
1

Sound in Java 3D

• NB When using a linux box make sure audio is actually
enabled first with a command line test such as –

auplay file

• Java 3D requires an AudioDevice to be selected
– AudioDevice can be used to specify mono, stereo,

headphones, speakers, distances and angles of speakers, etc.

• PhysicalEnvironment can be queried to identify which
AudioDevices are available and can then be used to set
the particular AudioDevice which is to be used
– We’re currently having problems with this under linux�

AudioDevice 3D & 3DL2

• AudioDevice3D
– Intended that this interface should be implemented by

AudioDevice driver developers using a software or hardware
sound engine of their choice

• AudioDevice3DL2
– Extends AudioDevice3D to include reverb and environmental

audio parameters that are defined in the MIDI Level 2
Specification

– Occlusion supported
• Sounds travelling indirectly to a listener – e.g. round a corner

– Obstruction supported
• Sounds muffled by obstructions – e.g through a wall

2

Sound Nodes
• BackgroundSound

– Defines an unattenuated, nonspatialised sound source that has no position or
direction

– This type of sound is simply added to the sound mix without modification and
is useful for playing a mono or stereo music track or an ambient sound effect

– Unlike a Background (visual) node, more than one BackgroundSound node
can be simultaneously enabled and active

• PointSound
– Defines a spatially located sound source whose waves radiate uniformly in all

directions from a given location in space
– It specifies a location and a distance-based gain attenuation for different

listener positions
– ConeSound provides a directional extension to PointSound

• SoundScape
– Defines an application region and an associated aural attribute component

object that controls reverberation and atmospheric properties that affect sound
source rendering

– Multiple Soundscape nodes can be included in a scene graph

Scheduling Bounds and Behaviors

• Sound nodes may have scheduling bounds associated
with them which specify a region of audibility
– Sounds are potentially audible when their scheduling bounds

intersect with the activation volume of the ViewPlatform
– setSchedulingBounds()

– setSchedulingBoundingLeaf()

• In Java 3D we can create Behaviors for audio
– Sounds can be triggered to activate upon certain events

– Note that we can also define Behaviors which activate sounds
defined using the basic Java Platform and JMF APIs

3

Sounds with the Java Platform

• Java 3D provides much more, of course ☺

• The basic Java Platform supports audio via the
AudioSystem and MidiSystem classes
– Packages javax.sound.sampled and

javax.sound.midi

• A Sun utility is also available via the
AudioPlayer class
– Packagesun.audio

• The Java Media Framework (JMF) provides a
higher-level API

Java Sound
Supports

– AIFF, AU, WAV
import javax.sound.sampled.*;

– MIDI (Types 0 & 1) and RMF
import javax.sound.midi.*;

java.sun.com/j2se/1.5.0/docs/guide/sound/programmer_guide/contents.html

File soundFile = new File(“file.wav”);
AudioInputStream soundTrack =

AudioSystem.getAudioInputStream(soundFile);
AudioFormat soundFormat = soundTrack.getFormat();
SourceDataLine soundLine = null;
DataLine.Info soundInfo = new

DataLine.Info(SourceDataLine.class, soundFormat);
soundLine = (SourceDataLine)

AudioSystem.getLine(soundInfo);
soundLine.open(soundFormat);
soundLine.start();

4

Sound with Sun’s AudioPlayer

• Associate an audio file with an input stream
InputStream in = new FileInputStream(“file.wav”);

• Associate the input stream with an audio stream
AudioStream soundTrack = new AudioStream(in);

• Use AudioPlayer class to control playback
AudioPlayer.player.start(soundTrack);

AudioPlayer.player.stop(soundTrack);

Etc.
• Ignore warnings about sun.audio.*

possibly disappearing in the future ☺

Sound with JMF
Supports

– AIFF, AU, AVI, GSM, MIDI, MOV, MPG, MP2, MVR, WAV
java.sun.com/products/java-media/jmf/2.1.1/guide/index.html

Player player = Manager.createPlayer(mediaURL);

player.realize(); // Initialise the player

player.prefetch(); // Further initialisation

player.start(); // Start playing

player.stop(); // Stop playing
player.deallocate(); // Free up connections

player.close(); // Close the player

