
Unsupervised Learning

• Learning without a teacher
– No targets for the outputs

– Networks which discover patterns, 
correlations, etc. in the input data

– This is a self organisation

• Self organising networks
– An important parallel with neuronal 

networks in the brain

– Target outputs are often a totally 
meaningless concept in the brain

• An obvious question to ask is -

What meaning can be ascribed to the

outputs of an unsupervised network?

“Meaning” of Outputs in 
Unsupervised Networks

• We need to be able to produce a 
semantics for the outputs

• There are a number of possibilities 
depending on the architecture of 
the network and the learning 
algorithm employed

• Hertz, Krogh & Palmer suggest the 
following -
– Familiarity

– Principal Component Analysis

– Clustering

– Prototyping

– Encoding

– Feature Mapping



Output Meanings (I)

1.Familiarity
– A continuously-valued output could 

indicate how similar a new pattern is 
to a typical or an average pattern

– 1 might mean very similar and 0 very 
different with a gradation in between

– Gradually the network could learn 
what a typical pattern is

2.Principal Component Analysis
– A number of familiarity measures on 

a number of output nodes provides a 
facility for measuring similarity on a 
number of different metrics

– Each metric would be a principal 
component which the network would 
learn as new patterns were presented

Output Meanings (II)

3.Clustering
– A number of binary-valued outputs 

could indicate which of a number of 
categories (one per output) a 
particular input pattern belonged to

– Highly correlated patterns would be 
categorised together

4.Prototyping
– The output could be a representative 

pattern from a particular class

– Clustering would be performed first 
and then a prototype pattern 
produced on the output nodes

– This would be an associative 
memory but with the memories being 
discovered rather than burnt in



Output Meanings (III)

5.Encoding
– If there were fewer outputs than 

inputs then the network could 
perform data compression in which 
as much distinguishing information 
as possible was preserved

– An inverse decoding network could 
work in tandem with an encoding 
network for low bandwidth comms

6.Feature Mapping
– If the outputs represented a multi-

dimensional array then the network 
could map input patterns onto single 
elements of the array in such a way 
that similar input patterns were 
mapped to “nearby” elements

Output Meanings (IV)

Here are some examples of these 
possible meanings from our own 
human experience -

– We learn at a very early age that cats 
are more similar to dogs than they 
are to bricks (1, 2, 6)

– We  learn the concepts of “animal”, 
“mammal”, etc. long before we get a 
sound definition of them (3)

– We can also produce examples of 
certain types of animals without 
knowing their precise definitions (4)

– Massive data compression must
occur somewhere in the brain 
somehow, or our memories would be 
very much poorer than they are (5)



Types of Unsupervised 
Learning

We shall look at two types of 
unsupervised learning -

• Hebbian learning
– The Hebb Rule is an inherently 

unsupervised learning rule and can 
readily be applied as such

– Nodes which are active together 
increase their connection weight

• Competitive learning
– In competitive learning active nodes 

attempt to inhibit other nodes

– Nodes compete and successful ones 
prevent their peers from firing

Self Organising Feature 
Extraction

• An example of Hebbian learning 
due to Linsker (1986)

• Linsker produced a model of the 
visual system of the cat which was 
able to learn a lot a features which 
it is known can be identified by the 
visual cortex of the cat - and other 
mammals

• He used a 7 layer feed-forward 
network but with neighbourhood
rather than total connectivity 
between layers

• Each layer should be regarded as a 
two-dimensional pixel array or 
visual field



Linsker’s Network

• Each layer receives inputs from a 
particular receptive field in the 
previous layer

Linsker’s Equations

• The output of a node in Linsker’s 
network is given by

where a is a threshold and the other

variables take their usual meanings

• The weights are adjusted with a 
modified version of the Hebb Rule

where b, c and d are parameters which

permit different types of behaviour to

be produced 
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Linsker’s Simulations (I)

• Linsker used random noise as input

• Each layer had the weight update 
rule applied to it in turn

• The first layer of weights saturated 
to their maximum values (all 
weights were constrained to 
prevent them from growing 
inexorably)

• The nodes in Layer B simply 
averaged the inputs in their 
receptive fields (Linsker actually 
used a modified version of his 
modified Hebb Rule in practice 
which is why this happened)

Linsker’s Simulations (II)

• The nodes in Layer C developed 
into “centre-surround” detectors 
responding most to a bright spot in 
a dark field and vice versa



Linsker’s Simulations (III)

• Some nodes in Layer C and more 
and more in Layers D to F became 
“Mexican Hat” detectors

Linsker’s Simulations (IV)

• In Layer G Linsker increased the 
size of the receptive fields and, by 
varying  the parameters in the 
weight update rule, produced 
detectors for alternating bands of 
light and dark - these were 
orientation-specific nodes



Linsker’s Simulations (V)

• By adding connections between 
the nodes in Layer G he produced 
results very similar to the 
orientation columns found in the 
visual cortex of the cat … and 
monkeys … and us!

• These cortical columns contain 
neurons which respond to 
different orientations of dark bars 
on a light field and vice versa

• They are one of the few places in 
the brain where one can actually 
identify precisely what a neuron 
is representing when it fires

Self Organising Feature 
Mapping

• An example of competitive 
learning due to Kohonen (1982)

• Feature mapping is concerned with 
the geometric arrangement of the 
outputs
– Mapping input vectors onto a line, 

plane, cube, hypercube of outputs

• The closer the outputs are to each 
other (in the Euclidean metric) the 
more similar are the input vectors 
that activate them 

• Kohonen used a single layered 
network and a “winner takes all”
learning rule based on a 
neighbourhood function



“Winner Takes All”

• Each node competes to respond to 
an input vector, p, say

• The node whose weight vector is 
closest to p gets the highest net 
input and wins the competition
– This node outputs 1

– All other nodes output 0 

• The weights of the winning node 
are adjusted using the Kohonen
learning rule
– If the ith node wins then the elements 

of the ith row of the input matrix are 
adjusted 

• The Kohonen rule allows the 
weights of a node to learn an input 
vector

Kohonen’s 
Neighbourhood Function

• Instead of updating only the 
winning node, Kohonen had all of 
the nodes within a certain 
neighbourhood of the winning 
node to be updated

• The neighbourhood Ni(d) contains 
all of the nodes that lie within a 
radius d of the winning node


