-P2+P3

+1, +1, -1 -P1+P2-P3

etc.

– I.e. up to 8 of them here

Simulated Annealing

• Simulated annealing mimics 
this process by using stochastic 
nodes to “raise the temperature”
(increase the energy) initially 
and then gradually reduce it

• In metallurgy the process of 
annealing is used to remove 
stresses from forged parts and 
reduce brittleness by heating 
followed by gradual cooling  



Stochastic Nodes

Instead of setting the activation of 
each node according to -

we make the assignment to si

dependent on a probability 
distribution -

where b increases as the pseudo 
temperature decreases -
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Boltzmann Machines
• If the probability distribution used 

to assign activations to nodes is 
the Boltzmann-Gibbs distribution 
we have a family of ANNs called 
Boltzmann Machines

• Boltzmann machines are more 
than mere stochastic Hopfield 
Networks
– They also incorporate hidden nodes 

(nodes which are neither input nor 
output nodes)

• Nor can their weights be 
determined in a single pass
– They must be learnt as in a MLP

• Statistical mechanics is needed to 
fully analyse these ANNs


