
1

Primitives - Box & Cylinder
• Box

Box()

Constructs a default box 2.0 metres in height, width, and depth, centred at the 
origin

Box(float xdim, float ydim, float zdim, Appearance app)

Constructs a box of a given dimension and appearance

• Cylinder
Cylinder()

Constructs a default cylinder of radius 1.0 metre and height 2.0 metres, aligned 
along the y-axis and centred at the origin

Cylinder(float radius, float height)

Constructs a cylinder of a given radius and height
Cylinder(float radius, float height, Appearance app )

Constructs a cylinder of a given radius, height and appearance

Primitives - Cone & Sphere
• Cone

Cone()

Constructs a default cone of radius 1.0 metre and height 2.0 metres, aligned along 
the y-axis and centred at the origin

Cone(float radius, float height)

Constructs a cone of a given radius and height
Cone(float radius, float height, Appearance app)

Constructs a cone of a given radius, height and appearance

• Sphere
Sphere()

Constructs a default sphere of radius of 1.0 metre, centred at the origin
Sphere(float radius)

Constructs a sphere of a given radius
Sphere(float radius, Appearance app)

Constructs a sphere of a given radius and appearance



2

Primitives - Surface Normals

The previous set of constructors create primitives without surface

normals. In order to illuminate a geometric object surface normals

must be provided. The following set of constructors will generate

surface normals when  creating the primitives -

Box (xdim, ydim, zdim,

Box.GENERATE_NORMALS, appearance)

Cone (radius, height,

Cone.GENERATE_NORMALS, appearance)

Cylinder (radius, height,

Cylinder.GENERATE_NORMALS, appearance)

Sphere (radius, Sphere.GENERATE_NORMALS, appearance )

Primitives - Methods
public void setNumVertices(int num)

Sets total number of vertices in this primitive
void setAppearance()

Sets the main appearance of the primitive (all subparts) to a default white 
appearance

void setAppearance(int partid, Appearance appearance )

Sets the appearance of a subpart given a partid. Box, Cylinder and Cone 
objects are composed of more than one Shape3D object, each potentially 
with its own Appearance node component. The value used for partid
specifies which of the Appearance node components to set

Shape3D getShape(int partid)

Gets one of the faces (Shape3D) from the primitive that contains the 
geometry and appearance. The value used for partid specifies which of the 
Geometry node components to get (it must be absent or 1 for a sphere)



3

Shape3D - Geometry

• Subclasses of Geometry fall into three broad 
categories
– Non-indexed vertex-based geometry

• Each time a visual object is rendered, its vertices may 
be used only once

– Indexed vertex-based geometry
• Each time a visual object is rendered, its vertices may 

be reused

– Other visual objects
• Raster, Text3D and CompressedGeometry

Geometry Arrays
GeometryArray(int vertexCount, int vertexFormat)

Constructs an empty GeometryArray object with the specified number of 
vertices, and vertex format. One or more individual flags are bitwise ORed
together to describe the per-vertex data. The flag constants used for specifying 
the format are:

COORDINATES: This vertex array contains co-ordinates

This bit must be set
NORMALS: This vertex array contains surface normals

COLOR_3: This vertex array contains colours without transparency

COLOR_4: This vertex array contains colours with transparency

TEXTURE_COORDINATE_2: This vertex array contains 2D texture co-ords

TEXTURE_COORDINATE_3: This vertex array contains 3D texture co-ords

For each flag a corresponding array is created internal to the GeometryArray



4

GeometryArray Subclasses
• GeometryArray is an abstract class which 

acts as a base class for a number of classes 
which permit geometry to be specified as a list 
of co-ordinates

PointArray(int vertexCount, int vertexFormat)

LineArray(int vertexCount, int vertexFormat)

TriangleArray(int vertexCount, int vertexFormat)

QuadArray(int vertexCount, int vertexFormat)

GeometryStripArray()

Geometry Array Examples



5

Geometry Strip Arrays

• GeometryStripArray is an abstract class 
from which strip primitives are derived

LineStripArray(int vertexCount, int vertexFormat, 
int stripVertexCounts[])

TriangleStripArray(int vertexCount, int
vertexFormat, int stripVertexCounts[])

TriangleFanArray(int vertexCount, int
vertexFormat, int stripVertexCounts[])

• Strip primitives re-use vertices

Geometry Strip Array Examples



6

Insides and Outsides

• Right-hand rule
– Place right hand over a polygon and curl fingers in 

direction in which vertices have been ordered

– Thumb will point in outwards direction

• Triangle strip arrays cause a problem
– Direction of thumb alternates for each successive 

triangle

• For GeometryStripArray objects Java does 
this alternation automatically

Indexed Geometry

• Indexed geometry provides a mechanism for 
eliminating all redundancy in vertices
– Indexed geometry will take longer to render though

• A set of index arrays point into the four data 
arrays within a geometry array (co-ordinates, 
normals, colours, textures)

• The values in the index arrays provide the order 
in which the vertices are to be used during 
rendering so the order of the vertices themselves 
is no longer important



7

Co-ordinate Indexed Array

Indexed Geometry Arrays

• IndexedGeometryArray is an abstract class 
from which indexed geometry classes are derived

IndexedPointArray(int vertexCount, int vertexFormat, 
int indexCount)

IndexedLineArray(int vertexCount, int vertexFormat,  
int indexCount)

IndexedTriangleArray(int vertexCount, int vertexForma t, 
int indexCount)

IndexedQuadArray(int vertexCount, int vertexFormat,  
int indexCount)

IndexedGeometryStripArray()



8

Tetrahedron Example – Co-ordinates
Consider the following code fragments from the tetrahedron code supplied -

// Construct an indexed triangle array object to ho ld 12
// indices to the co-ordinates of the 4 vertices

IndexedTriangleArray tetrahedronGeometry =
new IndexedTriangleArray( 4, GeometryArray.COORDINATES, 12);

// Generate an array to define the co-ordinates of 4 vertices
Point3d vertices[] = new Point3d[ 4];
vertices[0]= new Point3d(-1.0,-1.0,0.0);
vertices[1]= new Point3d(1.0,-1.0,0.0);
vertices[2]= new Point3d(0.0,1.0,0.0);
vertices[3]= new Point3d(0.0,0.0,2.0);

// Set the co-ordinates of the 4 vertices starting with the
// vertex defined in element 0 of the vertices array

tetrahedronGeometry.setCoordinates( 0,vertices);
Shape3D tetrahedron = new Shape3D(tetrahedronGeomet ry);

Tetrahedron Example - Indices
// Generate an index array which identifies the 3 v ertices for
// each of the 4 triangular faces in the order requ ired to
// define the inside and outside of the tetrahedron  correctly

int faceIndices[] = {
0,2,1,  // Base – vertices[0], vertices[2], vertices [1]
0,1,3,  // Side 1
2,0,3,  // Side 2
1,2,3   // Side 3
};

// Set the 12 vertex indices, specified in the constructor,
// starting with element 0 of the faceIndices array

TetrahedronGeometry.setCoordinateIndices( 0,faceIndices);
Shape3D tetrahedron = new Shape3D(tetrahedronGeomet ry);



9

Tetrahedron Example –
Geometry and Colours

// Construct an indexed triangle array object to ho ld

// 12 indices to the co-ordinates of the 4 vertices

// and to 12 indices to colours for the vertices

IndexedTriangleArray TetrahedronGeometry =

new IndexedTriangleArray(

4,GeometryArray.COORDINATES|GeometryArray.COLOR_3, 12);

// Note that the colours will be used to gradient f ill

// the 4 faces of the tetrahedron depending on whic h

// colours are linked to which vertices of each fac e

Shape3D tetrahedron = new Shape3D(tetrahedronGeomet ry);

Tetrahedron Example - Colours
// Generate an array to define 4 colours by their R GB values

Color3f colours[] = new Color3f[4];
colours[0]= new Color3f(1.0f,1.0f,1.0f); // White
colours[1]= new Color3f(1.0f,0.0f,0.0f); // Red
colours[2]= new Color3f(0.0f,1.0f,0.0f); // Green
colours[3]= new Color3f(0.0f,0.0f,1.0f); // Blue
TetrahedronGeometry.setColors(0,colours);

// Generate an index array which assigns one of the  4 colours
// to each vertex in the definition of each of the 4 faces

int colourIndices[] = {
0,2,1,  // Base – colours[0], colours[2], colours[1]
0,1,3,  // Side 1
2,0,3,  // Side 2
1,2,3   // Side 3

};
TetrahedronGeometry.setColorIndices(0,colourIndices );
Shape3D tetrahedron = new Shape3D(tetrahedronGeomet ry);



10

Tetrahedron Example –
Polygon Attributes

// Set the appearance of the tetrahedron
PolygonAttributes tetrahedronAttributes =

new PolygonAttributes();

tetrahedronAttributes.setPolygonMode(
PolygonAttributes.POLYGON_LINE);

Appearance appear = new Appearance();
appear.setPolygonAttributes(tetrahedronAttributes);
tetrahedron.setAppearance(appear);

// Note that setting the appearance with PolygonMod e
// in PolygonAttributes enforces rendering in
// wire-frame mode according to POLYGON_LINE

Indexed Geometry Strip Arrays

• IndexedGeometryStripArray is 
an abstract class from which indexed strip 
classes are derived

IndexedLineStripArray(int vertexCount,

int vertexFormat, int indexCount,

int stripVertexCounts[])

IndexedTriangleStripArray(int vertexCount,

int vertexFormat, int indexCount,

int stripVertexCounts[])

IndexedTriangleFanArray(int vertexCount,

int vertexFormat, int indexCount,

int stripVertexCounts[])



11

GeometryInfo Class

• GeometryInfo() constructs a triangle array 
from a co-ordinate list defining a set of polygons
– It also permits some of the polygons to define holes 

within other polygons
– A separate Triangulator() can perform an 

additional random triangulation (deprecated!)

• NormalGenerator() generates normals for  
each vertex in the triangle array

• Stripifier() turns the triangle array into a 
triangle strip array for greater efficiency

GeometryInfo Types

• GeometryInfo() is invoked with a single 
argument which specifies the type of geometric 
shape which is to be created
– GeometryInfo.POLYGON_ARRAY

– GeometryInfo.QUAD_ARRAY

– GeometryInfo.TRIANGLE_ARRAY

– GeometryInfo.TRIANGLE_FAN_ARRAY

– GeometryInfo.TRIANGLE_STRIP_ARRAY

• GeometryInfo.POLYGON_ARRAY is the 
most useful of these because the others can all be 
handled with constructors we have already met



12

GeometryInfo Details
• The vertices are specified as an ordered array of 

co-ordinates
– With duplication of vertices as in geometry arrays

• A strip count array gathers the co-ordinates into 
an ordered list of polygonal faces
– By stating how many vertices belong to each polygon 

starting from the beginning of the co-ordinate list

• A contour count array identifies containing 
polygons and the holes they contain
– By forming groups of the polygons in the strip count 

array the first of which is a container, the rest holes

Gasket Example – Co-ordinates
Consider the following code fragments from the gasket code supplied –

GeometryInfo gasket = new GeometryInfo(GeometryInfo.POLYGON_ARRAY);
// Generate the co-ordinate array for the 6 faces and 3 holes
double[] gasketCoordinates = {
// Bottom face of cube
-1,-1,-1,     1,-1,-1,     1,-1, 1,    -1,-1, 1,
// Hole in bottom face
-0.5,-1,-0.5,     0.5,-1,-0.5,     0.5,-1, 0.5,    -0.5,-1, 0.5,
// Front face of cube
1, 1, 1,    -1, 1, 1,    -1,-1, 1,     1,-1, 1,

// Hole in front face
0.5, 0.5, 1,    -0.5, 0.5, 1,    -0.5,-0.5, 1,     0.5,-0.5, 1,

// Right face of cube
1, 1, 1,     1,-1, 1,     1,-1,-1,     1, 1,-1,

// Hole in right face
1, 0.5, 0.5,     1,-0.5, 0.5,     1,-0.5,-0.5,     1, 0.5,-0.5,

// Left face of cube
-1,-1,-1,     -1,-1, 1,     -1, 1, 1,     -1, 1,-1,

// Top face of cube
1, 1, 1,      1, 1,-1,     -1, 1,-1,     -1, 1, 1,

// Back face of cube
-1,-1,-1,     -1, 1,-1,      1, 1,-1,      1,-1,-1

};
gasket.setCoordinates(gasketCoordinates);



13

Gasket Example – Strip Counts

// Generate a strip count array which
// associates co-ordinates with polygons

int gasketStripCount[] = {
4,4,    // Bottom face and its hole
4,4,    // Front face and its hole
4,4,    // Right face and its hole
4, // Left face
4, // Top face
4 // Back face
};

gasket.setStripCounts(gasketStripCount);

Gasket Example – Contour Counts

// Generate a contour count array which sets polygo ns
// in the strip count array to be containers and ho les

int gasketContourCount[] = {
2,  // First 2 elements are the bottom and its hole
2,  // Next 2 are the front face and its hole
2,  // Then the right face and its hole
1,  // The left face has no hole
1,  // Nor does the top face
1,  // Finally the back face brings up the rear
};

gasket.setContourCounts(gasketContourCount);



14

GeometryInfo Manipulations
To perform an additional random triangulation -
Triangulator triang = new Triangulator(1);
triang.triangulate(gasket);

To generate normals for each vertex in the triangle array -
NormalGenerator norma = new NormalGenerator();
norma.generateNormal(gasket);

To turn the triangle array into a triangle strip array -
Stripifier stripper = new Stripifier();
stripper.stripify(gasket);

Note that the geometry required by the Shape3D object is obtained from the 
geometry array in the gasket GeometryInfo object, not gasket itself -
Shape3D gasketShape = new Shape3D();
gasketShape.setGeometry(gasket.getGeometryArray());


