
1

Java 3D Lighting

• Java 3D supports the following types of 
light sources
– Ambient

– Directional

– Point

– Spot

• Java 3D also supports mechanisms for 
defining the volumes which lights can affect 

General Light Methods

void setColor(Color3f color)

Sets the light's current colour

void setEnable(boolean state)

Turns the light on or off

void setInfluencingBounds(Bounds bounds)

Sets the light's influencing bounds (more later)



2

Ambient Lights
Light source objects providing the same intensity

of light at all locations in all directions

AmbientLight()

Constructs and initialises an ambient light source with default values of 
lightOn=true and colour=(1,1,1)

AmbientLight(Color3f colour)

Constructs and initialises an ambient light with specified colour

AmbientLight(boolean lightOn, Color3f colour)

Constructs and initialises an ambient light with given values

Directional Lights

Very distant light sources with a constant direction 

DirectionalLight()

Constructs and initialises a directional source with default values of 
lightOn=true ,  colour=(1, 1, 1) and direction=(0, 0, -1)

DirectionalLight(Color3f colour, Vector3f direction )

Constructs and initialises a directional light with specified colour and direction 
By default the state is true (on)

DirectionalLight(boolean lightOn, Color3f colour, 
Vector3f direction)

Constructs and initialises a directional light with given values



3

Point Lights

Light sources at fixed points in space that radiate

light equally in all directions away from them

PointLight()

Constructs and initialises a point light source with default values of
lightOn=true, colour=(1,1,1), position=(0,0,0) and
attenuation=(1,0,0)

PointLight(Color3f colour, Point3f position, Point3 f 
attenuation)

Constructs and initialises a point light with given colour, position and attenuation

By default the state is true (on)
PointLight(boolean lightOn, Color3f colour, Point3f  

position, Point3f attenuation)

Constructs and initialises a point light with given values

Spot Lights
Point light sources with direction, spread angle 
and concentration added
– The spread angle of a spotlight may cause the light to illuminate 

part of a visual object
– This is the only light capable of illuminating just a part of a 

visual object



4

Spot Lights

SpotLight()

Constructs and initialises a spot light source with default values of

lightOn=true, colour=(1,1,1), position=(0,0,0),

attenuation=(1,0,0), direction=(0,0,-1),

spreadAngle=PI (180 degrees) and concentration=0.0

SpotLight(Color3f colour, Point3f position,

Point3f attenuation, Vector3f direction,

float spreadAngle, float concentration)

Constructs and initialises a spot light with given values

By default the light is on

Influencing Bounds

• Java 3D insists that all light sources have a 
boundary of influence
– Geometry objects must intersect a light’s region 

of influence in order to be affected by it

– This permits considerable savings in 
computation time

– Except in the case of spot lights the whole of any 
such object is affected by the light during 
rendering

• There are a number of ways of achieving this



5

Bounding Primitives

• Java 3D provides 3 Bounds-derived classes 
for creating boundary regions
– BoundingBox()

• Cuboid aligned with the main co-ordinate axes

– BoundingSphere()

• Sphere centred on the origin

– BoundingPolytope()

• Convex volume defined by 4 or more planes

BoundingBox()
public BoundingBox()

Constructs and initialises a bounding box about the origin

The lower corner is initialised to (-1.0, -1.0, -1.0)

The upper corner is initialised to (1.0, 1.0, 1.0)

public BoundingBox(Point3d lower,

Point3d upper)

Constructs and initialises a bounding box given minimum

and maximum dimensions in x, y, z

lower is the "small" corner    upper is the "large" corner



6

BoundingSphere()

public BoundingSphere()

Constructs and initialises a bounding sphere

with radius = 1 at the origin

public BoundingSphere(Point3d centre,

double radius)

Constructs and initialises a bounding sphere from a centre

and radius

BoundingPolytope()

public BoundingPolytope()

Constructs a bounding polytope and initialises it to a set of

6 planes that define a cube such that -1 <= x,y,z <= 1

The values of the planes are

plane[0] :  x <= 1   (1,0,0,-1)

plane[1] : -x <= 1   (-1,0,0,-1)

plane[2] :  y <= 1   (0,1,0,-1)

plane[3] : -y <= 1   (0,-1,0,-1)

plane[4] :  z <= 1   (0,0,1,-1)

plane[5] : -z <= 1   (0,0,-1,-1)



7

Bounding Polytopes

• A bounding polytope object defines a volume 
using the intersection of four or more half-spaces

• The region defined by a bounding polytope is 
always convex and must be closed

• Each plane in a bounding polytope specifies a 
half-space defined by the equation:

Ax + By + Cz + D ≤ 0
where A, B, C, D are the parameters that specify 
the plane

• The intersection of the set of half-spaces 
corresponding to the planes defines the volume

Spherical Influencing Bounds

AmbientLight lightA = new 
AmbientLight();

lightA.setInfluencingBounds(new 
BoundingSphere());

scene.addChild(lightA);



8

Bounding Spheres

Bounding Leaves

• If we don’t want a light’s region of influence 
to follow it around but remain in a particular 
place in our universe we can use a bounding 
leaf

• Bounding leaves are leaf nodes of the scene 
graph in their own right and exist 
independently of any lights and their 
locations

• Bounding leaves can be given their own 
transform groups 



9

BoundingLeaf()

BoundingLeaf sphereLeaf =

new BoundingLeaf(new BoundingSphere());

AmbientLight LA = new AmbientLight();

LA.setInfluencingBoundingLeaf(sphereLeaf);

scene.addchild(sphereLeaf);

scene.addChild(LA); 

Bounding Leaf



10

Scope

• With bounding leaves we are getting close 
to a situation in which lights may be set up 
such that their region of influence is 
determined by geometry objects in the 
scene graph - close but not quite

• Scope allows us to actually do this!
– E.g. a spotlight can be set to follow a particular 

object wherever it goes using scope

Scope Lists

• Branches of the scene graph can be added to 
the scope of a light with
lightA.addScope(selectedBranchGroup)

• Scoping can lead to the lights driving the scene 
construction in very strange ways so beware
– In the diagrams on the next slide what happens to 

the lamp when the table is moved?



11

Scope versus Non-Scope Example

Scope/Non-Scope Example
Two boxes and a lamp on a table


