
1

Shape3D - Appearances

Appearance objects can refer to several different Node

Component subclasses called appearance attribute objects

– PointAttributes

– LineAttributes

– PolygonAttributes

– ColoringAttributes

– TransparencyAttributes

– RenderingAttributes

– Material

– TextureAttributes

– Texture

– TexCoordGeneration

Point Attributes

To define point sizes in pixels
void setPointSize(float pointSize)

To Enable/disable point anti-aliasing
void setPointAntialiasingEnable

(boolean state)

Only relevant if pointSize > 1 pixel



2

Line Attributes

void setLinePattern(int linePattern)

PATTERN_SOLID solid lines (no pattern). This is the 
default.

PATTERN_DASH dashed lines; ideally, a repeating 
pattern of 8 pixels on and 8 pixels off.

PATTERN_DOT dotted lines; ideally, a repeating 
pattern of 1 pixel on and 7 pixels off.

PATTERN_DASH_DOT dashed-dotted lines; ideally, a 
repeating pattern of 7 pixels on, 4 pixels off, 1 
pixel on, and 4 pixels off.

PATTERN_USER_DEFINED lines with a user-defined line 
pattern. 

Polygon Attributes
void setCullFace(int cullFace)

cullFace is one of the following:

CULL_FRONT, CULL_BACK, CULL_NONE

Cull (do not render) front facing polygons, back facing

polygons, or don’t cull any polygons at all

void setPolygonMode(int polygonMode)

polygonMode is one of the following:

POLYGON_POINT, POLYGON_LINE, POLYGON_FILL

Render polygons as either points, lines, or filled polygons

(the default)



3

Colouring Attributes
Colour specification 
void setColor(Color3f color);

void setColor(float red,

float green,

float blue);

Shading model specification
void setShadeModel(int shadeModel);

shadeModel is one of the following:

SHADE_GOURAUD, SHADE_FLAT, FASTEST, NICEST

Generally FASTEST = FLAT

NICEST = GOURAUD

Transparency Attributes
TransparencyAttributes();

Constructs a TransparencyAttributes object with default values

TransparencyAttributes(int tMode, float tVal;

Construct TransparencyAttributes object with specified values

TransparencyAttributes(int tMode, float tVal,

int srcBlendFunction, int dstBlendFunction);

Construct TransparencyAttributes object with specified values

[tMode,tVal,srcBlendFunction,dstBlendFunction

covered on subsequent slides]



4

Transparency Value

• Note that the transparency value (tVal ) is the 
opposite of the alpha value used in the 
AlphaComposite class of Java 2D

• tVal lies in the range [0.0, 1.0]
– 0.0 is fully opaque

• Equivalent to Java 2D alpha of 1.0

– 1.0 is fully transparent
• Equivalent to Java 2D alpha of 0.0

• Quantity (1-tVal) still used in blend equations 
of alpha blend functions in Java 3D [See later]

Transparency Mode

The transparency mode can be one of

NONE
No transparency; the object is opaque

FASTEST

Use the fastest available method for transparency [default ??]

NICEST

Use the nicest available method for transparency [default ??]

SCREEN_DOOR

Use screen-door transparency; this is achieved with an on/off 
stipple pattern where the percentage of pixels that are transparent 
is approximately equal to tVal

BLENDED

Use alpha blended transparency [Covered on next slide]



5

Blend Equations

• Transparency mode BLENDED

• The blend equation is specified by a srcBlendFunction and a 
dstBlendFunction (cf AlphaComposite class in Java 2D)

• Blend equation form: Blend = fs*SrcColour + fd*DstColour

• Default source blend function is BLEND_SRC_ALPHA

• Default destination blend function is BLEND_ONE_MINUS_SRC_ALPHA

• Specifiable blend functions are:
BLEND_ZERO - the blend function is fi = 0 i ε {s,d}

BLEND_ONE - the blend function is fi = 1

BLEND_SRC_ALPHA - the blend function is fi = alphasrc

BLEND_ONE_MINUS_SRC_ALPHA - the blend function is fi = 1 - alphasrc

where alphasrc = 1-tVal of the source

Rendering Attributes

public RenderingAttributes()

Constructs a RenderingAttributes object with the
following default parameter values:

Parameter Default Value
alphaTestFunction ALWAYS

alphaTestValue 0.0
depthBufferEnable true

depthBufferWriteEnable true

ignoreVertexColors false

visible true



6

Pixel Rendering Operations
• RenderingAttribute s controls two different 

per-pixel rendering operations
– Alpha test

• setAlphaTestValue()
setAlphaTestFunction()

determine whether and how the alpha test function is used

– Depth buffer test
• setDepthBufferEnable()

setDepthBufferWriteEnable()

determine whether and how the depth buffer is used for 
hidden surface removal

Alpha Test Function

The alpha test function is one of the following:

ALWAYS
Pixels are always drawn irrespective of the alpha value; disables alpha testing
NEVER
Pixels are never drawn irrespective of the alpha value
EQUAL
Pixels are drawn if the pixel alpha value is equal to the alpha test value
NOT_EQUAL
Pixels are drawn if the pixel alpha value is not equal to the alpha test value
LESS
Pixels are drawn if the pixel alpha value is less than the alpha test value
LESS_OR_EQUAL
Pixels are drawn if the pixel alpha value is less than or equal to the alpha test value
GREATER and GREATER_OR_EQUAL cf LESS and LESS_OR_EQUAL



7

Depth Buffer

• The depth buffer is the collection of depth values for rendered 
pixels
– It is used to determine the visibility or occlusion of pixels as they are 

rendered

– It is used differently when rendering opaque and transparent objects

– As transparent objects do not occlude opaque objects they do not normally 
update the depth buffer

• The Depth buffer can be enabled or disabled for this 
RenderingAttributes component object
– Disabling the depth buffer ensures that an object is always visible, regardless 

of any occlusion that would normally have occurred

• The setDepthBufferWriteEnable() method enables or 
disables writing the depth buffer for this object

• By default both the buffer and DepthBufferWrite are enabled

Other Rendering Attributes

• Vertex colours
– Colours can be specified per vertex in Geometry objects
– These vertex colours can be ignored ifignoreVertexColors is true

– If lighting is enabled the Material diffuse colour will be used as the object 
colour

– Otherwise, if lighting is disabled, the ColoringAttributes colour is 
used

– The default value is false

• Visibility
– Visual objects are made invisible using the Visibility flag

– When the Visibility flag is false, visual objects are not rendered
– The flag is set with the setVisible() method

– By default, the Visibility flag is true



8

Material
The Material object defines the appearance of an object under

illumination. If the Material object in an Appearance object is

null, lighting is disabled for all nodes that use that Appearance

Material();

constructs and initialises a Material object using default parameters
Material(Color3f ambientColor,

Color3f emissiveColor,

Color3f diffuseColor,

Color3f specularColor,

float shininess);

constructs and initialises a new Material object with given parameters

Material Properties I

• Ambient colour
– The ambient RGB colour reflected off the surface 

of the material

– The range of values is 0.0 to 1.0

– The default ambient colour is (0.2, 0.2, 0.2)

• Diffuse colour
– The RGB colour of the material when illuminated

– The range of values is 0.0 to 1.0

– The default diffuse colour is (1.0, 1.0, 1.0)



9

Material Properties II

• Specular colour
– The RGB specular colour of the material 

• Highlights

– The range of values is 0.0 to 1.0

– The default specular colour is (1.0, 1.0, 1.0)

• Emissive colour
– The RGB colour of the light the material emits

– The range of values is 0.0 to 1.0

– The default emissive colour is (0.0, 0.0, 0.0)

Material Properties III

• Shininess
– The material's shininess in the range [1.0, 128.0]

• 1.0 being most matte and 128.0 being most gloss

– The default value for shininess is 64.0

• The Material object also enables/disables lighting

setLightingEnable(boolean state)

Enables/disables lighting for this Appearance object



10

Texture Attributes
TextureAttributes()

Constructs a TextureAttributes object with default parameters

TextureAttributes(int textureMode,

Transform3D transform, Color4f textureBlendColor, 
int perspectiveCorrectionMode)

Constructs a TextureAttributes object with the specified values

The TextureAttributes object defines attributes that apply to texture
mapping according to a textureMode which is one of the following -

MODULATE - modulates the object colour with the texture colour
DECAL - applies the texture colour to the object as a decal
BLEND - blends the texture blend colour with the object colour
REPLACE - replaces the object colour with the texture colour

Other Texture Attributes
• Transform

– Transform the texture coordinates

– The texture transform can translate, scale, or rotate the 
texture co-ordinates

• BlendColor
– The texture blend colour used when the texture mode is BLEND

• PerspectiveCorrectionMode
– The perspective correction mode used for colour and texture coordinate 

interpolation

– Must be one of the following:
• NICEST - uses the nicest (highest quality) available method for texture 

mapping perspective correction

• FASTEST - uses the fastest available method for texture mapping perspective 
correction



11

Texture

Texture()

Constructs a Texture object with default parameters

Texture(int mipMapMode,

int format, int width, int height)

Constructs an empty Texture object with specified

mipMapMode, format (RGBA normally), width

and height

MipMap Mode

The Mipmap mode specifies how many levels (images) form

the texture map -

BASE_LEVEL
Indicates that this Texture object only has a base-level image

If multiple levels are needed they will be implicitly computed

MULTI_LEVEL_MIPMAP
Indicates that this Texture object has multiple images

One for each mipmap level 

If this mode is used images for all levels must be provided



12

TexCoordGeneration

• Java 3D can automatically generate the texture 
coordinates needed for texture mapping onto 
contours.

• The TexCoordGeneration attributes 
specify functions for automatically generating 
texture coordinates

TexCoordGeneration(int genMode, int format,

Vector4f planeS, Vector4f planeT, Vector4f planeR)

Constructs a TexCoordGeneration object with the specified
genMode, format, and S, T, and R coordinate plane equations.

Texture Format
A texture generation mode defines how the texture coordinates are generated

OBJECT_LINEAR

Texture coordinates are generated as a linear function in object coordinates 

EYE_LINEAR

Texture coordinates are generated as a linear function in eye coordinates 

SPHERE_MAP

Texture coordinates are generated using spherical reflection mapping in eye

coordinates

TexCoordGeneration needs to know whether the texture is in 2D or 3D format

TEXTURE_COORDINATE_2

Generates 2D texture coordinates (S, T)

TEXTURE_COORDINATE_3

Generates 3D texture coordinates (R, S, T)



13

Plane Equation Definition

Plane equation coefficients define the plane equations used to generate the

coordinates in the OBJECT_LINEAR and EYE_LINEAR texture

generation modes.

The coefficients define a reference plane in either object coordinates or in

eye coordinates, depending on the texture generation mode

The equation coefficients are set by the setPlaneS() , 
setPlaneT() , and setPlaneR() methods 

By default the equation coefficients are

plane S = (1.0, 0.0, 0.0, 0.0)

plane T = (0.0, 1.0, 0.0, 0.0)

plane R = (0.0, 0.0, 0.0, 0.0)

Loading Textures from Files
NB The dimensions of a texture image must be 2n

import com.sun.j3d.utils.image.*;

TextureLoader loader = new 
TextureLoader(”imagefilename”, this);

ImageComponent2D image = loader.getImage();

Texture2D texture = new Texture2D();

texture.setImage(0, image);

Appearance appear = new Appearance();

appear.setTexture(texture);



14

Sharing Node Component 
Attributes


