
Multi-Layered
Perceptrons (MLPs)

• A set of weights can be found for the
above 5 connections which will enable
the XOR of the inputs to be computed

• The XOR problem is solvable if we
add an extra “node” to a Perceptron

MLPs Formalised

• Each node is connected to EVERY
node in the adjacent layers and NO
nodes in the same or any other layers

• MLPs become more manageable,
mathematically and computationally,
if we formalise them into a standard
structure (or topology or architecture)

Weight finding in MLPs

• Although it has been known since
the 1960’s that Multi-Layered
Perceptrons are not limited to
linearly separable problems there
remained a big problem which
blocked their development and use
– How do we find the weights needed to

perform a particular function?

• The problem lies in determining an
error at the hidden nodes
– We have no desired value at the hidden

nodes with which to compare their
actual output and determine an error

– We have a desired output which can
deliver an error at the output nodes but
how should this error be divided up
amongst the hidden nodes?

MLP Learning Rule

• In 1986 Rumelhart, Hinton and
Williams proposed a Generalised
Delta Rule
– Also known as Error Back-Propagation

or Gradient Descent Learning

• This rule, as its name implies, is an
extension of the good old Delta Rule

• The extension appears in the way we
determine the d values
– For an output node we have -

– For a hidden node we have -

p p p
ji j iw oηδ∆ =

()p p p
j j j k kj

k

f net wδ δ′= ⋅∑

() ()p p p p
j j j j jT o f netδ ′= − ⋅

Activation Functions

• The function performed at a node
(on the weighted sum of its inputs)
is variously called an activation or
squashing or gain function

• They are generally S shaped or
sigmoid functions

• Commonly used functions include
– The logistic function

0 < f(x) < 1

k is usually set to 1

– The hyperbolic tangent

-1 < f(x) < 1

kxe1
1

xf −+
=)(())()()(xf1xfxf −=′

)tanh()(xxf =)(tanh)(x1xf 2−=′

MLP Training Regime

• The back-propagation algorithm
1. Feed inputs forward through network

2. Determine error at outputs

3. Feed error backwards towards inputs

4. Determine weight adjustments

5. Repeat for next input pattern

6. Repeat until all errors acceptably small

• Pattern based training
– Update weights as each input pattern is

presented

• Epoch based training
– Sum the weight updates for each input

pattern and apply them after a complete
set of training patterns has been
presented (after one epoch of training)

Architectures

• How many hidden layers?

• How many nodes per hidden layer?

• There are no simple answers

• Kolmogorov’s Mapping Neural
Network Existence Theorem
– Due to Hecht-Nielsen

• A multi-layered perceptron with n inputs in
[0,1] and m output nodes requires only 1
hidden layer of 2(n+1) nodes

• This is a theoretical result and, in
practice, training times can be very
long for such minimalist networks

Bias Nodes

• Bias nodes are not always necessary
– Do not use them unless you have to

• If they are needed it is wise to attach
them to all nodes in the network
– They should all have an activation of 1

• When might they be needed?
– Note that a node whose activation

function is the logistic function will
have an activation of 0.5 when all of its
inputs are 0 and a node whose
activation function is the hyperbolic
tangent will have an activation of 0
when all of its inputs are 0

– We may not want this

– The addition of a bias node (whose
activation is always 1) can ensure that
we never encounter a situation where all
of the inputs to a node are 0

Initial Weights

• What size should they be?
– No hard and fast rules

– Since the common activation functions
produce outputs whose magnitude
doesn’t exceed 1 a range of between -1
and +1 seems sensible

– Some researchers believe values related
to the fan-in of a node can improve
performance and suggest magnitudes of
around 1/sqrt(fan-in)

• Never use symmetric weight values
– Symmetric patterns in the weights, once

manifested, can be difficult to get rid of

• So, use values between -1 and +1
and make sure there are no patterns
in the weights

Problems with Gradient
Descent

• The problems associated with gradient
descent learning are the inverse of
those present in classical hill-climbing
search

• Local Minima
– Getting stuck in a local minimum instead

of reaching a global minimum

– Detectable because weights don’t change
but the error remains unacceptable

• Plateaux
– Moving around aimlessly because the

error surface is flat

– Detectable because although the weights
keep changing the error doesn’t

• Crevasses
– Getting caught in a downwards spiral

which doesn’t lead to a global minimum

– NOT detectable so dangerous but rare

Error Surface

Momentum

• An attempt at avoiding local minima

• An additional term is added to the
delta rule which forces each weight
change to be partially dependent on
the previous change made to that
weight

• This can, of course, be dangerous

• A parameter called the momentum
term determines how much each
weight change depends on the
previous weight change -

where 0 <= a <= 1

t, t+1 are successive
weight changes

() ()two1tw ji
pp

i
p
jji

p ∆α+ηδ=+∆

Some More Problems
• Training with too high a learning rate

can take longer or even fail
– As a general rule the larger the learning

rate, h, the faster the training. The weights
are adjusted by larger amounts and so
migrate towards a solution more rapidly

– If the weight changes are too large though
the training algorithm can keep “stepping
over” the values needed for a solution
rather than landing on them

• Networks with too many weights will
not generalise well
– The more weights there are in a network

(the more degrees of freedom it has) the
more arbitrary is the weight set discovered
during training

– One weight set chosen arbitrarily from
many possible solutions that satisfy the
requirements of the training set, is unlikely
to satisfy data not used in training

Input Representations (I)

• The way in which the inputs to an ANN
are represented can be crucial to the
successful training and eventual
performance of the system

• There is no correct way to select input
representations since they are highly
dependent on what the ANN is required
to learn about the inputs

• A significant proportion of the design
time for an ANN is spent on devising
the input encoding scheme

• Consider the problem of representing
some simple shapes such as triangle,
square, pentagon, hexagon andcircle
– Possible schemes include

• Bitmap images

• Edge counts

• Shape-specific input nodes

Input Representations (II)

What are we seeking to do?

• Do we need to generalise about shapes?
– If not then shape-specificinput nodes

should suffice because we won’t need any
more detailed information about the shapes

• Generalising about regular shapes
– If we only need to be able to differentiate

between and generalise about regular
shapes then an edge countshould suffice

• Generalising about irregular shapes
– If we need to be able to differentiate

between and generalise about irregular
shapes then a bitmap imagemay be needed

• NB Angle sizes and edge lengths may suffice for
differentiating between different types of
triangle or between squares, rectangles
rhombuses, etc.

• Greater power => More refined data

Input Representations (III)

Detailed design of the suggested

representation schemes

• Bitmap images
– E.g. n2 inputs for a n x n array of bits

– What resolution should we use?

– Too many weights could be problematic

• Edge counts
– E.g. 1 input taking values 3, 4, 5, 6, infinity

– How should we represent infinity?

– Should we use the raw values or normalise
them to lie in [0, 1] or [-1, +1]?

– If f(x) is the logistic function then f(5) and
f(6) only differ in the third decimal place

• Shape-specific input nodes
– E.g. one input for triangle, one input for

square, one input forpentagon, one input
for hexagon, one input for circle

Input Representations (IV)
• Another attribute - Colour

– Looks like a case for specific input nodes
for each attribute value - one for each
colour in this instance

– All colours have a wavelength though so
we might consider normalising the
wavelengths and using a single input
node to represent the wavelength

– On the other hand, we know all colours
can be generated from the three
primaries, so we might use an encoding
scheme with one input node for each
colour but which allows a whole gamut
of colours to be represented by treating
the inputs like the colour guns in a
television monitor

• Yet another attribute - Number
– Normalise values to avoid saturation

– Quantise to use multiple discrete inputs

– Don’t employ clever encoding schemes

Input Representations (V)
• Compact input representations can be

misleading
– It is tempting to encode multiple-valued

attributes across a number of inputs by
means of a compact encoding scheme
which minimises the number of inputs

• For example, using binary010 to represent
one value and 011 to represent another, etc.

– This is very dangerous
• 010 has more in common with 011 than it

does with 101 (2 rather than 0 inputs) and
this could be very misleading

• The ANN is being required to learn how to
decode the binary coding scheme in addition
to learning the actual mapping so the
learning task is being made more difficult

– If you have 8 possible values for an
attribute it is safer to use 8 separate
inputs - one for each value - rather than
binary code the values onto 3 inputs

• The ANN will have 8 weights to use in
mapping these inputs instead of just 3

MLP Examples

• NETtalk
– Speech synthesis

– Sejnowski & Rosenberg (1987)

• ALVINN
– Steering a car along a road

– Pomerleau, et al. (1989)

• ZIP Codes
– Recognising handwritten ZIP codes

– Le Cun, et al. (1989)

NETtalk

• Speech generator connected to outputs

• Each input could represent 29 characters

• 1024 consecutive words presented during an
epoch of training

• Intelligible speech produced after 10 epochs

• Accuracy of 95% claimed after 50 epochs

• 78% testing accuracy claimed

ALVINN

• 1200 simulated road images used as a
training set

• 40 epochs of training required

• Drove a car around Carnegie-Mellon
University campus at up to 55 mph

• Claimed to be twice as fast an non-
ANN rival systems

ZIP Codes (I)

• Inputs were handwritten digits on a
16x16 grid

• Used successive feature detectors in
3 layers of hidden nodes

• 10 output nodes - one for each digit

• Employed weight sharing to reduce
the number of degrees of freedom in
the network
– Each of the 64 nodes in an 8x8 feature

detector share the same 25 weight
values

– Ditto for the 4x4 feature detectors

• Third layer fully connected to second
layer and outputs

• Trained on 7,300 digits, tested on a
further 2,000

• 1% error on training, 5% on testing

ZIP Codes (II)

