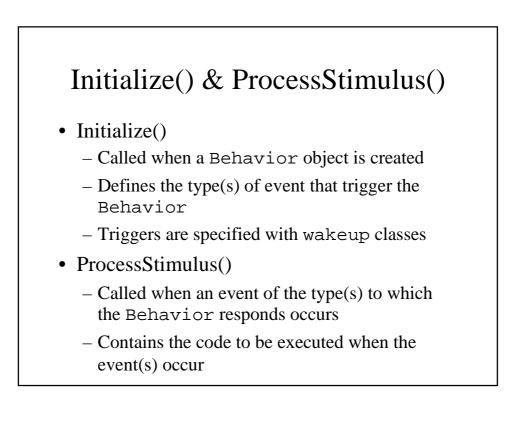

Behaviours

- Java 3D uses the Behavior class to facilitate interaction and animation
- This class, and its descendants, are links to user code which can change the graphics and sounds of the virtual universe
- The purpose of a Behavior object in a scene graph is to change the scene graph, or objects in the scene graph, in response to some stimulus

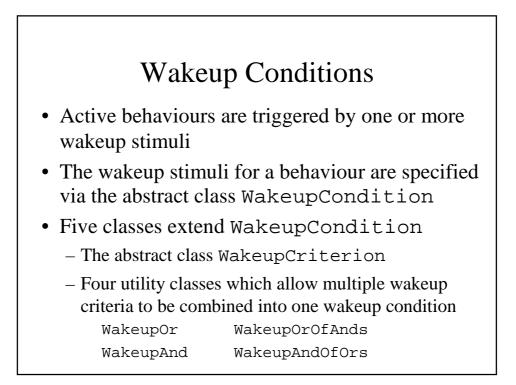

Behaviour Stimuli and Effects

- A stimulus can be the press of a key, a mouse movement, the collision of objects, the passage of time, some other event, or combinations of them
- Changes produced include adding objects to the scene graph, removing objects from the scene graph, changing attributes of objects in the scene graph, rearranging objects in the scene graph, or combinations of these

Behaviour Applications							
	Denavie	ui Appi	ncations	•			
	object of change						
stimulus (reason for change)	TransformGroup (visual objects change orientation or location)	Geometry (visual objects change shape or color)	Scene Graph (adding, removing, or switching objects)	View (change viewing location or direction)			
user	interaction	application specific	application specific	navigation			
collisions	visual objects change orientation or location	visual objects change appearance in collision	visual objects disappear in collision	View changes with collision			
time	animation	animation	animation	animation			
View location	billboard	level of detail (LOD)	application specific	application specific			

Interactions

- It is important to realise that interaction in Java 3D (via behaviours) is very different to interaction in 2D (via awt)
- The Behavior abstract class has two abstract methods
 - -initialize()
 - -processStimulus()
- All user-defined classes derived from Behavior must provide implementations of these two methods

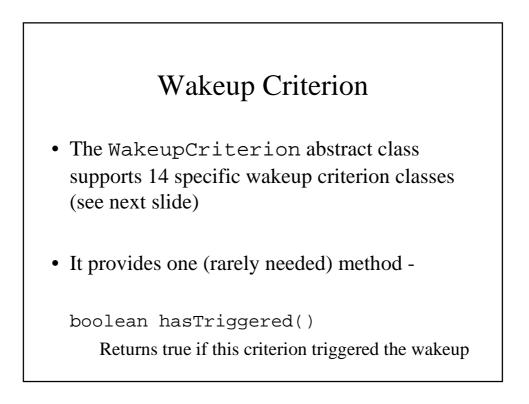


wakeupOn() Method

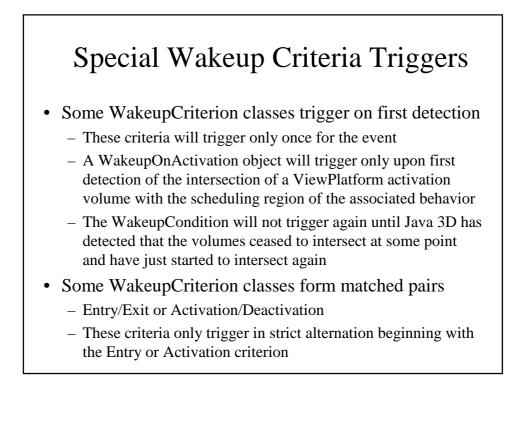
• In order for a behaviour to be triggered wakeup criteria must be specified for it

b.wakeupOn(WakeupCondition criteria) Defines the wakeup criteria for behaviour b

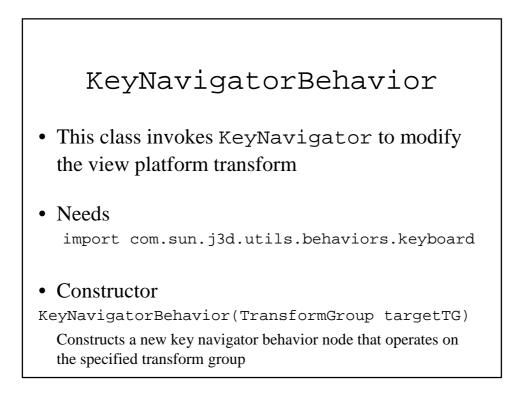
• **Both** initialize() **and** processStimulus() will normally need to call this method

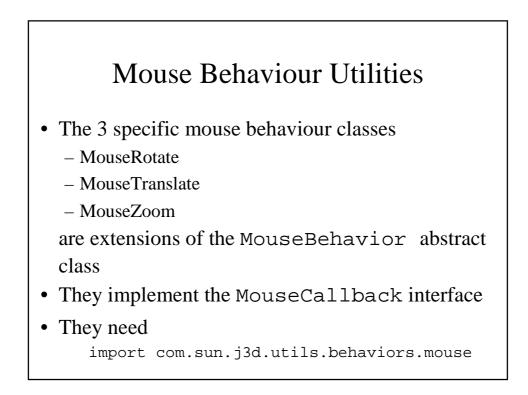

Wakeup Condition Methods

The WakeupCondition class has two methods -

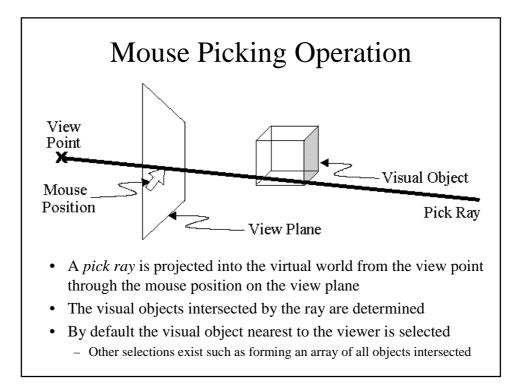

Enumeration allElements()

Returns an enumeration of all WakeupCriterion objects in this condition

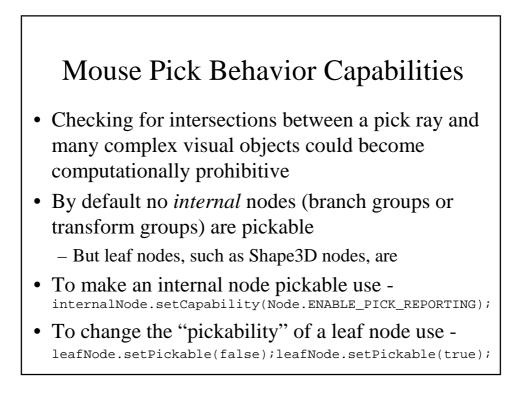

Enumeration triggeredElements() Returns an enumeration of all triggered WakeupCriterion objects in this condition

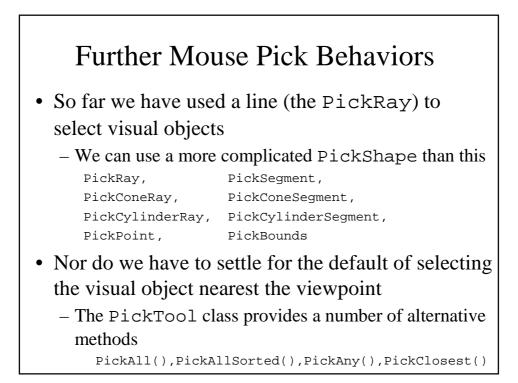

Wakeup Criteria			
Wakeup Criterion	Trigger		
WakeupOnActivation	on first detection of a ViewPlatform's activation volume intersecting with this object's scheduling region.		
WakeupOnAWTEvent	when a specific AWT event occurs		
WakeupOnBehaviorPost	when a specific behavior object posts a specific event		
WakeupOnCollisionEntry	on the first detection of the specified object colliding with any other object in the scene graph		
WakeupOnCollisionExit	when the specified object no longer collides with any other object in the scene graph		
WakeupOnCollisionMovement	when the specified object moves while in collision with any other object in the scene graph		
WakeupOnDeactivation	when a ViewPlatform's activation volume no longer intersects with this object's scheduling region		
WakeupOnElapsedFrames	when a specific number of frames have elapsed		
WakeupOnElapsedTime	when a specific number of milliseconds have elapsed		
WakeupOnSensorEntry	on first detection of any sensor intersecting the specified boundary		
WakeupOnSensorExit	when a sensor previously intersecting the specified boundary no longer intersects the specified boundary		
WakeupOnTransformChange	when the transform within a specified TransformGroup changes		
WakeupOnViewPlatformEntry	on first detection of a ViewPlatform activation volume intersecting with the specified boundary		
WakeupOnViewPlatformExit	when a View activation volume no longer intersects the specified boundary		

		1 •
Key	Navigator Be	ehaviours
•	U	
Key		Alt-key movement
ксу	MOVEMENT	Ан-кеу шочешен
÷	rotate left	lateral translate left
\rightarrow	rotate right	lateral translate righ
\uparrow	move forward	
\downarrow	move backward	
PgUp	rotate up	translation up
PgDn	rotate down	translation down
+	restore back clip distance	
	(and return to the origin)	
-	reduce back clip distance	
=	return to center of universe	



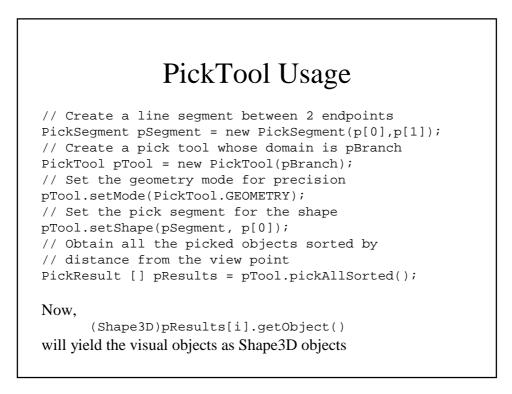
	Mouse Behaviours	2		
Mouse Denaviours				
MouseBehavior class	Action in Response to Mouse Action	Mouse Action		
MouseRotate	rotate visual object in place	left-button held with mouse movement		
MouseTranslate	translate the visual object in a plane parallel to the image plate	right-button held with mouse movement		
MouseZoom	translate the visual object in a plane orthogonal to the image plate	middle-button held with mouse movement		
		movement		


Picking Behaviours


- Interactively selecting, or *picking*, visual objects is normally achieved with a mouse
 - Note that it doesn't have to be
- Picking is implemented by a Behavior
 - Three utility classes are provided by Java 3D
 - PickTranslateBehavior, PickRotateBehavior, PickZoomBehavior
- The user places the mouse pointer over the visual object and presses a mouse button
 - The Behavior is triggered by the button press and begins the picking operation

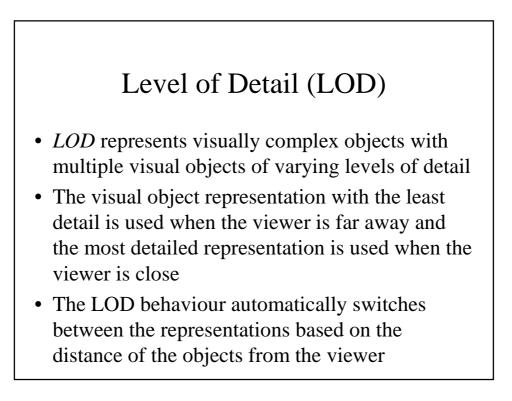
Mouse Picking Utility Classes

- The mouse picking utility classes set up some commonly desired functions and require three parameters
 - Branch Group only visual objects in this branch can be selected
 - Canvas
 - Bounds only visual objects which intersect these bounds can be selected
- Need import com.sun.j3d.utils.picking.behaviors.*;
- PickTranslateBehavior(branch, canvas, bounds); Holding right button down and dragging translates selected visual object
- PickRotateBehavior(branch, canvas, bounds); Holding left button down and dragging rotates selected visual object
- PickZoomBehavior(branch,canvas,bounds);
 - Holding middle button down and dragging zooms in on selected visual object


Choosing a PickShape

	geometry		
application	polygons appear large	polygons appear small	points and/or lines
general	PickRay	PickRay, PickBounds,	PickBounds, PickCone,
g	-	PickCone, PickCylinder	PickCylinder
accuracy	PickRay, PickSegment,	PickRay, PickSegment,	PickRay, PickSegment,
	PickPoint	PickPoint,	PickPoint
speed	PickRay	PickRay	PickRay

- A PickRay was an infinitely long line segment projecting from the view point through the entire virtual universe
- A PickSegment is finite and only projects a fixed distance into the virtual universe


PickTool Methods

- PickTool permits an increased level of precision
- It has two modes pTool.setMode(PickTool.BOUNDS);
 Visual objects selected if picking shape intersects their volume pTool.setMode(PickTool.GEOMETRY);
 Visual objects selected only if picking shape intersects a rendered part of them - E.g. an edge on a wire-frame display [Needs iNode.setCapability(Geometry.ALLOW_INTERSECT);]
- The various PickTool methods return their selections as PickResult objects

Billboards

- Natural things, such as trees, take a tremendous amount of geometry to represent accurately
- The *billboard* approach uses textured polygons instead of the detailed geometry
- Behaviours can be used to automatically orientate the textured polygon orthogonal to the viewer such that only the front textured face is viewed
- This orienting behaviour is called *billboard behaviour*

