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Drawing Lines in 2 Dimensions
Drawing a straight line (or an arc) between two eothts when one is limited to discrete
pixels requires a bit of thought.

Consider the following line superimposed on a 2atisional 7x7 pixel grid —

0,0 Line from (0,1) to (5,5)
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(6,6)

The pixels are indexed with the usual screen camwef x running from left to right angt
running from top to bottom. Which pixels shouldds# in order to represent the line?

If we increment our way vertically downwards thraudpey values, setting the pixel in the
appropriatex column as we go, we get —

(0,0) Varying y from 1to 5
o
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The pixellated line has gaps in it. If, on the othand, we increment our way horizontally
across through thevalues, setting the pixel in the appropriatcan-line as we go, we get —

(0,0) Varying x from Oto &
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This is clearly a much more satisfactory solution.

We note, however, that had the line been longsrtiman inx then the first solution would
have delivered the better result. The magnitudéeftlope of the line is the key here. If the

range exceeds theg range then the magnitude of the slope is less thamd we should
increment our way through(and vice versa).
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In fact, there are 4 cases to consider when setguethich pixels should be used to construct
a continuous line —

1. Positive slope less than 1

2. Positive slope greater than or equal to 1
3. Negative slope less than or equal to -1
4. Negative slope greater than -1

If we know the end points of the line to be drawe @an always calculate the slope —

m=Ye Vs

Xe - XS
A positive slope (in screen co-ordinates) means ttia line is monotonic increasing (&s
increases so doeg) whilst a negative slope indicates the opposite Xaincreasesy

decreases).

The intercept, where the line meets (or would nifeleihng enough) the axis is also readily

obtained —
C=y,—mi)

Of course, this relationship holds for all pairsxfandy values on the line so we can
determine & value for any value and vice versa —

Y = C+ mllx
or,

—-C C
g = Y= Co Y

m m m

Now, if we consider onlychangesin x andy we don’t need to worry about the intercept
except when determining the first pixel to be @dtt

Ay = mLA x
and,
AX = ﬂ
m

We shall consider two algorithms for drawing a 2ielon a display screen based on the
above principles; thBigital Differential AnalyserandBresenham’slgorithms.
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The Digital Differential Analyser (DDA) Algorithm

The DDA is a scan-conversion algorithm which sampléine at unit intervals along one axis
and determines integer values nearest the linthéother axis.

Consider the line we have been looking at. The DiBIAsample along the& axis in this case
determiningy values as it goes —

yk+1 = yk +m

If our line had a slope whose magnitude was greater 1 (45°) then the DDA would need to
sample along thg axis determining values using —

1
X1 = XK+E

These equations will work whether the slope is tpasior negative. When the slope is
negative thex andy values will vary inversely butn will have the opposite sign so all will be
well —

0,0 Varying x from Oto 6
”
/
//
> o
(6,6)

Note thatm is not necessarily an integer, so the DDA requieing point arithmeticand
rounding of the result. This will slow up the drawing prese— even if implemented in
hardware.
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Bresenham’s Algorithm

Bresenham’s algorithm scan-converts lines moreciefitly than the DDA by using only
integer arithmeticlt can also be adapted to display curves.

Consider, once again, a line with positive slos han 1 so we sample alongetermining
whichy to plot.

If we have just plotted the pix€kk, yk) we now need to decide whether to fbat.1, y«) or
(Xk+1, Yk+1) @s the next pixel on the line. Note tRat; = xx+1 andyi+1 = Yt+1. Let the vertical
disparities of the pixel positions from the actoethematical line be given lgy andd..

Then,

d=y-y=mx+l)+c y
and,

dzz(yk"'l)_y: % +1- IT( )§+])_ (

Consider now the difference between these two salue
d,—d,=2m( x+1)-2y+2c-1

If we let the differences between tkeandy co-ordinates of the end points of the line be
given by —

DX =%, = X,

and,
Ay =Y, =Y,

and if we insist that these endpoint co-ordinatesiategers (which they will be if they are
specified as pixels) then we can write the slopthefline as a ratio of two integers —

m=LY
AX

If we now substitute this ratio fan above we get —

A
dl—dzzzA—i(x( +1)- 2y, + 2c- 1

and so,
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AX(d, - d,) =20y — 20Xy + 28 A k2 e 3]

where the term in square brackets is constantrahebendent of the pixel position. We shall
call this termb from now on.

If we now define a decision parameter as follows —
P = AX( d, - dz)

=20y [k —2Ax0y + b

Then whenpg is positive we should choogery+1, yi+1) as the pixel to plot and when it is
negative we should chooég+1, yi).

Everything apart from the constari, in this decision can be calculated using integer
arithmetic so if we cam eliminate the need lbowe have a method for plotting lines using
integer arithmetic only.

Consider the difference —

P = P =28Y( X1 = %)= 2D X Yor— ¥)

We have already noted that; = xc+1 so we can re-write this as —

Pesr = P+ 28y= 28X Yoy~ ¥)
and wherdyi+1-Yk) is either O or 1 depending on the sigmpof

So we have a recurrence equation which involveg ioméger calculations and all that is left
is to determine a starting valpefor it.

Using the starting point of the lir{g,, ys) we can determine the intercept —

Ay
C=Y,—mx= ys_(&j X

and substituting this into the equation fpwe obtain —
Po = 20y - AX
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Aliasing and Anti-aliasing

When we produce lines with Bresenham’s algorithrhjlst we might be quite impressed

with the speed at which we can generate them, Wenatibe overly enamoured with the way
they look. In general they will appear jagged, ptgh rasterised. This effect is known as
aliasing a term derived from sampling signals at discpetimts in time and thus losing any

information conveyed between those discrete times.

Our mathematically ideal line describes a functidrose range is continuous but which our
pixellated raster screen requires to become descieteffect we are sampling at discrete
points along the line and plotting the most appedprpixel for each sample. We have no
choice of course; the screen resolution constraimssampling rate so aliasing is inevitable.
Furthermore, our ideal mathematical line has zkitkhess but the lines we wish to display
must have a thickness to be seen. Indeed, we maiktia of this requirement and put lines
of varying thickness to good use. In computer gigph straight line is, in reality, a thin

rectangle and we must treat it as such.

Consider the following line superimposed on a 2atisional 7x7 pixel grid —

0,0 Line from (0,1) to (5,5)

. . (6,6) , . :
This line has a very clear thickness and I1s quwaausly a filled rectangle. If we pixellate it,
as we did with our mathematically ideal line preisty, we get —

(0,0) Fixellated line ffom (0,1) to (a,5)

(6,6)

The pixellated line displays clear evidence ofsafig. Can we make it more aesthetically
appealing? Of course, the answer is yes. Wean#raliasit.

Anti-aliasing algorithms work by partially illumitiag pixels which are adjacent to those
plotted by the line drawing algorithm (e.g. the DBABresenham’s algorithms). This means
that anti-aliased lines will be wider than was @oly intended.

The two most common methods for anti-aliasingfdgtexing andsupersampling
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Filtering

This technique is based on the concept that eact pas an area of influence around it. If
our rectangular-shaped line overlaps the areaflofeimce of a pixel then that pixel should be
illuminated by an amount proportional to the degoé®verlap. This amount is determined
by afilter function

One popular filtering scheme is based on circutaas of influence which are one pixel in
radius. l.e. the area of influence of each pixeéeas as far as the centres of its four nearest

neighbours —

The filter function is defined to be a cone with iase being the area of influence and its
apex lying directly above the pixel's centre, dtedgght which produces an overall volume for
the cone of unity.

The intersection of a pixel’'s area of influencehatite rectangular line is then determined and
the volume of the cone directly above that intetisacyields the amount of illumination to be
applied to that pixel. Clearly the amount of illuration applied to any pixel will range from
0 (pixel's area of influence totally outwith thedi) up to 1 (pixel totally within the line).

This is clearly a computationally expensive procéssorder to keep the computation time
down it is normal to pre-calculate tables of valt@she filter function. The downside to this
is that the resulting algorithms are not very fidgi— the filter function, area of influence and
palette size are all fixed in a given table and angnges to these values will require a new
table to be produced.
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Supersampling

Another technique for anti-aliasing uses the conoépub-pixels Each pixel is divided into,
say nine, sub-pixels —

We then count the number of sub-pixels that the brmerlaps. We need a reference point
within each sub-pixel to use in this counting psxdt doesn’'t matter where it is as long as
we use it consistently for all sub-pixels. A cornguch as the top-left, is a popular choice.
Centres would produce a more aesthetically pleasiaglt but at the cost of computational
efficiency.

The proportion of sub-pixels which the line ovedajs then used to determine the
illumination, in discrete steps from 0 through tdClearly the larger the number of sub-pixels
which the pixel is divided into, the finer the regemn that can be accomplished in the
illumination. Once again we have to strike a batabetween aesthetics and computation
time. This will be determined by the needs of tagipular application.



