Topic 5

Design and development

Contents

5.1 Gettingthe systembuilt Lo
5.2 Design e

521 Designprinciples

5,22 Designtypes e
5.3 Development
54 Teamwork e
5.5 Summary and assessment e
5.6 Assignedtask
5.7 References e

Learning Objectives

e Appreciation of the steps involved in building systems

e Awareness of design principles and design types

e Familiarity with the System Development Life Cycle

e Familiarity with the Software Life Cycle

e Familiarity with the Programming Life Cycle

e Awareness of the variety of development methodologies

e Appreciation of the issues involved in team working

© 00 NO AP WM

2

TOPIC 5. DESIGN AND DEVELOPMENT

Rome wasn’t built in a day. (Proverb of French origin)

5.1 Getting the system built

You should have read Articles 2, 3 and 4 of "The Case of the Killer Robot” before starting
on this topic. The list of topics which are being investigated for Assignment 2 all relate
to this topic. Each topic on the list is a methodology for system analysis and design
or development or a means of procuring software or a complete project management
system. SSADM is a systems analysis and design tool. The development models
are DSDM, Waterfall Model, Unified Process Model, Rapid Prototyping and Extreme
Programming. The software sources are Reusable Software and Open Source and
PRINCE is a project management system. You will be explaining these to each other in
your tutorial group.

Licker (1987) identifies seven stages in the System Development Life Cycle

System study, problem definition
. Preliminary investigation, feasibility study

. Logical (functional) design

. Implementation (construction)

1.

2

3

4. Physical design (blueprinting)
5

6. Installation

7

. Operation, maintenance

We have looked at the first two stages in the previous topic. In this topic we shall
concentrate on the design and development stages (stages 3, 4 and 5).

There are many different sets of design principles and there is no universal agreement
on which is best. We shall look at an example set of principles. We shall also look
at some different approaches to design. There are also many different development
methodologies and, again, much debate about which is best. You will be reporting on
these to each other and once you have learnt a little about some of them you will see
that they are often applicable to one or other of the design approaches or offer different
benefits and carry different drawbacks.

Large tasks require teams of people. Successful teamwork doesn't just happen as a
result of putting all the "best” people together. In fact, a team composed entirely of stars
is likely to be plagued with problems. We shall look at why some teams work whilst
others fail.

© HERIOT-WATT UNIVERSITY 2002

5.2. DESIGN

5.2 Design

Design is a creative exercise and so it is not easy, or indeed desirable, to prescribe a
fixed set of rules for getting it right. There are however some design principles which
can help to guide you towards good designs.

5.2.1 Design principles

Amongst the many sets of design principles, the following six have attracted general
support

Structure
Parsimony
Modularity
Portability

Transparency

o g &~ w NP

Conviviality

We shall take each one in turn and briefly look at what they say.
Structure

This is the way the design is organised. An organisational structure which is consistent
throughout the design is crucial. Confusion results from disorganisation.

Parsimony

Simplicity and economy are the keys here. Simple things are readily understandable
and safe. Minimalist solutions are generally the cheapest.

Modularity

Modularity describes the relationship between the sub-components of a design - the
modules. There are two very important measures in assessing the modularity of a
design -

1. Cohesion is a measure of the strength of the functional association of the elements
within a module. Increasing cohesion generally increases understandability.

2. Coupling is a measure of the degree of interdependence between modules.
Decreasing coupling generally increases adaptability.

Portability

A system will be applicable to a wider set of problems if it is not unnecessarily tied
down to a specific platform or environment. Platform dependence might manifest itself
as a reliance on a particular processor, operating system or peripheral. Environmental
dependence might result from unwarranted assumptions about the use to which the
design or system will be put or through assumptions about the users. Of course, the
principles of user-centred design encourage us to design systems with particular user
groups in mind. Judgement is called for here.

© HERIOT-WATT UNIVERSITY 2002

4

TOPIC 5. DESIGN AND DEVELOPMENT

Transparency

Systems should be designed to be readily understandable and obvious in use. Hidden
assumptions should be avoided.

Conviviality

This principle refers to comfort of use. User friendliness and user-centered design are
the key concepts here. See the trade-off with portability though.

5.2.2 Design types

In addition to the design principles described above it can also be helpful to try to identify
the type of design which you are undertaking. There are three pairs of alternative design

types

1. Logical versus Physical Design
2. Functional versus Object-Oriented

3. Top-Down versus Bottom-Up

The options within each pair are not necessarily mutual exclusive. They might both have
arole to play in the overall design but they shouldn’t be used simultaneously or a messy
and confused design will result. Again, we shall take each pair in turn and briefly look at
how they differ.

Logical versus physical design

A logical design describes what you are trying to deliver. It is concerned with the
relationships between the components of the design. It is most appropriate at the
earlier, higher level, stages of the design process. Physical design is more detailed
and describes how the functionality is to be delivered. It details the nuts and bolts of the
system and is more appropriate in the later, lower level, stages of the design process.

Functional versus object-oriented

Functional designs identify what is to be done, the data that is required and how the
function will be achieved. This type of design is works with processes, activities or
procedures. Indeed, it is sometimes called procedural design. Obiject-oriented design
takes a different perspective. It first identifies what the parts are. The attributes which
the parts possess and what can be done to/with them then become the focus of the
design exercise.

Top-down versus Bottom-up

Top-down designs break the whole down into parts whilst bottom-up designs build the
whole up from the parts.

5.3 Development

Most of what you will learn about development methodologies will be supplied by your
fellow tutees in your tutorial group. It is essential that you play your part in this by

© HERIOT-WATT UNIVERSITY 2002

5.3. DEVELOPMENT

delivering the best information that you can to your colleagues.

We shall confine ourselves to discussing some general points here. We have already
met the System Development Life Cycle (Licker 1987). There are two further life cycles
which are often presented in the Software Engineering literature.

The Software Life Cycle (Sommerville 2000) has five stages

1. Requirements definition

2. System & software design

3. Implementation & unit testing
4. Integration & system testing

5. Operation & maintenance

The Software Life Cycle commences with the, by now familiar, analysis and speci-
fication of the system and proceeds through the design stage to the implementation and
testing of individual units or modules. Large systems are generally composed of many
modules and these need to be integrated and each sub-system tested as the integration
proceeds. Finally, the life of a piece of software does not end with its delivery. Operation
and maintenance are also key parts of the overall life cycle.

The life cycle describes a highly iterative process with each stage possibly looping back
to any previous stage. This iteration reflects a reality which the theorist often overlooks
but which the seasoned practitioner is all too well aware of

It is sometimes only in the later stages of a development that a flaw in the logic
of an earlier stage becomes evident.

The implementation stage of the Software Life Cycle can be expanded on to produce a
Programming Life Cycle (Stair & Reynolds (2003)

1. Systems investigation
2. System analysis

3. System design
Language selection
Program coding
Testing & debugging

Documentation

© N o g

Implementation (conversion)

This life-cycle is embellished to produce an eight-stage process which, once again,
starts with the systems analyst but now ends at the implementation. Along the way
key issues such as language selection, debugging and documentation are explicitly
represented. These sub-divisions of the implementation stage in the earlier life-cycles
can facilitate the assignment of personnel within a team to the various tasks required.

© HERIOT-WATT UNIVERSITY 2002

TOPIC 5. DESIGN AND DEVELOPMENT

5.4 Teamwork

Large projects require a team effort. A good team will be composed of individuals with
different specialisms and also different character traits. Teams composed of very similar
members can generate much friction and be quite unproductive. Try to spot some of the
following eight types of team member amongst the Robbie CX30 development team.

1. The plant
A creative and imaginative but unorthodox individual. This type of person can be
a bit hard to manage but provides many of the team’s ideas.
2. The enabler
A mature and confident individual who can chair meetings. This kind of person
can be a bit manipulative but they listen well and can clarify the team'’s goals.
3. The fixer
An extrovert but amiable individual who is always on the go. This type of person
may be a bit undisciplined but often has a lot of useful contacts.
4. The shaper
A dynamic and outgoing individual who likes to take the lead. This kind of person
has a tendency to bully others but is good and finding ways around obstacles.
5. The monitor
An introvert and thoughtful individual who rarely gets things wrong. This type of
person can be a bit slow but is very discerning and generally the "rock” of the team.
6. The counsellor
A conciliatory and perceptive individual who is sensitive to other people’s needs.
This kind of person can be a bit indecisive but is essential to the team’s harmony.
7. The workhorse

A disciplined and reliable individual who gets on with things in a practical way. This
type of person can be a bit unimaginative but is good at making other people’s
ideas work.

8. The worrier

A stickler for detail who is rather pedantic and never lets go of things. This kind of
person can be very annoying but is useful at spotting mistakes and ensuring that
deadlines are met.

You can probably recognise elements of yourself in some of the above. More than one
of them in fact. Remember that. We all have many different aspects to our characters.

Team dynamics is an important area of study in social psychology. Issues which have
been identified as of major importance in teamwork include communication, leadership
and conflict resolution. How were these matters handled on the Robbie CX30 project?

© HERIOT-WATT UNIVERSITY 2002

5.5. SUMMARY AND ASSESSMENT

5.5 Summary and assessment

At this stage you should be able to

e explain the steps involved in building systems
e discuss design principles and design types

e outline the System Development Life Cycle

¢ outline the Software Life Cycle

e outline the Programming Life Cycle

e use a variety of development methodologies

e relate the issues involved in team working

End of topic 5 test

Q1: Which of the following is NOT a stage in the Systems Development Life Cycle?

a) Installation

b) Physical design

c) Operation and maintenance
d) Winding up

Q2: Design is what kind of process?

a) Algorithmic
b) Creative
c) Provable
d) Random

Q3: Which of the following was NOT suggested as a design principle?

a) Conviviality
b) Modularity
c) Parsimony
d) Sequentiality

Q4: Designing from detailed components through to complete systems is

a) Bottom-up design

b) Logical design

c) Object-orientated design
d) Physical design

Q5: Functional design is concerned with

a) Attributes

b) Components
c) Procedures
d) Relationships

Q6: Who will be telling you most about development methodologies?

5 min

© HERIOT-WATT UNIVERSITY 2002

8

TOPIC 5. DESIGN AND DEVELOPMENT

a) Fellow tutees
b) This material
c) Tutor
d) You

Q7: The Software Life Cycle differentiates between the following types of testing ?

a) Good & bad

b) Primary & secondary
c) System & unit

d) Thorough & partial

Q8: The Programming Life Cycle explicitly refers to the selection of

a) Algorithms

b) Data structures

c) Programming language
d) Hardware platform

Q9: Teams need to be composed of individuals who

a) Are very similar

b) Get on well

¢) Have different skills
d) Work hard

Q10: A thoughtful but introvert person might make a good

a) Counsellor
b) Enabler
¢) Monitor
d) Worrier

5.6 Assigned task
Assigned task

1. Read "The Case of the Killer Robot” Articles 7 and 8 (Epstein 1997 or Taylor 2002)
before embarking on Topic 6.

2. You should now turn the notes you made on the topic assigned to you in Topic
4 into a 1000 word submission for Assignment 2. This assignment should be
submitted at your next tutorial. It will be assessed and the mark will account for
33% of your final mark in the Praxis Unit.

3. You should also identify about 3 key points from Assignment 2 for presentation at
your next tutorial

© HERIOT-WATT UNIVERSITY 2002

5.7. REFERENCES

Reminder of Assigned Topics 10 - 18

Structured Systems Analysis & Design Method (SSADM) 1st Tutee
Dynamic Systems Development Method (DSDM) 2nd Tutee
Waterfall Model of Software Development 3rd Tutee
Unified Process Model of Software Development 4th Tutee
Rapid Prototyping 5th Tutee
Extreme Programming (XP) 6th Tutee
Reusable Software 7th Tutee
Open Source 8th Tutee
PRINCE Project Management Method 9th Tutee

5.7 References

Epstein, R.G., 1997, The Case of the Killer Robot. John Wiley & Son.
Licker, P.S., 1987, Fundamentals of Systems Analysis. Boyd & Fraser.
Sommerville, I., 2000, Software Engineering, 6th edition. Addison Wesley.

Stair, R.M. & Reynolds, G.W., 2003, Principles of Information Systems, 6th edition.
Thomson

Taylor, N.K., 2002, The Killer Robot J[online]. Heriot-Watt University
(MACS), 16th December 2002 [cited 7th July 2003]. SHTML. Available
from:http://www.macs.hw.ac.uk/"nkt/praxis/epstein/index.sht

© HERIOT-WATT UNIVERSITY 2002

http://www.macs.hw.ac.uk/~nkt/praxis/epstein/index.sht

10

ANSWERS: TOPIC 5

Answers to questions and activities

5 Design and development

End of topic 5 test (page 7)

Q1:
Q2:
Q3:
Q4:
Q5:
Q6:
Q7:
Q8:
Qo9:

d) Winding up

b) Creative

d) Sequentiality

a) Bottom-up design

c¢) Procedures

a) Fellow tutees

c) System & unit

¢) Programming language

c¢) Have different skills

Q10: c¢) Monitor

© HERIOT-WATT UNIVERSITY 2002

	Design and development
	Getting the system built
	Design
	Development
	Teamwork
	Summary and assessment
	Assigned task
	References

	Answers to questions and activities
	 Design and development

