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The Generalised Delta Rule and Gradient Descent 
 
 

 
The change to the weight on a connection from a unit i to a unit j when a pattern p is presented is given 
by the delta rule - 

 where, 
   p is the input pattern 
   ∆pwji  is the change to the weight on the connection from unit i to unit j 

η is the learning rate 
δj

p is the error at unit j 
oi

p is the activation of unit i 
 
 For gradient descent we need – 

      where Ep is the error on presentation of pattern p 
 
 From the chain rule we have – 

      where netj
p is the total input to node j 

 
 Now, 

   where oi is the output of unit i 

 
 So setting 

 will yield ... 

    *************** 
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Now, applying the chain rule to δj

p, we have – 

 
 and, 

 
  where fj is the activation function for node j 

 
 So, 

  ******************* 
 
The remaining partial differential is readily determined for an output node, j, since we can measure the 
error at such a node – 

 
  where Tj

p is the desired output for node j when pattern p is presented. 
 

Note that this also ensures that a weight change of zero is produced when the error is zero and that the 
sign of the weight change is reversed when the error is negative. 
 
 

 Therefore, for an output node, 
 

      ********************* 
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However, for a hidden node, j, the partial differential is not so easily determined. We need to apply the 
chain rule once again so that we can obtain δj

p in terms of the δk
p of the nodes, k, in the next layer up - 

 

 

 

 

 
 

Therefore, for a hidden node, 
 

      ********************* 
 
 
 
 

So, to summarise, the Generalised Delta Rule is - 
 

 
 where 

   for an output node 
 
 and 

   for a hidden node 
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Problems with Gradient Descent Learning 

 
There are three main problems with gradient descent. They are the inverses of the classical hill-climbing 
problems – 

 
 i). Local Minima 

Sub-optimal solutions arise when the algorithm gets stuck in a local minimum and cannot 
proceed to uncover the global minimum. It is fairly easy to detect when this has happened – the 
error remains unacceptably high but the weights are no longer being modified. 
Solutions include changing the learning rate, adding a momentum term, changing the initial 
weights. 

 
 ii). Plateaux 

Expanses of the error surface which are totally flat mean that the algorithm has no directional 
information to guide it towards the global minimum. It is fairly easy to detect when this has 
happened – the weights keep changing but the error remains constant. 
Solutions include increasing the learning rate or changing the initial weights. 

 
 iii). Crevasses 

The algorithm follows a path which is gradually spiralling downwards but the end-point is not 
the global minimum. The path is running along the bottom of a crevasse and reaching the global 
minimum would require climbing out of it first. This is similar to the local minimum problem 
except that the error keeps decreasing. This is a very difficult situation to detect. 
If detected (a big “if”) re-initialising the weights is the only solution. 

 


