
1

Java 2D

• Review of Abstract Windows Toolkit (awt)

• Java 2D graphical objects

• Java 2D rendering

Abstract Windows Toolkit (awt)
Review of import files

• Abstract Windows Toolkit
import java.awt.*

• Event handler
import java.awt.event.*

• Print handler
import java.awt.print.*

• Java 2D geometry package
import java.awt.geom.*

• Java 2D image package
import java.awt.image.*

• Java 2D font package
import java.awt.font.*

• awt has always provided a Graphics class - almost obsolete

• It now also offers a Graphics2D class - much more versatile

• Don’t use the old Graphics class except where you have to

2

Java 2D Graphical Objects

• Shapes
– Lines, Closed Shapes, Paths, Areas

• Images
– Buffers, Codecs

• Text
– Fonts, Layouts, Transforms

Java 2D Graphical Objects
- Shapes

• Shapes are defined by creating classes that
implement the Shape interface

• A Shape is a list of components

• A component has 1 of 5 types and 0-3 points
– moveto specifies a non-drawing movement (needs 1 point)

– lineto specifies drawing a straight line (needs 1 point)

– quadto specifies drawing a quadratic spline (needs 2 points)

– cubicto specifies drawing a cubic spline (needs 3 points)

– close specifies drawing a straight line back to the point given
with the last moveto, thus closing the shape (needs 0 points)

3

Java 2D Graphical Objects
- Shape Example

• Line2D is an abstract class which
implements the Shape interface

• The Shape list has just 2 components in this
case
– moveto (10,30)

– lineto (180,190)

• This will specify the line but won’t draw it

• Creating shapes doesn’t display them
– Some kind of draw() method is needed for that

Java 2D Graphical Objects
- Closed Shapes

• Rectangle2D.*(x,y,w,h)

– Your standard rectangle [(x,y) = upper left corner]

• RoundRectangle2D.*(x,y,w,h,aw,ah)

– Rectangle with round corners
– Arc used to round off [aw,ah are arc width, height]

• Ellipse2D.*(x,y,w,h)

– An ellipse [defined by its bounding rectangle]
– w=h gives a circle

• GeneralPath() * = Float or Double

4

Java 2D Graphical Objects
- Defining Shapes with Paths

public void paint (Graphics g)

{

Graphics2D g2d = (Graphics2D)g;

GeneralPath pathShape = new GeneralPath();

pathShape.moveTo(150,100);

pathShape.lineTo(150,150);

pathShape.quadTo(50,100,50,50);

pathShape.curveTo(75,75,125,50,150,50);

pathShape.close();

g2d.draw(pathShape);

}

Java 2D Graphical Objects
- Iterating through Paths

PathIterator segmentList =

pathShape.getPathIterator(null);

double[] coords = new double[6];

while (!segmentList.isDone())

{

// Extract type of segment and coordinates

int segmentType =

segmentList.currentSegment(coords);

// Do stuff with this segment ...

segmentList.next();

}

5

Path Example

Java 2D Graphical Objects
- Areas

• Java 2D provides an Area class which can be
used to create shapes upon which boolean
operations can be performed

Boolean Set
add() OR UNION

subtract() AND … NOT DIFFERENCE

intersect() AND INTERSECTION

exclusiveOr() XOR UNION minus INTERSECTION

• Area objects are created from Shape objects
– The Shape object MUST BE CLOSED

6

Java 2D Graphical Objects
- Area Example

• Consider 4 areas derived from ellipses
Area[] ellipse = new Area[4];

ellipse[0]= new Area(new Ellipse2D.Double(0,20,30,2 0);

ellipse[1]= new Area(new Ellipse2D.Double(30,20,30, 20);

ellipse[2]= new Area(new Ellipse2D.Double(20,0,20,3 0);

ellipse[3]= new Area(new Ellipse2D.Double(20,30,20, 30);

• Union ellipse[0] with ellipse[1] and ellipse[2] with
ellipse[3] leaving results in ellipse[0] and ellipse[2]
respectively

ellipse[0].add(ellipse[1]); ellipse[2].add(ellipse[3]);

• What will the following leave in ellipse[0]?
ellipse[0].exclusiveOr(ellipse[2]);

Java 2D Graphical Objects
- Images

• Shapes are defined mathematically
– Each segment type in a path uses a formula

– They are an example of vector graphics

• Images are defined by pixel arrays
– They are an example of raster graphics

– Images can be created and manipulated in buffers
BufferedImage thisImage =

new BufferedImage(xDimension, yDimension,

imageType);

7

Java 2D Graphical Objects
- JPEG Image Example

• Class Jpeg creates a JPEG file using the JPEG codec
import com.sun.image.codec.jpeg.*;

• An image buffer is defined
BufferedImage jpegImage =

new BufferedImage(200,200,BufferedImage.TYPE_INT_RG B);

• A Graphics2D object is created for the image
Graphics2D g2d = jpegImage.createGraphics();

• The JPEG codec does the work
JPEGImageEncoder encoder =

JPEGCodec.createJPEGEncoder(outFile);

encoder.encode(jpegImage);

Java 2D Graphical Objects
- Text

• Fonts are defined with the Font class
Font font = new Font(“SanSerif”, Font.BOLD, 34);

• Fonts vary between devices
– FontRenderContext describes the device

FontRenderContext fontRenderContext =
g2d.getFontRenderContext();

• The TextLayout class specifies the text
TextLayout text = new TextLayout (string, font,

fontRenderContext);

• TextLayout has its own draw method
text.draw(g2d, x, y);

8

Java 2D Graphical Objects
- Text Transform Example

• To apply Graphics2D transformations we turn the
text into a Shape
Shape textShape = text.getOutline(null);

• The null parameter refers to an affine transform
– By default the text will be located at (0,0)

– To locate it at (x,y) we can use a non-null transform
Shape textShape =

text.getOutline(AffineTransform.getTranslateInstanc e(x,y))

• Since the text is now a Shape we can draw it thus
g2d.draw(textShape);

Java 2D Graphical Objects
- Affine Transformations

• Invariants of affine transformations
1. Curvature - straight lines cannot become curved

2. Parallelism - parallel lines remain parallel

• Graphics2D objects and affine transformations
// Create a shear transform

AffineTransform affTransform =
AffineTransform.getShearInstance(0.5, 0);

//Post-multiply by a translation (so shear done las t)

affTransform.translate(20, 20);

// Apply the transform to object -g2d-

g2d.setTransform(affTransform);

// Draw the shape -aShape- (not defined here)

g2d.draw(aShape);

9

Java 2D Rendering

• Colour
– Fixed colours, Transparency, Composition

• Filling
– Solid fills, Gradient fills, Textured fills

• Line Styles
– Strokes, Caps, Mitres, Dashes

• Clipping

Java 2D Rendering
- Colours

• Colour is set with thesetPaint() method

g2d.setPaint(Color.black);

• The complete palette of fixed colours is:

– black, blue, cyan, darkgray, gray, green,
lightgray, magenta, orange, pink, red, white,
yellow

10

Java 2D Rendering
- Transparency

• We can define more colours by specifying their
Red, Green and Blue (RGB) components
Color deepPurple = new Color(0.5f,0.0f,0.5f);

• We can also add a fourth parameter called the
alpha value to indicate the degree of opacity
Color seethruPurple = new Color(0.5f,0.0f,0.5f,0.5f) ;

• This is the RGBA colour model
– If α = 0.0 the colour is completely transparent

– If α = 1.0 the colour is completely opaque (default)

Java 2D Rendering
- Composition

• Composition determines what to display when
different colours are drawn on top of each other

• Composition algorithms use the concepts of a
destination and a source
– Destination (d) is what has already been drawn

– Source (s) is what is about to be added to it

• Colour to be displayed and its alpha are given by
cd := fs αs cs + fd αd cd [for each of R, G & B]

αd := fs αs + fd αd [for each of R, G & B]

• Further draws continue to update cd and ad

11

Java 2D Rendering
- Source-over Composition Rule

• Various composition algorithms exist but the most
common is the source-over rule
– The object currently being drawn (the source) is placed

over any objects already drawn (the destination)
– In the source over rule (SrcOver in Java)

fs =1 and fd =1-αs [for each of R, G & B]

So,

cd := αs cs + (1- αs) αd cd [for each of R, G & B]

αd := αs + (1- αs)αd [for each of R, G & B]

g2d.setComposite(AlphaComposite.SrcOver);

Java 2D Rendering
- Other composition rules

Rule Java static fs fd

Source-over SrcOver 1 1- αs

Source Src 1 0

Source-in SrcIn αd 0

Source-out SrcOut 1- αd 0

Destination-over DstOver 1- αd 1

Destination-in DstIn 0 αs

Destination-out DstOut 0 1- αs

Clear Clear 0 0

12

Java 2D Rendering
- Solid Fills

• Solid Fills

//Set the fill colour

g2d.setPaint(Color.green);

// Fill the shape -aShape-

g2d.fill(aShape);

// Make sure border drawn on top of filled
area

g2d.setPaint(Color.black);

g2d.draw(aShape);

Java 2D Rendering
- Gradient Fills

• Filling with gradient patterns

Paint pattern = new GradientPaint(x1,y1, Color.blue ,
x2,y2, Color.yellow);

g2d.setPaint(pattern);

g2d.fill(aShape);

(x1,y1) start point for gradient - pure blue

(x2,y2) end point of gradient - pure yellow

(x,y) in general some mix of blue/yellow

13

Java 2D Rendering
- Textured Fills

• Filling with textured patterns
– A BufferedImage is used to define the texture
private BufferedImage textureConstructor()

{

BufferedImage texcha = new BufferedImage(…);

.

.

.

return texcha;

}

– We apply our method with TexturePaint()
Paint pattern = new

TexturePaint(textureConstructor());

Java 2D Rendering
- Line Styles I

• Line styles are supported by the Stroke interface
and its implementing class BasicStroke
BasicStroke stroke;
stroke = new BasicStroke(width, capStyle, joinStyle);

g2d.setStroke(stroke);

• The cap styles are the shapes of the ends of lines
– BasicStroke.CAP_SQUARE

• Extends the line by an extra square

– BasicStroke.CAP_BUTT
• Squares off the end of the line but doesn’t extend it

– BasicStroke.CAP_ROUND
• Extends with a semi-circle to round end off

14

Java 2D Rendering
- Line Styles II

• The join styles determine how lines are connected
to each other
– BasicStroke.JOIN_BEVEL

• Joins the outside edges of lines with a straight line giving blunt corner

– BasicStroke.JOIN_MITER

• Extends the outside edges of lines until they meet giving sharp corner

• Note spelling: MITER (US), not MITRE (UK)

• Optionally a mitre limit parameter can be provided which limits how far a
corner can be extended in the construction of the mitred joint

– BasicStroke.JOIN_ROUND

• Caps corners with circular segments to give rounded corner

Java 2D Rendering
- Line Styles III

• Dashed lines are created by specifying templates
in arrays
float[] dashPattern = {10,5,5,5};

– This sets up pattern which draws a line 10 pixels long, leaves a
gap 5 pixels long, draws a line 5 pixels long and then leaves
another gap 5 pixels long (then repeats)

– A dash phase (float!) specifies where in the array the pattern
should start (0.0f means start with first entry in array)

BasicStroke stroke;

stroke = new BasicStroke(width, capStyle, joinStyle ,
miterLimit, dashPattern, dashPhase);

15

Java 2D Rendering
- Clipping

• Clipping is achieved in Java 2D by creating a
shape whose boundary determines what should
and should not be drawn
– Anything outside the shape’s boundary is clipped

away and not displayed

– Clipping with an ellipse for example
Shape clippingShape =

new Ellipse2D.Double(30,70,200,100);

g2d.setClip(clippingShape);

Petzold’s Clover Leaf

16

Java 2D Exercise

• Develop a program to
– Display your name in a colourful and interesting way

• I.e. apply some transformations to it

– Draw a fancy border around it
• I.e. construct a path or three around it

– E-mail the output to me (nkt@macs.hw.ac.uk)
• I.e. save it as a JPEG file

• Before the next lecture please

