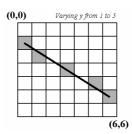
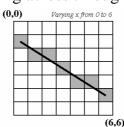

Drawing a line in 2D

• Consider a 7x7 pixel screen

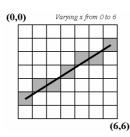


• Draw an oblique line across it



Selecting the pixels

• Indexing down through *y*



• Indexing across through x

Selecting the pixels

• Indexing across through *x* with a negative slope

• Digital Differential Analyser (DDA) Algorithm

$$y_{k+1} = y_k + m$$

$$x_{k+1} = x_k + \frac{1}{m}$$

Bresenham's Algorithm

- 1. Obtain the two endpoints and place the left hand one in (x_s, y_s)
- 2. Plot this point
- **3.** Calculate Δx , Δy , $2\Delta y$, $2\Delta x$ and p_{θ}

$$p_0 = 2\Delta y - \Delta x$$

4. Determine p_k for each x_k along the line

$$p_k = p_{k-1} + 2\Delta y - 2\Delta x (y_k - y_{k-1})$$

5. If $p_k < 0$ then plot (x_{k+1}, y_k) otherwise plot (x_{k+1}, y_{k+1})

Bresenham's Circle Algorithm

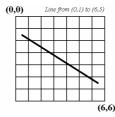
- 1. Consider a circle of radius r and centre (x_c, y_c)
- 2. We need only consider one octant pick the octant just below the x axis
- 3. Set x_{θ} to θ and y_{θ} to r
- 4. Plot the point $(x_0 + x_c, y_0 + y_c)$
- 5. Calculate $p_0 = 3 2r$
- 6. While $x_k < y_k$

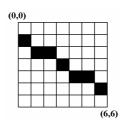
$$\operatorname{Set} x_{k+1} = x_k + 1$$

If $p_k < 0$ then set $y_{k+1} = y_k$

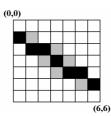
and plot the point $(x_{k+1}+x_c, y_{k+1}+y_c)$

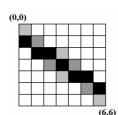
and set $p_{k+1} = p_k + 4x_k + 6$


Else set $y_{k+1} = y_k - 1$

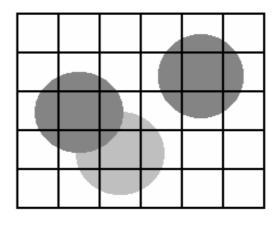

and plot the point $(x_{k+1} + x_c, y_{k+1} + y_c)$

and set $p_{k+1} = p_k + 4x_k - 4y_k + 10$


Aliasing and Anti-aliasing


• A line suffering from aliasing

• Anti-aliased versions

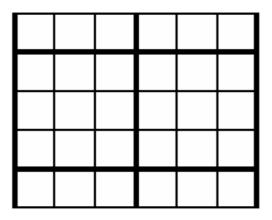


Anti-aliasing Methods - Filtering

- Method
 - Define an area of influence for each pixel
 - Determine the proportion of the area of influence lying within the rectangular line
 - Specify the filtering function to determine the illumination from this proportion
- Drawback
 - Filter function, area of influence, palette size are all fixed in pre-calculated tables

Filtering

• Circular areas of influence for a conical filter function



Anti-aliasing Methods - Supersampling

- Method
 - Break each pixel down into subpixels
 - Count number of sub-pixels whose top-left corner, say, lies within the rectangular line
 - Proportionally illuminate pixels based on number of sub-pixels counted
- Drawback
 - Line perceived to shift in direction of chosen reference points (e.g. top-left)

Supersampling

• Pixels divided into arrays of 3x3 sub-pixels

