Java 2D

» Review of Abstract Windows Toolkitt)
« Java 2D graphical objects

« Java 2D rendering

Abstract Windows Toolkitgwt)
Review ofimport files

» awt has always provided@raphics class - almost obsolete
* It now also offers &raphics2D class - much more versatile
e Don’t use the oldsraphics class except where you have to

» Abstract Windows Toolkit e« Java 2D geometry package

import java.awt.* import java.awt.geom.*

e Event handler « Java 2D image package
import java.awt.event.* import java.awt.image.*

e Print handler e Java 2D font package

import java.awt.print.* import java.awt.font.*

Java 2D Graphical Objects

» Shapes

— Lines, Closed Shapes, Paths, Areas
* Images

— Buffers, Codecs
e Text

— Fonts, Layouts, Transforms

Java 2D Graphical Objects
- Shapes

» Shapes are defined by creating classes that
Implement theShape interface

» A Shape is a list of components

« A component has 1 of 5 types and 0-3 points
— moveto specifies a non-drawing movement (needs 1 point)
— lineto specifies drawing a straight line (needs 1 point)
— quadto specifies drawing a quadratic spline (needs 2 ppint
— cubicto specifies drawing a cubic spline (needs 3 points)

— close specifies drawing a straight line back to the pgiaen
with the lasimoveto, thus closing the shape (needs 0 points

Java 2D Graphical Objects
- Shape Example

* Line2D is an abstract class which
Implements th&hape interface

 TheShape list has just 2 components in this

case
— moveto (10,30)
— lineto (180,190)

 This will specify the line but won’t draw it

» Creating shapes doesn’t display them
— Some kind ofiraw() method is needed for that

Java 2D Graphical Objects
- Closed Shapes

» Rectangle2D.*(x,y,w,h)
— Your standard rectangjé,y) = upper left corner]
* RoundRectangle2D.*(x,y,w,h,aw,ah)
— Rectangle with round corners
— Arc used to round offgw,ah are arc width, height]
o Ellipse2D.*(x,y,w,h)
— An ellipse [defined by its bounding rectangle]
—w=h gives a circle
i GeneralPath() * =Float orDouble

Java 2D Graphical Objects
- Defining Shapes with Paths

public void paint (Graphics g)

{

Graphics2D g2d = (Graphics2D)g;

GeneralPath pathShape = new GeneralPath();
pathShape.moveTo(150,100);
pathShape.lineTo(150,150);
pathShape.quadTo(50,100,50,50);
pathShape.curveTo(75,75,125,50,150,50);
pathShape.close();

g2d.draw(pathShape);

Java 2D Graphical Objects
- Iterating through Paths

Pathlterator segmentList =

pathShape.getPathlterator(null);

double[] coords = new double[6];
while (IsegmentList.isDone())

{

/I Extract type of segment and coordinates
int segmentType =

segmentList.currentSegment(coords);
/I Do stuff with this segment ...
segmentList.next();

Path Example

Java 2D Graphical Objects
- Areas

» Java 2D provides afsrea class which can be

used to create shapes upon which boolean
operations can be performed

Boolean Set
add() OR UNION
subtract() AND ... NOT DIFFERENCE
intersect() AND INTERSECTION
exclusiveOr() XOR UNION minus INTERSECTION

» Area objects are created fro8hape objects
— TheShape object MUST BE CLOSED

Java 2D Graphical Objects
- Area Example

» Consider 4 areas derived from ellipses
Area(] ellipse = new Area[4];

ellipse[0]= new Area(new Ellipse2D.Double(0,20,30,2 0);
ellipse[1]= new Area(new Ellipse2D.Double(30,20,30, 20);
ellipse[2]= new Area(new Ellipse2D.Double(20,0,20,3 0);
ellipse[3]= new Area(new Ellipse2D.Double(20,30,20, 30);

» Union ellipse[0] with ellipse[1] and ellipse[2] thi
ellipse[3] leaving results in ellipse[0] and elg)2]
respectively

ellipse[0].add(ellipse[1]); ellipse[2].add(ellipse[3D;

* What will the following leave in ellipse[0]?
ellipse[0].exclusiveOr(ellipse[2]);

Java 2D Graphical Objects
- Images

» Shapes are defined mathematically
— Each segment type in a path uses a formula
— They are an example wéctor graphics

» Images are defined by pixel arrays
— They are an example odster graphics

— Images can be created and manipulated in buffers
Bufferedimage thisimage =
new Bufferedimage(xDimension, yDimension,
imageType);

Java 2D Graphical Objects
- JPEG Image Example

ClassJpeg creates a JPEG file using the JPEG codec

import com.sun.image.codec.jpeg.*;

An image buffer is defined
Bufferedimage jpeglmage =
new Bufferedimage(200,200,Bufferedimage. TYPE_INT_RG B);

A Graphics2D object is created for the image
Graphics2D g2d = jpeglmage.createGraphics();

The JPEG codec does the work
JPEGImageEncoder encoder =
JPEGCodec.createJPEGENncoder(outFile);
encoder.encode(jpeglmage);

Java 2D Graphical Objects
- Text

* Fonts are defined with tHeont class
Font font = new Font(“SanSerif’, Font.BOLD, 34);

» Fonts vary between devices

— FontRenderContext describes the device

FontRenderContext fontRenderContext =
g2d.getFontRenderContext();

 TheTextLayout class specifies the text

TextLayout text = new TextLayout (string, font,
fontRenderContext);

e TextLayout has its owrdraw method
text.draw(g2d, X, y);

Java 2D Graphical Objects
- Text Transform Example

» To applyGraphics2D transformations we turn the
text into aShape
Shape textShape = text.getOutline(null);

 Thenull parameter refers to an affine transform

— By default the text will be located at (0,0)

— To locate it at (x,y) we can use a non-null transf
Shape textShape =
text.getOutline(AffineTransform.getTranslatelnstanc e(x,y))

» Since the text is now &hape we can draw it thus
g2d.draw(textShape);

Java 2D Graphical Objects
- Affine Transformations
» |nvariants of affine transformations

1. Curvature - straight lines cannot become curved
2. Parallelism - parallel lines remain parallel

» Graphics2D objects and affine transformations
/I Create a shear transform

AffineTransform affTransform =
AffineTransform.getShearlnstance(0.5, 0);

//Post-multiply by a translation (so shear done las t)
affTransform.translate(20, 20);

I/l Apply the transform to object -g2d-

g2d.setTransform(affTransform);

// Draw the shape -aShape- (not defined here)

g2d.draw(aShape);

Colour

Java 2D Rendering

— Fixed colours, Transparency, Composition

Filling
— Solid

fills, Gradient fills, Textured fills

Line Styles

— Strokes, Caps, Mitres, Dashes

Clipping

Java 2D Rendering
- Colours

e Colour is set with thesetPaint() method

g2d.setPaint(Color.black);

* The complete palette of fixed colours is:

— black, blue, cyan, darkgray, gray, green,
lightgray, magenta, orange, pink, red, white,

yellow

Java 2D Rendering
- Transparency

» We can define more colours by specifying their

Red, Green and Blue (RGB) components

Color deepPurple = new Color(0.5f,0.0f,0.5f);

» We can also add a fourth parameter called the

alpha value to indicate the degree of opaC|ty
Color seethruPurple = new Color(0.5f,0.0f,0.5f,0.5f)

* This is the RGBA colour model

— If a = 0.0 the colour is completely transparent
— If a = 1.0 the colour is completely opaque (default)

Java 2D Rendering
- Composition

Composition determines what to display when
different colours are drawn on top of each other

Composition algorithms use the concepts of a
destination and asource

— Destination @) is what has already been drawn
— Source §) is what is about to be added to it

Colour to be displayed and its alpha are given [
Cy = fiascs + fyoyCy [for each of R, G & B]
ay .= fio + fyo4 [for each of R, G & B]

Further draws continue to updatganday

y

10

Java 2D Rendering
- Source-over Composition Rule

» Various composition algorithms exist but the mg
common is theource-over rule

— The object currently being drawn (the source)ased
over any objects already drawn (the destination)
— In the source over rul&(cOver in Java)
f.=1 and fy=1-0, [for each of R, G & B]

So,
Cy:= asCs+ (1- a)) a4 Cy [for each of R, G & B]
ay:= ast (1- o) ay [for each of R, G & B]

g2d.setComposite(AlphaComposite.SrcOver);

St

Java 2D Rendering
- Other composition rules

Rule Java static fg fq
Source-over SrcOver 1 1- o
Source Src 1 0
Source-in Srcin ag O
Source-out SrcOut 1-04 O
Destination-over DstOver l-a4 1
Destination-in Dstin 0 O
Destination-out DstOut 0 1- ag
Clear Clear 0 0

11

Java 2D Rendering
- Solid Fills

 Solid Fills

//Set the fill colour
g2d.setPaint(Color.green);
/I Fill the shape -aShape-
g2d.fill(@aShape);

/l Make sure border drawn on top of filled
area

g2d.setPaint(Color.black);
g2d.draw(aShape);

Java 2D Rendering
- Gradient Fills

« Filling with gradient patterns

Paint pattern = new GradientPaint(x1,y1, Color.blue
x2,y2, Color.yellow);

g2d.setPaint(pattern);
g2d.fill(@aShape);

(x1,y1l) start point for gradient - pure blue
(x2,y2) end point of gradient - pure yellow
x,y) in general some mix of blue/yellow

12

Java 2D Rendering
- Textured Fills

 Filling with textured patterns

— A Bufferedlmage is used to define the texture
private Bufferedlmage textureConstructor()

{

Bufferedimage texcha = new Bufferedimage(...);

return texcha;

}

— We apply our method withexturePaint()

Paint pattern = new
TexturePaint(textureConstructor());

Java 2D Rendering
- Line Styles |

 Line styles are supported by tBaoke interface
and its implementing clagasicStroke

BasicStroke stroke;
stroke = new BasicStroke(width, capStyle, joinStyle);
g2d.setStroke(stroke);

» Thecap styles are the shapes of the ends of line

— BasicStroke.CAP_SQUARE

« Extends the line by an extra square
— BasicStroke.CAP_BUTT

« Squares off the end of the line but doesn’t exiénd
— BasicStroke.CAP_ROUND

» Extends with a semi-circle to round end off

S

13

Java 2D Rendering
- Line Styles Il

* Thejoin styles determine how lines are connect

to each other
— BasicStroke.JOIN _BEVEL
« Joins the outside edges of lines with a straiglet ¢jiving blunt corner
— BasicStroke.JOIN_MITER
« Extends the outside edges of lines until they rgaéhg sharp corner
* Note spelling: MITER (US), not MITRE (UK)

« Optionally a mitre limit parameter can be providelgich limits how far a
corner can be extended in the construction of tieechjoint

— BasicStroke.JOIN_ ROUND
« Caps corners with circular segments to give rodratener

192

Java 2D Rendering
- Line Styles Il

» Dashed lines are created by specifying template

In arrays
float[] dashPattern ={10,5,5,5};

— This sets up pattern which draws a line 10 pikaeig, leaves a
gap 5 pixels long, draws a line 5 pixels long dmehtleaves
another gap 5 pixels long (then repeats)

— A dash phase (float!) specifies where in the array the pattern
should start (0.0f means start with first entraimay)

BasicStroke stroke;

stroke = new BasicStroke(width, capStyle, joinStyle
miterLimit, dashPattern, dashPhase);

m

14

Java 2D Rendering
- Clipping

» Clipping is achieved in Java 2D by creating a
shape whose boundary determines what shou
and should not be drawn

— Anything outside the shape’s boundary is clipped
away and not displayed

— Clipping with an ellipse for example
Shape clippingShape =

new Ellipse2D.Double(30,70,200,100);
g2d.setClip(clippingShape);

Petzold’s Clover Leaf

d

15

Java 2D Exercise

* Develop a program to
— Display your name in a colourful and interesting/wal
* |.e. apply some transformations to it

— Draw a fancy border around it
* |.e. construct a path or three around it

— E-mail the output to me (nkt@macs.hw.ac.uk)
* l.e. save it as a JPEG file

» Before the next lecture please

16

