
Multi-Layered 
Perceptrons (MLPs)

• A set of weights can be found for the 
above 5 connections which will enable 
the XOR of the inputs to be computed

• The XOR problem is solvable if we 
add an extra “node” to a Perceptron

MLPs Formalised

• Each node is connected to EVERY 
node in the adjacent layers and NO 
nodes in the same or any other layers

• MLPs become more manageable, 
mathematically and computationally, 
if we formalise them into a standard 
structure (or topology or architecture)



Weight finding in MLPs

• Although it has been known since 
the 1960’s that Multi-Layered 
Perceptrons are not limited to 
linearly separable problems there 
remained a big problem which 
blocked their development and use
– How do we find the weights needed to 

perform a particular function?

• The problem lies in determining an 
error at the hidden nodes
– We have no desired value at the hidden 

nodes with which to compare their 
actual output and determine an error

– We have a desired output which can 
deliver an error at the output nodes but 
how should this error be divided up 
amongst the hidden nodes?

MLP Learning Rule

• In 1986 Rumelhart, Hinton and 
Williams proposed a Generalised 
Delta Rule
– Also known as Error Back-Propagation 

or Gradient Descent Learning

• This rule, as its name implies,  is an 
extension of the good old Delta Rule

• The extension appears in the way we 
determine the d values
– For an output node we have -

– For a hidden node we have -
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Activation Functions

• The function performed at a node 
(on the weighted sum of its inputs) 
is variously called an activation or 
squashing or gain function

• They are generally S shaped or 
sigmoid functions

• Commonly used functions include
– The logistic function

0 < f(x) < 1

k is usually set to 1

– The hyperbolic tangent

-1 < f(x) < 1
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MLP Training Regime

• The back-propagation algorithm
1. Feed inputs forward through network

2. Determine error at outputs

3. Feed error backwards towards inputs

4. Determine weight adjustments

5. Repeat for next input pattern

6. Repeat until all errors acceptably small

• Pattern based training
– Update weights as each input pattern is 

presented

• Epoch based training
– Sum the weight updates for each input 

pattern and apply them after a complete 
set of training patterns has been 
presented (after one epoch of training)



Architectures

• How many hidden layers?

• How many nodes per hidden layer?

• There are no simple answers

• Kolmogorov’s Mapping Neural 
Network Existence Theorem
– Due to Hecht-Nielsen

• A multi-layered perceptron with n inputs in 
[0,1] and m output nodes requires only 1 
hidden layer of 2(n+1) nodes

• This is a theoretical result and, in 
practice, training times can be very 
long for such minimalist networks

Bias Nodes

• Bias nodes are not always necessary
– Do not use them unless you have to

• If  they are needed it is wise to attach 
them to all nodes in the network
– They should all have an activation of 1

• When might they be needed?
– Note that a node whose activation 

function is the logistic function will 
have an activation of 0.5 when all of its 
inputs are 0 and a node whose 
activation function is the hyperbolic 
tangent will have an activation of 0 
when all of its inputs are 0

– We may not want this

– The addition of a bias node (whose 
activation is always 1) can ensure that 
we never encounter a situation where all 
of the inputs to a node are 0



Initial Weights

• What size should they be?
– No hard and fast rules

– Since the common activation functions 
produce outputs whose magnitude 
doesn’t exceed 1 a range of between -1 
and +1 seems sensible

– Some researchers believe values related 
to the fan-in of a node can improve 
performance and suggest magnitudes of 
around 1/sqrt(fan-in)

• Never use symmetric weight values
– Symmetric patterns in the weights, once 

manifested, can be difficult to get rid of

• So, use values between -1 and +1 
and make sure there are no patterns 
in the weights

Problems with Gradient 
Descent

• The problems associated with gradient 
descent learning are the inverse of 
those present in classical hill-climbing 
search

• Local Minima
– Getting stuck in a local minimum instead 

of reaching a global minimum

– Detectable because weights don’t change 
but the error remains unacceptable

• Plateaux
– Moving around aimlessly because the 

error surface is flat

– Detectable because although the weights 
keep changing the error doesn’t

• Crevasses
– Getting caught in a downwards spiral 

which doesn’t lead to a global minimum

– NOT detectable so dangerous but rare



Error Surface

Momentum

• An attempt at avoiding local minima

• An additional term is added to the 
delta rule which forces each weight 
change to be partially dependent on 
the previous change made to that 
weight

• This can, of course, be dangerous

• A parameter called the momentum 
term determines how much each 
weight change depends on the 
previous weight change -

where 0 <= a <= 1

t, t+1 are successive 
weight changes
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Some More Problems
• Training with too high a learning rate 

can take longer or even fail
– As a general rule the larger the learning 

rate, h, the faster the training. The weights 
are adjusted by larger amounts and so 
migrate towards a solution more rapidly

– If the weight changes are too large though 
the training algorithm can keep “stepping 
over” the values needed for a solution 
rather than landing on them

• Networks with too many weights will 
not generalise well
– The more weights there are in  a network 

(the more degrees of freedom it has) the 
more arbitrary is the weight set discovered 
during training

– One weight set chosen arbitrarily from 
many possible solutions that satisfy the 
requirements of the training set, is unlikely 
to satisfy data not used in training

Input Representations (I)

• The way in which the inputs to an ANN 
are represented can be crucial to the 
successful training and eventual 
performance of the system

• There is no correct way to select input 
representations since they are highly 
dependent on what the ANN is required 
to learn about the inputs

• A significant proportion of the design 
time for an ANN is spent on devising 
the input encoding scheme

• Consider the problem of representing 
some simple shapes such as  triangle, 
square, pentagon, hexagon andcircle
– Possible schemes include

• Bitmap images

• Edge counts

• Shape-specific input nodes



Input Representations (II)

What are we seeking to do? 

• Do we need to generalise about shapes?
– If not then shape-specificinput nodes 

should suffice because we won’t need any 
more detailed information about the shapes

• Generalising about regular shapes
– If we only need to be able to differentiate 

between and generalise about regular 
shapes then an edge countshould suffice

• Generalising about irregular shapes
– If we need to be able to differentiate 

between and generalise about irregular 
shapes then a bitmap imagemay be needed

• NB Angle sizes and edge lengths may suffice for 
differentiating between different types of 
triangle or between squares, rectangles 
rhombuses, etc.

• Greater power => More refined data

Input Representations (III)

Detailed design of the suggested

representation schemes

• Bitmap images
– E.g. n2 inputs for a n x n array of bits

– What resolution should we use?

– Too many weights could be problematic

• Edge counts
– E.g. 1 input taking values 3, 4, 5, 6, infinity

– How should we represent infinity?

– Should we use the raw values or normalise 
them to lie in [0, 1] or [-1, +1]?

– If f(x) is the logistic function then f(5) and 
f(6) only differ in the third decimal place

• Shape-specific input nodes
– E.g. one input for triangle, one input for 

square, one input forpentagon, one input 
for hexagon, one input for circle



Input Representations (IV)
• Another attribute - Colour

– Looks like a case for specific input nodes 
for each attribute value - one for each 
colour in this instance

– All colours have a wavelength though so 
we might consider normalising the 
wavelengths and using a single input 
node to represent the wavelength

– On the other hand, we know all colours 
can be generated from the three 
primaries, so we might use an encoding 
scheme with one input node for each 
colour but which allows a whole gamut 
of colours to be represented by treating 
the inputs like the colour guns in a 
television monitor

• Yet another attribute - Number
– Normalise values to avoid saturation

– Quantise to use multiple discrete inputs 

– Don’t employ clever encoding schemes

Input Representations (V)
• Compact input representations can be 

misleading
– It is tempting to encode multiple-valued 

attributes across a number of inputs by 
means of a compact encoding scheme 
which minimises the number of inputs 

• For example, using binary010 to represent 
one value and 011 to represent another, etc.

– This is very dangerous 
• 010 has more in common with 011 than it 

does with 101 (2 rather than 0 inputs) and 
this could be very misleading

• The ANN is being required to learn how to 
decode the binary coding scheme in addition 
to learning the actual mapping so the 
learning task is being made more difficult

– If you have 8 possible values for an 
attribute it is safer to use 8 separate 
inputs - one for each value - rather than 
binary code the values onto 3 inputs

• The ANN will have 8 weights to use in 
mapping these inputs instead of just 3



MLP Examples

• NETtalk
– Speech synthesis

– Sejnowski & Rosenberg (1987)

• ALVINN
– Steering a car along a road

– Pomerleau, et al. (1989)

• ZIP Codes
– Recognising handwritten ZIP codes

– Le Cun, et al. (1989)

NETtalk

• Speech generator connected to outputs

• Each input could represent 29 characters

• 1024 consecutive words presented during an 
epoch of training

• Intelligible speech produced after 10 epochs

• Accuracy of 95% claimed after 50 epochs

• 78% testing accuracy claimed



ALVINN

• 1200 simulated road images used as a 
training set

• 40 epochs of training required

• Drove a car around Carnegie-Mellon 
University campus at up to 55 mph

• Claimed to be twice as fast an non-
ANN rival systems

ZIP Codes (I)

• Inputs were handwritten digits on a 
16x16 grid

• Used successive feature detectors in 
3 layers of hidden nodes

• 10 output nodes - one for each digit

• Employed weight sharing to reduce 
the number of degrees of freedom in 
the network
– Each of the 64 nodes in an 8x8 feature 

detector share the same 25 weight 
values

– Ditto for the 4x4 feature detectors

• Third layer fully connected to second 
layer and outputs

• Trained on 7,300 digits, tested on a 
further 2,000

• 1% error on training, 5% on testing



ZIP Codes (II)


