
1

Behaviours

• Java 3D uses the Behavior class to facilitate 
interaction and animation

• This class, and its descendants, are links to 
user code which can change the graphics and 
sounds of the virtual universe

• The purpose of a Behavior object in a scene 
graph is to change the scene graph, or objects 
in the scene graph, in response to some 
stimulus

Capabilities and Scheduling Bounds

– Scene graph objects possess capability bits which 
permit modifications to be made to them after they 
become live (are added to the scene graph)

• E.g. ALLOW_TRANSFORM_WRITE

– Nearly all of the behaviours we shall meet will 
require capability bits to be set or they will have no 
effect whatsoever

– Behaviours can also be excessively demanding of 
processor time unless kept in check

• Scheduling bounds are used to limit their operation to parts 
of the scene graph



2

Behaviour Stimuli and Effects

• A stimulus can be the press of a key, a 
mouse movement, the collision of objects, 
the passage of time, some other event, or 
combinations of them

• Changes produced include adding objects to 
the scene graph, removing objects from the 
scene graph, changing attributes of objects 
in the scene graph, rearranging objects in 
the scene graph, or combinations of these

Behaviour Applications

NB Picking (not listed above) is also implemented using behaviours



3

Interactions

• It is important to realise that interaction in 
Java 3D (via behaviours) is very different to 
interaction in 2D (via awt)

• The Behavior abstract class has two 
abstract methods
– initialize()

– processStimulus()

• All user-defined classes derived from 
Behavior must provide implementations 
of these two methods

Initialize() & ProcessStimulus()

• Initialize()
– Called when a Behavior object is created

– Defines the type(s) of event that trigger the 
Behavior

– Triggers are specified with wakeup classes

• ProcessStimulus()
– Called when an event of the type(s) to which 

the Behavior responds occurs

– Contains the code to be executed when the 
event(s) occur



4

wakeupOn() Method

• In order for a behaviour to be triggered wakeup 
criteria must be specified for it

b.wakeupOn(WakeupCondition criteria)

Defines the wakeup criteria for behaviour b

• Both initialize() and processStimulus() will 
normally need to call this method

Wakeup Conditions
• Active behaviours are triggered by one or more 

wakeup stimuli

• The wakeup stimuli for a behaviour are specified 
via the abstract class WakeupCondition

• Five classes extend WakeupCondition
– The abstract class WakeupCriterion

– Four utility classes which allow multiple wakeup 
criteria to be combined into one wakeup condition

WakeupOr WakeupOrOfAnds

WakeupAnd WakeupAndOfOrs



5

Wakeup Condition Methods

The WakeupCondition class has two methods -

Enumeration allElements()

Returns an enumeration of all WakeupCriterion

objects in this condition

Enumeration triggeredElements()

Returns an enumeration of all triggered
WakeupCriterion objects in this condition

Wakeup Criterion

• The WakeupCriterion abstract class 
supports 14 specific wakeup criterion classes 
(see next slide)

• It provides one (rarely needed) method -

boolean hasTriggered()

Returns true if this criterion triggered the wakeup



6

Wakeup Criteria

Special Wakeup Criteria Triggers

• Some WakeupCriterion classes trigger on first detection
– These criteria will trigger only once for the event

– A WakeupOnActivation object will trigger only upon first 
detection of the intersection of a ViewPlatform activation 
volume with the scheduling region of the associated behavior

– The WakeupCondition will not trigger again until Java 3D has 
detected that the volumes ceased to intersect at some point 
and have just started to intersect again

• Some WakeupCriterion classes form matched pairs
– Entry/Exit or Activation/Deactivation

– These criteria only trigger in strict alternation beginning with
the Entry or Activation criterion



7

Key Navigator Behaviours

KeyNavigatorBehavior

• This class invokes KeyNavigator to modify 
the view platform transform

• Needs
import com.sun.j3d.utils.behaviors.keyboard

• Constructor
KeyNavigatorBehavior(TransformGroup targetTG)

Constructs a new key navigator behavior node that operates on 
the specified transform group



8

Mouse Behaviours

Mouse Behaviour Utilities

• The 3 specific mouse behaviour classes
– MouseRotate

– MouseTranslate

– MouseZoom

are extensions of the MouseBehavior abstract 
class

• They implement the MouseCallback interface

• They need
import com.sun.j3d.utils.behaviors.mouse



9

Picking Behaviours

• Interactively selecting, or picking, visual objects 
is normally achieved with a mouse
– Note that it doesn’t have to be

• Picking is implemented by a Behavior

– Three utility classes are provided by Java 3D
• PickTranslateBehavior, PickRotateBehavior, PickZoomBehavior

• The user places the mouse pointer over the visual 
object and presses a mouse button
– The Behavior is triggered by the button press and 

begins the picking operation

Mouse Picking Operation

• A pick ray is projected into the virtual world from the view point 
through the mouse position on the view plane

• The visual objects intersected by the ray are determined

• By default the visual object nearest to the viewer is selected
– Other selections exist such as forming an array of all objects intersected



10

Mouse Picking Utility Classes

• The mouse picking utility classes set up some commonly desired 
functions and require three parameters 
– Branch Group - only visual objects in this branch can be selected

– Canvas

– Bounds - only visual objects which intersect these bounds can be selected

• Need import com.sun.j3d.utils.picking.behaviors.*;

PickTranslateBehavior(branch,canvas,bounds);
Holding right button down and dragging translates selected visual object

PickRotateBehavior(branch,canvas,bounds);
Holding left button down and dragging rotates selected visual object

PickZoomBehavior(branch,canvas,bounds);

Holding middle button down and dragging zooms in on selected visual object

Mouse Pick Behavior Capabilities

• Checking for intersections between a pick ray and 
many complex visual objects could become 
computationally prohibitive

• By default no internal nodes (branch groups or 
transform groups) are pickable
– But leaf nodes, such as Shape3D nodes, are

• To make an internal node pickable use -
internalNode.setCapability(Node.ENABLE_PICK_REPORTI NG);

• To change the “pickability” of a leaf node use -
leafNode.setPickable(false);leafNode.setPickable(tr ue);



11

Further Mouse Pick Behaviors

• So far we have used a line (the PickRay ) to 
select visual objects
– We can use a more complicated PickShape than this

PickRay, PickSegment,

PickConeRay, PickConeSegment,

PickCylinderRay, PickCylinderSegment,

PickPoint, PickBounds 

• Nor do we have to settle for the default of selecting 
the visual object nearest the viewpoint
– The PickTool class provides a number of alternative 

methods
PickAll(),PickAllSorted(),PickAny(),PickClosest()

Choosing a PickShape

• A PickRay was an infinitely long line segment 
projecting from the view point through the 
entire virtual universe

• A PickSegment is finite and only projects a 
fixed distance into the virtual universe



12

PickTool Methods

• PickTool permits an increased level of precision 

• It has two modes -
pTool.setMode(PickTool.BOUNDS);
Visual objects selected if picking shape intersects their volume

pTool.setMode(PickTool.GEOMETRY);
Visual objects selected only if picking shape intersects a rendered 
part of them - E.g. an edge on a wire-frame display

[Needs iNode.setCapability(Geometry.ALLOW_INTERSECT); ]

• The various PickTool methods return their 
selections as PickResult objects

PickTool Usage
// Create a line segment between 2 endpoints
PickSegment pSegment = new PickSegment(p[0],p[1]);
// Create a pick tool whose domain is pBranch
PickTool pTool = new PickTool(pBranch);
// Set the geometry mode for precision
pTool.setMode(PickTool.GEOMETRY);
// Set the pick segment for the shape
pTool.setShape(pSegment, p[0]);
// Obtain all the picked objects sorted by
// distance from the view point
PickResult [] pResults = pTool.pickAllSorted();

Now,
(Shape3D)pResults[i].getObject()

will yield the visual objects as Shape3D objects



13

Billboards

• Natural things, such as trees, take a tremendous 
amount of geometry to represent accurately

• The billboard approach uses textured polygons 
instead of the detailed geometry

• Behaviours can be used to automatically orientate 
the textured polygon orthogonal to the viewer 
such that only the front textured face is viewed

• This orienting behaviour is called billboard 
behaviour

Level of Detail (LOD)

• LOD represents visually complex objects with 
multiple visual objects of varying levels of detail

• The visual object representation with the least 
detail is used when the viewer is far away and 
the most detailed representation is used when the 
viewer is close

• The LOD behaviour automatically switches 
between the representations based on the 
distance of the objects from the viewer


