The Generalised Delta Rule and Gradient Descent

The change to the weight on a connection from &iunia unit j when a pattern p is presented \v&gi
by the delta rule -
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where,
p is the input pattern
APw;  is the change to the weight on the connection foihi to unit j
n is the learning rate

5P s the error at unit j

oP is the activation of unit i

For gradient descent we need —
p — OEP
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where Eis the error on presentation of pattern p

From the chain rule we have —
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where ngtis the total input to node j

Now,
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where @is the output of unit i
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will yield ...
p - n&PAP
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Now, applying the chain rule &, we have —
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and,

oy :fj(netf)

where fis the activation function for node |
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So,

p

5 = _0E
i p
60j
*kkkkhkhkkhkkkhkkhkhkhkkhkkikkk

xfi'(”et}))

The remaining partial differential is readily det@ned for an output node, j, since we can measwe t
error at such a node —
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where T is the desired output for node j when patterngrésented.

Note that this also ensures that a weight change@f is produced when the error is zero and tiet t
sign of the weight change is reversed when the enoegative.

Therefore, for an output node,

P =(TP —of )/ (net? )

khkkhkkkhkkkkhkkkhkkkkhkkkhkkhkikkkx%x



However, for a hidden node, j, the partial différanis not so easily determined. We need to apipdy
chain rule once again so that we can obddiin terms of theéd" of the nodes, k, in the next layer up -
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Therefore, for a hidden node,

5 = /e ) 5w,
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So, to summarise, the Generalised Delta Ruleis -
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where
o =(TP-o7 )t (net?)
for an output node
and

5P :fj'(netf’)DZk:E)Eij

for a hidden node



Problemswith Gradient Descent L ear ning

There are three main problems with gradient desddmwy are the inverses of the classical hill-ciimgb
problems —

).

if).

Local Minima

Sub-optimal solutions arise when the algorithm gtk in a local minimum and cannot
proceed to uncover the global minimum. It is faielgsy to detect when this has happened — the
error remains unacceptably high but the weightsarlwnger being modified.

Solutions include changing the learning rate, agidinmomentum term, changing the initial
weights.

Plateaux

Expanses of the error surface which are totally fi@an that the algorithm has no directional
information to guide it towards the global minimuthis fairly easy to detect when this has
happened — the weights keep changing but the emealins constant.

Solutions include increasing the learning rateh@mging the initial weights.

Crevasses

The algorithm follows a path which is graduallyrgfling downwards but the end-point is not
the global minimum. The path is running along tb&dm of a crevasse and reaching the global
minimum would require climbing out of it first. Thiis similar to the local minimum problem
except that the error keeps decreasing. This eadifficult situation to detect.

If detected (a big “if”) re-initialising the weights the only solution.



