
Similarity Measures

• There are an enormous number of ways in which we can measure similarity

• They vary depending on whether the items we are interested in analysing come 

from one sample or two; are qualitative or quantitative; binary, discrete or 

continuous; etc.

– Difference between means of 2 samples

– Variance within a sample

– Homogeneity and Heterogeneity within a sample

– Distance measured in an n-dimensional space

– Co-occurrence

– Covariance

– Correlation

Homogeneity & Heterogeneity

• Homogeneous

– Uniform, the same

• Heterogeneous

– Non-uniform, different, varied

• Indices of Heterogeneity can give an idea of how varied a 

set of qualitative or discrete data is

– The Gini Index

– Entropy



The Gini Index

• Suppose we have a characteristic or data field which can take valuesx1, …, xn

• Further suppose that, amongst the sample we are interested in, the value xi has a 

relative frequency of pi, where 0 ≤ pi ≤ 1 and ∑pi = 1

– Maximum homogeneity would occur when pi = 1 for just one i and 0 for all the others

– Maximum heterogeneity would occur when pi = 1/n for all i

• The Gini index of heterogeneity is defined as –

G = 1 -∑pi
2

• This index would be zero at maximum homogeneity and have the value 1 - 1/nat 

maximum heterogeneity

• We can normalise the index to range from 0 to 1 by –

G’ =  nG/(n-1)

Entropy
• An alternative index of heterogeneity which is used in 

many fields of study (including Machine Learning) is 

Entropy –

E = - ∑pi log pi

• This index will also be 0 in the case of maximum 

homogeneity but will be log n in the case of maximum 

heterogeneity

• We can normalise Entropy to range from 0 to 1 by –

E’ =  E/log n



Distance Metrics

• A distance metric provides a method for measuring how 

far apart two items are if they are plotted on a graph in 

which the axes represent certain characteristics of the 

items

– Clearly the characteristics must have ordinality – I.e. the values 

which the characteristics take must be amenable to being placed 

in a meaningful order from smallest to largest

– Quantitative data values which are continuous are most suitable

– Discrete quantitative (including binary) values are normally OK

– Qualitative values are rarely appropriate for a distance metric

Euclidean Distance Metric

• The Euclidean distance metric is the most popular

• Suppose we have n characteristics each of which can take a range of 

numerical values

• The Euclidean distance between two items, x and y, is given by –

d(x, y) = √ [∑(xi – yi)2]

Where the summation is over all characteristics, i, from 1 to n and

xi and yi are the values of characteristic i for x and y respectively

• When n=2 this is the distance between two points in 2D space

• For larger n we have n axes but apply the same principle



Co-occurrence
• When dealing with binary values a useful piece of information can be to know 

when two items both take the value 0 and/or 1 for a set of characteristics (data 

fields) and when they differ

– 0 would normally indicate the absence, and 1 the presence, of some characteristic

• Let P be the total number characteristics which the two items might possess

– CP (co-presence) denotes the number of characteristics for which both items take the 

value 1

– CA (co-absence) denotes the number of characteristics for which both items take the 

value 0

– PA (presence-absence) denotes the number of characteristics for which the first item 

takes the value 1 when the second takes the value 0

– AP (absence-presence) denotes the number of characteristics for which the first item 

takes the value 0 when the second takes the value 1

Similarity Indices

• A number of similarity indices have been developed which 

are based on the notion of co-occurrence, co-absence, etc.

– Russel and Rao

Sxy = CP/P

– Jacard

Sxy = CP/(CP + PA + AP)

– Sokal and Michener

Sxy = (CP + CA)/P



Covariance

• The relationship between two quantitative characteristics, as manifested in a 

number of sample cases, can be investigated by examining the covariance of 

the two characteristics

• This is sometimes known as the concordance of the two characteristics

– If there is a tendency for one characteristic to have high values and low values at 

the same time as the other then they are said to be concordant

– If the tendency is the opposite then the characteristics are said to be discordant
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Variance-Covariance Matrices
• If we wish to investigate more than two characteristics then we can 

form a matrix of the covariances of all pairs of characteristics in 

which we are interested

• The main diagonal of this matrix will be the covariance of each 

characteristic with itself

– This is simply that characteristic’s variance (hence the name of the matrix)

• For four characteristics the matrix would be composed as follows –
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Correlation

• Whilst the covariance of two characteristics is a useful exploratory indicator, 

it does not give a measure of how strongly the characteristics are related

• The value of the covariance needs normalising in some way if we are to be 

able to use it to judge the degree to which two characteristics are related

• We know that the maximum value that the covariance can take will be the 

product of the standard deviations of our two characteristics (σxσy)

• We also know that the minimum value it can take will be the negative of this 

same quantity (-σxσy)

• We can therefore normalise the covariance by dividing it by the product of the 

standard deviations of the two characteristics to obtain their correlation

Correlation Coefficient

• The correlation coefficient for two characteristics is defined to be -

• The correlation coefficient will have a maximum value of 1, when a 

plot of the two characteristics across all of the data items forms a 

straight line with positive slope (they are proportional)

• Similarly, it will have a minimum value of -1, when the plot forms a 

straight line with negative slope (they are inversely proportional)

• A correlation coefficient of 0 means there is no relationship at all
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Correlation Matrices

• As with the covariance, it is possible to form a matrix from all

pair-wise combinations of correlation coefficients –
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• This provides a neat way of presenting the relationships between

a set of characteristics that supports a comparative analysis

Exercise
• Consider 4 characteristics which can be measured for each item in a sample of 6

• Determine the pair-wise correlation coefficient matrix for the 4 characteristics 

and comment on the values

5262Item 6

5354Item 5

4341Item 4

3435Item 3

2423Item 2

2516Item 1
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