
Unsupervised Learning

• Learning without a teacher
– No targets for the outputs

– Networks which discover patterns,
correlations, etc. in the input data

– This is a self organisation

• Self organising networks
– An important parallel with neuronal

networks in the brain

– Target outputs are often a totally
meaningless concept in the brain

• An obvious question to ask is -

What meaning can be ascribed to the

outputs of an unsupervised network?

“Meaning” of Outputs in
Unsupervised Networks

• We need to be able to produce a
semantics for the outputs

• There are a number of possibilities
depending on the architecture of
the network and the learning
algorithm employed

• Hertz, Krogh & Palmer suggest the
following -
– Familiarity

– Principal Component Analysis

– Clustering

– Prototyping

– Encoding

– Feature Mapping

Output Meanings (I)

1.Familiarity
– A continuously-valued output could

indicate how similar a new pattern is
to a typical or an average pattern

– 1 might mean very similar and 0 very
different with a gradation in between

– Gradually the network could learn
what a typical pattern is

2.Principal Component Analysis
– A number of familiarity measures on

a number of output nodes provides a
facility for measuring similarity on a
number of different metrics

– Each metric would be a principal
component which the network would
learn as new patterns were presented

Output Meanings (II)

3.Clustering
– A number of binary-valued outputs

could indicate which of a number of
categories (one per output) a
particular input pattern belonged to

– Highly correlated patterns would be
categorised together

4.Prototyping
– The output could be a representative

pattern from a particular class

– Clustering would be performed first
and then a prototype pattern
produced on the output nodes

– This would be an associative
memory but with the memories being
discovered rather than burnt in

Output Meanings (III)

5.Encoding
– If there were fewer outputs than

inputs then the network could
perform data compression in which
as much distinguishing information
as possible was preserved

– An inverse decoding network could
work in tandem with an encoding
network for low bandwidth comms

6.Feature Mapping
– If the outputs represented a multi-

dimensional array then the network
could map input patterns onto single
elements of the array in such a way
that similar input patterns were
mapped to “nearby” elements

Output Meanings (IV)

Here are some examples of these
possible meanings from our own
human experience -

– We learn at a very early age that cats
are more similar to dogs than they
are to bricks (1, 2, 6)

– We learn the concepts of “animal”,
“mammal”, etc. long before we get a
sound definition of them (3)

– We can also produce examples of
certain types of animals without
knowing their precise definitions (4)

– Massive data compression must
occur somewhere in the brain
somehow, or our memories would be
very much poorer than they are (5)

Types of Unsupervised
Learning

We shall look at two types of
unsupervised learning -

• Hebbian learning
– The Hebb Rule is an inherently

unsupervised learning rule and can
readily be applied as such

– Nodes which are active together
increase their connection weight

• Competitive learning
– In competitive learning active nodes

attempt to inhibit other nodes

– Nodes compete and successful ones
prevent their peers from firing

Self Organising Feature
Extraction

• An example of Hebbian learning
due to Linsker (1986)

• Linsker produced a model of the
visual system of the cat which was
able to learn a lot a features which
it is known can be identified by the
visual cortex of the cat - and other
mammals

• He used a 7 layer feed-forward
network but with neighbourhood
rather than total connectivity
between layers

• Each layer should be regarded as a
two-dimensional pixel array or
visual field

Linsker’s Network

• Each layer receives inputs from a
particular receptive field in the
previous layer

Linsker’s Equations

• The output of a node in Linsker’s
network is given by

where a is a threshold and the other

variables take their usual meanings

• The weights are adjusted with a
modified version of the Hebb Rule

where b, c and d are parameters which

permit different types of behaviour to

be produced

∑
=

+=
k

1j
jiji owao

()dcobooow jijiij +++η=∆

Linsker’s Simulations (I)

• Linsker used random noise as input

• Each layer had the weight update
rule applied to it in turn

• The first layer of weights saturated
to their maximum values (all
weights were constrained to
prevent them from growing
inexorably)

• The nodes in Layer B simply
averaged the inputs in their
receptive fields (Linsker actually
used a modified version of his
modified Hebb Rule in practice
which is why this happened)

Linsker’s Simulations (II)

• The nodes in Layer C developed
into “centre-surround” detectors
responding most to a bright spot in
a dark field and vice versa

Linsker’s Simulations (III)

• Some nodes in Layer C and more
and more in Layers D to F became
“Mexican Hat” detectors

Linsker’s Simulations (IV)

• In Layer G Linsker increased the
size of the receptive fields and, by
varying the parameters in the
weight update rule, produced
detectors for alternating bands of
light and dark - these were
orientation-specific nodes

Linsker’s Simulations (V)

• By adding connections between
the nodes in Layer G he produced
results very similar to the
orientation columns found in the
visual cortex of the cat … and
monkeys … and us!

• These cortical columns contain
neurons which respond to
different orientations of dark bars
on a light field and vice versa

• They are one of the few places in
the brain where one can actually
identify precisely what a neuron
is representing when it fires

Self Organising Feature
Mapping

• An example of competitive
learning due to Kohonen (1982)

• Feature mapping is concerned with
the geometric arrangement of the
outputs
– Mapping input vectors onto a line,

plane, cube, hypercube of outputs

• The closer the outputs are to each
other (in the Euclidean metric) the
more similar are the input vectors
that activate them

• Kohonen used a single layered
network and a “winner takes all”
learning rule based on a
neighbourhood function

“Winner Takes All”

• Each node competes to respond to
an input vector, p, say

• The node whose weight vector is
closest to p gets the highest net
input and wins the competition
– This node outputs 1

– All other nodes output 0

• The weights of the winning node
are adjusted using the Kohonen
learning rule
– If the ith node wins then the elements

of the ith row of the input matrix are
adjusted

• The Kohonen rule allows the
weights of a node to learn an input
vector

Kohonen’s
Neighbourhood Function

• Instead of updating only the
winning node, Kohonen had all of
the nodes within a certain
neighbourhood of the winning
node to be updated

• The neighbourhood Ni(d) contains
all of the nodes that lie within a
radius d of the winning node

