
1

Java 3D - Concepts

• Java 3D uses the concept of a virtual 
universe (class VirtualUniverse ) in 
which all graphical objects, transformations, 
view platforms and observers reside

• This information collected together into a 
data structure called a scene graph

• It is possible for a Java 3D program to 
create more than one virtual universe but 
this is rarely likely to be necessary

Java 3D - Scene Graph Example



2

Java 3D - Scene Graph Notation

Java 3D - Scene Graph Description

• Each virtual universe comprises a number of 
locales (class Locale )
– In practice just one locale is usually sufficient

• Each locale comprises a number of branch groups 
(class BranchGroup )

• Each branch group comprises a number of 
transform groups (class TransformGroup )

• Transform groups contain objects (e.g. class 
Shape3D) and view platforms (class 
ViewPlatform )



3

Java 3D - Scene Graph Traversal

• All branches in a scene graph are treated 
independently of each other
– There can be no cross-referencing between branches

• Java 3D picks a branch group to traverse
– The order is unimportant

• It descends to the leaf nodes of that branch and 
works its way back up applying transformations 
as necessary

Java 3D - View Platforms

• View platforms specify the location and 
orientation of the viewer with respect to 
a locale

• Each locale must have a view platform

• The view platform has a view associated 
with it (class View )

• The view does the actual rendering onto 
a Canvas3D object for displaying



4

Java 3D - Group Nodes

• Virtual universes

• Locales

• Branch groups

• Transform groups

Java 3D - Locales

• Locales need to be anchored in their virtual 
universe just like any other object

• By default they are located at (0.0,0.0,0.0) but 
they can be translated to different positions

• High resolution co-ordinates (HiResCoord )
– Three 256 bit fixed point numbers with the fixed 

point at bit 128 (three 8 element integer arrays)

– 1.0 in high-resolution co-ordinates is 1 metre

– An enormous range of spatial values can be handled 
with great precision using high resolution co-ords



5

Java 3D
- High-Resolution Co-ordinates

2 n Metres Units

87.29 Universe (20 billion light years)

69.68 Galaxy (100,000 light years)

53.07 Light year

43.43 Solar system diameter

23.60 Earth diameter

10.65 Mile

9.97 Kilometre

0.00 Metre

-19.93 Micron

-33.22 Angstrom

-115.57 Planck length

Java 3D - Branch Groups

• When a branch group is added to a locale it 
is automatically displayed and then updated 
whenever it is modified

• At least one branch group must contain a 
view platform or nothing will be displayed

• Branch groups can be nested

• Branch groups are really just collators and 
contain only pointers to other branch groups 
and transform groups



6

Java 3D - Transform Groups

• Transform groups contain a 3D homogeneous 
affine transformation
– The transformations are applied to all children 

nodes in the scene graph
• Transform groups can be nested
• Transform groups possess a capability bit 

which permits certain modifications to be 
made after they are made live (added to the 
scene graph)
– E.g. ALLOW_TRANSFORM_WRITE

• Transform groups can also be given 
behaviours which permit animation, etc.

Java 3D - Leaf Nodes

• We’ve already mentioned two types
– Shapes

– View Platforms

• Others include
– Lights

– Behaviours

– Audio

• Leaf nodes refer to NodeComponent objects



7

Java 3D - Node Components

• We’ve already mentioned one type
– Views

• NodeComponent objects are NOT part of the 
scene graph

• They contain attributes (data) required by the 
leaf nodes of the scene graph

• The basic geometry of a Shape3D object is a 
node component, as is its appearance

Shape3D
- Geometries and Appearances

Shape3D fred = new Shape3D(geometry, appearance);

• Shape3D geometries can be described as
– Geometry Arrays, Strip Arrays and Indexed Arrays

– Raster, Text3D and Compressed Geometry

• Shape3D appearance attributes describe
– Point, Line & Polygon display

– Colour, Transparency & Rendering

– Material & Texture



8

Shape3D - Re-use

• We have met the convenience utility class 
ColorCube() which enables us to create a 
cube with faces of different colours
– We can also optionally scale it by passing a double 

value as a parameter

• We can create as many objects of this class as 
we desire, all identical in geometry and 
appearance (but varying in scale)

• Creating multiple copies of visual objects is a 
common requirement

Shape3D - Visual Objects



9

Shape3D - Visual Objects

• A visual object is an instance of Shape3D
Shape3D()

Constructs and initialises a Shape3D object with null Geometry and 
Appearance node components
Shape3D(Geometry geometry)

Constructs and initialises a Shape3D object with the specified 
geometry and a null appearance component
Shape3D(Geometry geometry, Appearance appearance)

Constructs and initialises a Shape3D object with the specified 
geometry and appearance components

• Shape3D geometry and appearance can be set 
void setGeometry(Geometry geometry)

void setAppearance(Appearance appearance)

Defining a VisualObject Class
public class VisualObject extends Shape3D {

private Geometry voGeometry;

private Appearance voAppearance;

public VisualObject() {

voGeometry = createGeometry();

voAppearance = createAppearance();

this.setGeometry(voGeometry);

this.setAppearance(voAppearance);

}

private Geometry createGeometry() {

// Code to create default geometry of visual object

}

private Appearance createAppearance () {

// Code to create default appearance of visual obje ct

}

}



10

A Scene Graph

A Compiled Scene Graph


