
Connectionist Learning
(Artificial Neural Networks)

• The human brain contains 
about 1 billion neurons

• Each neuron is connected to 
thousands of others

• Neurons can be either 
excitatory or inhibitory

• Neurons perform very simple 
computations

• The computational power of 
the brain is derived from the 
complexity of the connections

A Neuron



Axons and Synapses
• The primary mechanism for 

information transmission in the 
nervous system is the axon

• An axon relays all-or-nothing
(binary) impulses

• Signal strength is determined from 
the frequency of the impulses

• An axon signal eventually arrives at 
a synapse

• A synapse may either attenuate or 
amplify the signal whilst 
transmitting it to a neuron

• A neuron accumulates the modified 
signals and produces an impulse on 
its own axon if the total synaptic 
input strength is sufficient

Assemblies of Neurons

Modifications to neuron assemblies

can only be achieved by adjusting

the attenuation or amplification

which is applied at the synapses



Model of a Neuron (1943)

• Firing Rule

T is the threshold
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• Due to McCulloch and Pitts

• Organisation

xi are inputs, wi are weights

Hebb Rule (1949)

• Due to Donald Hebb

• Pre-empted by William James 
(1890)

• Hebb Rule
If a particular input is always 
active when a neuron fires then its 
weight should be increased

• Interpretation 
Classical conditioning -

When two things happen within a 
short time of each other, a re-
occurrence of one should make the 
other more likely to occur



Delta Rule (1960)

• Due to Widrow and Hoff

• Also known as -
– Widrow-Hoff Rule

– Least Mean Square Rule

• General algorithm
1. Determine an error between the 

desired and actual outputs

2. Modify all of the “live” weights and 
the threshold so as to remove a 
portion of the error

3. Repeat until the error is reduced to an 
acceptable level
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Perceptron
(1957-1962)

• Firing Rule
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• Due to Rosenblatt, Wightman, et al.

• Organisation

xi are inputs, wi are weights,

y is desired output, y’ is actual output

• Learning Rule

( )new oldw w y y xη ′= + ⋅ − ⋅



A Perceptron Application

• An early and influential success 
story of the Perceptron was 
recognising letters of the alphabet

• A 20x20 input grid was used

• The 400 binary input values were 
weighted and summed into output 
units representing different letters 
of the alphabet
– Output 1 meant “A”

– Output 2 meant “B”

– Etc.

Perceptron
Convergence Theorem

• Theorem
If a solution to a classification 
problem exists then the general 
Perceptron learning rule will find it 
in a finite number of steps.

• Note that this theorem is qualified 
by the phrase

if a solution to a classification 
problem exists

• Not all classification problems are 
solvable with a Perceptron

• BUT, for a problem that is 
solvable, the learning rule will 
definitely find it in a finite time



XOR Problem (I)

• Truth table

Input 1 Input 2 Output

0                0                        0

1                0                        1

0                1                        1

1                1                        0

• Linearly inseparable (Graphically)

XOR Problem (II)

• Truth table

Input 1 Input 2 Output

0                0                        0

1                0                        1

0                1                        1

1                1                        0

• Linearly inseparable (Algebraically)

0 0 0 => w0 < 0                         (A)

1 0  1 => w0 + w1 >= 0              (B)

0 1  1 => w0 + w2 >= 0              (C)

1 1  0 => w0 + w1 + w2 < 0       (D)

Statement D is incompatible with Statements

B and C since it requires w1+w2 to be less

than a positive amount (w0 is -ve, see A)

which neither is less than individually



Multi-Layered 
Perceptrons (MLPs)

• A set of weights can be found for the 
above 5 connections which will enable 
the XOR of the inputs to be computed

• The XOR problem is solvable if we 
add an extra “node” to a Perceptron

MLPs Formalised

• Each node is connected to EVERY 
node in the adjacent layers and NO 
nodes in the same or any other layers

• MLPs become more manageable, 
mathematically and computationally, 
if we formalise them into a standard 
structure (or topology or architecture)



Weight finding in MLPs

• Although it has been known since 
the 1960’s that Multi-Layered 
Perceptrons are not limited to 
linearly separable problems there 
remained a big problem which 
blocked their development and use
– How do we find the weights needed to 

perform a particular function?

• The problem lies in determining an 
error at the hidden nodes
– We have no desired value at the hidden 

nodes with which to compare their 
actual output and determine an error

– We have a desired output which can 
deliver an error at the output nodes but 
how should this error be divided up 
amongst the hidden nodes?

MLP Learning Rule

• In 1986 Rumelhart, Hinton and 
Williams proposed a Generalised 
Delta Rule
– Also known as Error Back-Propagation 

or Gradient Descent Learning

• This rule, as its name implies,  is an 
extension of the good old Delta Rule

• The extension appears in the way we 
determine the δ values
– For an output node we have -

– For a hidden node we have -
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MLP Training Regime

• The back-propagation algorithm
1. Feed inputs forward through network

2. Determine error at outputs

3. Feed error backwards towards inputs

4. Determine weight adjustments

5. Repeat for next input pattern

6. Repeat until all errors acceptably small

• Pattern based training
– Update weights as each input pattern is 

presented

• Epoch based training
– Sum the weight updates for each input 

pattern and apply them after a complete 
set of training patterns has been 
presented (after one epoch of training)
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