Java 3D - Concepts

» Java 3D uses the concept ofigual
universe (classVirtualUniverse)in
which all graphical objects, transformations,
view platforms and observers reside

» This information collected together into a
data structure calledsaene graph

* Itis possible for a Java 3D program to
create more than one virtual universe but
this is rarely likely to be necessary

Java 3D - Scene Graph Example

Shape3D nod

- @ TransformGroup Node
‘ a ______q View h__!‘ Canvas3D "___" Screen3D ‘

View Platform /
Node Components

Physical Body Physical Environment

Java 3D - Scene Graph Notation

Nodes and NodeComponents {objects) Arcs (object relationships)

VirtualUniverse —» parent-child link

Q
\

Locale —_

reference

Group

O

O

A Leaf
-,

NodeComponent

other objects

Java 3D - Scene Graph Description

» Each virtual universe comprises a number of
locales (classLocale)

— In practice just one locale is usually sufficient
» Each locale comprises a numbebodnch groups
(classBranchGroup)

» Each branch group comprises a number of
transform groups (classTransformGroup)

» Transform groups contambjects (e.g. class
Shape3D) andview platforms (class
ViewPlatform)

Java 3D - Scene Graph Traversa

» All branches in a scene graph are treated
independently of each other
— There can be no cross-referencing between branches

« Java 3D picks a branch group to traverse
— The order is unimportant

It descends to the leaf nodes of that branch and

works its way back up applying transformations
as necessary

J

Java 3D - View Platforms

* View platforms specify the location and
orientation of the viewer with respect to
a locale

» Each locale must have a view platform

* The view platform has a view associated
with it (classView)

* The view does the actual rendering onto
aCanvas3D object for displaying

Java 3D - Group Nodes

Virtual universes
Locales

Branch groups
Transform groups

Java 3D - Locales

» Locales need to be anchored in their virtual
universe just like any other object

» By default they are located at (0.0,0.0,0.0) but
they can be translated to different positions
» High resolution co-ordinatesl{ResCoord)

— Three 256 bit fixed point numbers with the fixed
point at bit 128 (three 8 element integer arrays)
— 1.0 in high-resolution co-ordinates is 1 metre

— An enormous range of spatial values can be handlg
with great precision using high resolution co-ords

d

Java 3D
- High-Resolution Co-ordinates

2"Metres Units
87.29 Universe (20 billion light years)
69.68 Galaxy (100,000 light years)
53.07 Light year
43.43 Solar system diameter
23.60 Earth diameter

10.65 Mile
9.97 Kilometre
0.00 Metre

-19.93 Micron
-33.22 Angstrom
-115.57 Planck length

Java 3D - Branch Groups

When a branch group is added to a locale it
is automatically displayed and then updated
whenever it is modified

At least one branch group must contain a
view platform or nothing will be displayed

Branch groups can be nested

Branch groups are really just collators and
contain only pointers to other branch groups
and transform groups

Java 3D - Transform Groups

* Transform groups contain a 3D homogeneou:
affine transformation

— The transformations are applied to all children
nodes in the scene graph

 Transform groups can be nested

» Transform groups possess a capability bit
which permits certain modifications to be
made after they are matee (added to the
scene graph)

— E.g. ALLOW_TRANSFORM_WRITE

 Transform groups can also be given
behaviours which permit animation, etc.

Java 3D - Leaf Nodes

We’'ve already mentioned two types

— Shapes

— View Platforms

Others include

— Lights

— Behaviours

— Audio

» Leaf nodes refer ttlodeComponent objects

UJ

Java 3D - Node Components

» We've already mentioned one type
— Views

 NodeComponent objects are NOT part of the
scene graph

* They contain attributes (data) required by the
leaf nodes of the scene graph

* The basic geometry of$hape3D object is a
node component, as is its appearance

Shape3D
- Geometries and Appearances

Shape3D fred = new Shape3D(geometry, appearance);
» Shape3D geometries can be described as
— Geometry Arrays, Strip Arrays and Indexed Arrays
— Raster, Text3D and Compressed Geometry
» Shape3D appearance attributes describe
— Point, Line & Polygon display
— Colour, Transparency & Rendering
— Material & Texture

Shape3D - Re-use

* We have met the convenience utility class
ColorCube() which enables us to create a

cube with faces of different colours

— We can also optionally scale it by passing a doubl
value as a parameter
* We can create as many objects of this class a:
we desire, all identical in geometry and
appearance (but varying in scale)

» Creating multiple copies afsual objectsis a
common requirement

UJ

Shape3D - Visual Objects

Shape3D - Visual Objects

A visual object is an instance ddhape3D
Shape3D()

Constructs and initialises a Shape3D object with null Geometry and
Appearance node components

Shape3D(Geometry geometry)

Constructs and initialises a Shape3D object with the specified
geometry and a null appearance component

Shape3D(Geometry geometry, Appearance appearance)

Constructs and initialises a Shape3D object with the specified
geometry and appearance components

» Shape3D geometry and appearance can be get
void setGeometry(Geometry geometry)
void setAppearance(Appearance appearance)

Defining aVisualObject Class

public class VisualObject extends Shape3D {

private Geometry voGeometry;

private Appearance voAppearance;

public VisualObject() {
voGeometry = createGeometry();
voAppearance = createAppearance();
this.setGeometry(voGeometry);
this.setAppearance(voAppearance);

}

private Geometry createGeometry() {

/I Code to create default geometry of visual object

}

private Appearance createAppearance () {

/I Code to create default appearance of visual obje ct

}

A Scene Graph

A Compiled Scene Graph

10

