

Professional Development Topic 3: Risks and Threats

Prof Nick Taylor

Department of Computer Science Heriot-Watt University

Content

- Computer Crime
 - Theft
 - Piracy
 - Espionage
 - Fraud
 - Sabotage
- · Malicious Software
 - Viruses
 - Trojans
 - Worms
- Security
 - Verification
 - Authentication
 - Encryption

HERIOT WATT

Computer Crime

- Theft
 - · Stealing plain and simple
 - · Taking away another's property
- Piracy
 - Stealing potential revenue
 - · Copyright or patent violation
- Espionage
 - Stealing secrets
 - Acquisition of confidential information
- Fraud
 - · Deceitfully gaining advantage
 - Financial or other personal advantage
- Sabotage
 - · Reducing effectiveness of a system
 - Deliberate destruction or damage

Breaches of System Integrity

- Physical
 - Computer Failure
 - Power Failure
 - Network Failure
 - Equipment Theft
 - Lightning
 - Flood
 - Sabotage
 - Fire

- Logical
 - Viruses
 - Untested Software
 - User Error
 - Operator Error
 - Staff Misuse
 - Internal Access
 - Computer Fraud
 - Hacking
 - Tapping Lines

Source: IT Security Breaches Survey (NCC, DTI, ICL) covering period 1992-4 with 832 respondents. [Lists ranked by % of respondents reporting named breach]

Estimated Cost of Breaches

	Max Cost of Single Incidents (£1000s)	Number of Breaches	% of Total Cost of All Breaches
All Breaches	1,200	444	100
Computer Fraud	1,200	7	33
Computer Failure	200	67	13
Equipment Theft	60	69	13
Viruses	100	93	9
Flood	200	17	7
Fire	50	5	3
Sabotage	75	5	2
Lightning	20	12	2
Network Failure	20	26	2
User Error	50	9	1
Operator Error	20	13	1
Untested Software	20	19	1
Hacking	8	4	0.3
Staff Misuse	2	10	0.2
Internal Access	2	4	0.07
Tapping Lines	0.2	1	0.006
Other	20	11	1

Theft

- Depriving somebody of physical property
 - Taking something away physically
- · Depriving somebody of an exclusivity right
 - · Taking a copy of something
 - Not necessarily infringing their intellectual property rights
 - · Violating their right to privacy perhaps
- · Piracy as Theft
 - Violating intellectual property rights
- · Espionage as Theft
 - Violating right to privacy/secrecy

Piracy

- · Depriving somebody of an intellectual property right
 - Infringing copyright, patent, design right, trademark, etc.
 - · Right to be acknowledged as author/owner
 - · Right to not have one's work tampered with
 - Right to license for financial gain
 - · Right to sell-on for financial gain
- · Stealing revenue
 - · Copying programs
 - · Copying Data
 - · Words, art, music
 - · Unscrambling/Decrypting protection mechanisms
 - · DeCSS example

Espionage

- Sniffers
 - Computer networks share comms channels so any node on a network can receive transmissions intended for other nodes
 - Normally a node would discard any packets not addressed to it but it is possible to configure nodes to be "promiscuous" and receive all packets
 - Sniffing is using a promiscuous node to inspect all packets on a network particularly start of session packets which convey username and password details
 - Encryption can prevent sniffers from making sense of the information sniffed
- TEMPEST
 - Data can be captured from screens, keyboards, even disk accesses using TEMPEST - the Transient Electro-Magnetic Pulse Emission Standard
 - · Encryption can't be used for display screens

Fraud

- · Gaining any advantage through deceit
 - · Not just financial advantage
 - · Some form of deceit must be involved
- Impossible to estimate how much financial fraud occurs, with or without computer assistance
 - The only guarantee is that fraud will always be grossly under-reported by the victims
- The scandal of large scale fraud can bring companies to their knees
 - · Barings bank
- · Rule of thumb for estimating cost of fraud
 - Multiply reported figures by 10!

Sabotage

- Feb 2000 saw denial of service attacks on Amazon, Buy.com, CNN.com, eBay, Excite, E*Trade, Yahoo and ZDNet
- Estimated £9 billion of damage worldwide in 2001 as a result of lost productivity and intellectual property [McAfee]
- Estimated 51,000 viruses currently in circulation [GROUP Technologies]
- 3.2 million spam attacks in Feb 2002 cf 300,000 in Aug 2000 [Brightmail Probe Network]

Malicious Software

- Virus
 - · Self-replicating code segment
 - · Embedded in larger host program
 - · Activated when host executed
 - · Copies itself into other programs
 - · Modifies new hosts to call it
- Trojan Horse
 - Program which performs a useful function but which includes HIDDEN destructive code
- Worm
 - · Self-replicating program
 - · No carrier program needed
 - · Spreads via LANs or WANs
 - · Copies itself to connected hosts

A Word About Bombs

- Malicious code can be triggered by execution of the host program in which it is carried or by a "bomb"
- Logic bomb
 - Monitors system activity and detonates when a particular event occurs or when an event occurs for the nth time
- Time bomb
 - Monitors the system clock and detonates at a particular time or date

Basic Virus Types

- · Boot Sector or Partition Record
 - · Infect disks, diskettes, etc.
- Application, Link or Macro
 - · Infect executable files
- Transient
 - · Execute briefly each time host started
- Resident
 - Execute when host started but remain active in memory
- Direct
 - Infectious only when programs are executed or files are accessed
- Indirect
 - · Actively search for files to infect

Virus Signatures

- Virus scanners look for tell-tale signatures
 - Storage signatures
 - The attached virus code is always located in the same position in the infected file and can be searched for by virus scanners
 - · Execution signatures
 - The sequence of modifications performed by the virus can be detected by monitoring software
 - · Transmission signatures
 - Apart from the standard network monitoring undertaken by firewalls, etc. e-mail viruses, for instance, can be detected when they access address books, etc.

Advanced Virus Types

- Stealth viruses
 - · Hide their existence in one of three ways -
 - Intercept attempts to determine file sizes by virus scanners and send the original, uninfected, file size back to the scanner
 - Take a copy of the original, uninfected, boot sector and redirect attempts to check the boot sector to the copy
 - · Disable a virus scanner and simply stop it working
- · Polymorphic viruses
 - · Camouflage themselves
 - Make each copy of themselves slightly different by scrambling their code or adding bits of decoy code

Virus Examples I

• Brain (1986)

• Type: Boot sector

• Effects: Reduces RAM by 7K

Traps BIOS interrupts

Infects disks in A: or B: drives

• Damage: Volume label modified

Jerusalem/Israeli (1987)

• Type: Link, Resident, Direct

• Effects: Appends code to .COM & .EXE files (1813

byte extension)

Damage: Slows system after 30 mins

Deletes files executed on Friday 13th

Yale/Alameda (1987)

• Type: Boot sector

• Effects: Reduces RAM by 1K

Traps BIOS interrupts

Infects any diskettes used to re-boot

Damage: Destroys a diskette sector

Virus Examples II

Cascade (1988)

Type: Link, Resident, Direct
 Effects: Appends code to .COM files (1701/4 byte extension)

· Damage: Display of falling letters

4096 (1990)

Type: Link, Resident, Stealth
 Effects: Traps DOS interrupts
 Traps BIOS interrupts
 Infects .COM & .EXE files

• Damage: File dates incremented by 100 years

Michelangelo (1992)

Type: Boot sector

 Effects: Master boot record moved
 Damage: On 6th March destroys data on boot device when booted

Virus Examples III

- Melissa (1999)
 - · Spreads incredibly rapidly via e-mail
 - · Sent itself to 50 addresses in address book
 - MS Word macro virus spawned variants
 E.g. "Papa" MS Excel macro virus
 - Infected PCs initially; Apple Macs later
 - 100,000 systems infected [FBI estimate]
 - · Cost £50 million of damage
 - David Smith sentenced to 20 months and £1,500 fine (light due to "co-operation")
- Whether by design or not, Melissa gave viruses a new weapon psychology
 - By using personal address books, Melissa encouraged recipients to open the attached document because they knew the person who appeared to have sent it
 - Viruses could now employ psychological tricks to fool otherwise sensible people into ignoring the precautions which they knew they ought to be taking

Virus Examples IV

- The Love Bug (2000)
 - "Psychological" virus (cf Melissa)
 - E-mail purporting to come from somebody known and headed "ILOVEYOU" is clearly designed to tempt the recipient into opening it
 - Spread by e-mail using MS Outlook address book and also via IRC
 - · Hid MP3 and JPEG files
 - 45 million people received it
 - Cost £1.7 billion in damage
 - Perpetrator was a 27 year old computer analyst at a bank in the Philippines
- Code Red (2001)
 - · Memory resident (not file resident)
 - Infected 360,000 servers in 14 hours
 - 800,000 infected in total (plus modems)
 - Cost £1.8 billion in downtime & cleanup
- Nimda (2001)
 - Runs in preview mode of MS Internet Explorer e-mail system

AIDS Trojan Horse

- Originator: Dr Joseph Popp on behalf of PC Cyborg Corp. Panama 1989
 - · Purported to offer advice on AIDS
 - · On installation printed an invoice
 - · Also copied other files onto hard disk
 - Licence agreement refers to adversely affecting other programs if fee not paid
 - After a certain number of reboots the hard disk was wiped even if the software was never run
- Popp charged with blackmail but not extradited from USA on mental grounds

M.O.s of Worms

- Cracking Passwords
 - · Dictionary attacks
 - · Obvious choice attacks
- · Exploiting Distributed Trust
 - This is what allows us to log on to remote machines without identifying ourselves each time
- · Monitoring and Intercepting Signals
 - · Eavesdropping on broadcast networks
 - · Passwords often sent in plaintext
- Impersonating Trusted Parties
 - Manipulating transmission protocols enables a user/machine to pretend that they are another
- Exploiting Bugs and Security Holes
 - · Debugging modes
 - · Buffer overflows (UNIX favourite)

The Internet Worm

- Originator: Robert Morris Cornell University student 1988
 - · Targeted at Suns and Decs
 - Utilised
 - Password cracking
 - · Distributed trust
 - Debugging mode in sendmail
 - · Fingerd stack overflow bug
 - 10% of the 60,000 hosts on DARPA estimated to have been infected
 - Estimated cost of damage £70 million
- Morris was suspended from Cornell, investigated for 6 months by the FBI and sentenced to 400 hours community service and fined £6,000 under the Computer Fraud and Abuse Act 1986

Worm Examples I

- The Blaster Worm (2003)
 - Exploits a buffer overflow in MS Windows NT, 2000, Server and XP
 - Malformed messages sent as Remote Procedure Calls (RPCs) affect the Distributed Component Object Model (DCOM) interface
 - This allows an executable, msblast.exe, to be downloaded and run on the infected PC
 - Blaster tries to connect to "random" (actually random within certain subsets of) IP addresses
 - The malicious code will either contribute to a denial of service attack on the MS Windows Update website or crash the local PC

Worm Examples 2

- The Sasser Worm (2004)
 - Exploits a buffer overflow in MS Windows NT, 2000, Server and XP
 - Can run on, but not infect, MS Windows 95 & 98
 - Similar to Blaster worm but causes the buffer overflow in the Local Security Authority Subsystem Service (LSASS)
 - This allows an executable, avserve2.exe, to be downloaded and run on the infected PC
 - Sasser tries to connect to "random" (actually random within certain subsets of) IP addresses
 - The malicious code causes a significant deterioration in performance of the local PC

Preventative Measures

- Authenticated Execution Management Systems (AEMS)
 - · Reverse usual virus black-list idea
 - Employ a white-list of safe executables and only execute white-listed runfiles
- Sandboxes
 - Monitor the behaviour of all programs received from the internet
- Blocks
 - Prevent certain file types from being accessed in specific ways
- Heuristics
 - Initially developed to detect malicious MS Office macros
 - Can be used to analyse any code with a view to blocking suspect commands

Computer Security

- British Standard for Information Security Management Systems
 - · Part 1 Code of Practice
 - Part 2 Management Standard
- BS 7799 Certification components
 - · Security policy
 - · Security organisation
 - · Assets classification and control
 - · Personnel security
 - · Physical and environmental security
 - · Computer and network management
 - System access control
 - · System development and maintenance
 - · Business continuity planning
 - Compliance
- ITSEC
 - DTI scheme for independently assuring security products

Hardware Security

- Physical access
 - Locks
- Electromagnetic emissions
 - Data can be captured from screens, keyboards, disk accesses
 - TEMPEST Transient Electro-Magnetic Pulse Emission Standard
 - Metallic shielding (Faraday Cages)
 - Tempest fonts (designed to be of acceptable quality to viewers but invisible to eavesdroppers)
- Magnetic resonance
 - · Data can be recovered from disks even after over-writing
- Line tapping
 - Wireless LANs
 - "Warchalkers", ESSIDs, WEP

Software Security

- · Verification of identities
- Authentication of messages
- · Encryption of data
- · Access controls
- · Audit trails
- Risk analyses

Security Techniques

- · Verification Mechanisms
 - · Something possessed
 - · Something known
 - · Personal characteristics
- Authentication Systems
 - · Certificates
 - · Digests
 - · Digital signatures
- Encryption Algorithms
 - · Codes and Ciphers
 - · Caesar, Vernam, ...
 - · Data Encryption Standard
 - · Possibly susceptible to known plaintext attack
 - · Public Key Cryptography
 - · RSA Rivest, Shamir and Adleman

Verification I Something Possessed

- · Can be lost, stolen or forged!
- Magnetic strip cards
 - · 3 tracks of data
 - · Anti-forgery techniques
 - · Watermark tape
 - Underlying non-erasable pattern
 - Uses an extra track to check this
 - · Sandwich tape
 - Two layers of differing intensity
 - Uses high-intensity recording
- Smart cards
 - · Greater storage capacity
 - Kbytes as opposed to 250 bytes
 - · On-card processing possible
 - Card can be challenged to produce correct response to many requests

Verification II Something Known

- Group Passwords
 - · Known to many people
- Non-unique Passwords
 - · Confirm a claimed identity
- Unique Passwords
 - · Claim an identity
- Variable Passwords
 - · Each derived from a previous one
- Single-use Passwords
 - · Changed after each access

Password Selection and Reselection

- Free user choice
 - · Susceptible to guessing/cracking
 - People do not choose sensible passwords
 - It only takes one poor choice to undermine a system
 - May not be changed very often
 - It only takes one lazy person to undermine a system
- Automatic system allocation
 - · Password Generators
 - Unmemorable passwords are bound to be written down
 - Smarter generators try to produce pronounceable words

Verification III Personal Characteristics

- · Physiological Biometrics
 - · Physical characteristics
 - DNA
 - Face
 - Fingerprint
 - · Geometry Hand
 - Geometry Two fingers
 - Iris
 - Retina
 - Vascular
- Behavioural Biometrics
 - · Result of an involuntary action
 - Signature
 - Voice
- BioAPI Consortium
 - Open industry standard for biometrics

HERIOT WATT UNIVERSITY

DNA

- · Human genome consists of 3 billion base pairs
 - · Adenine-Thymine; Cytosine-Guanine
- Over 99% of our DNA is identical
 - DNA tests use the "junk DNA"
- DNA is not unique
 - 1 in 83 births in the USA is a twin
 - 28% of twins share the same DNA
 - 1 million people in USA are non-unique
- · DNA tests consist of
 - Cutting a DNA sample into different sized fragments with an enzyme
 - Placing the fragments on a gel and sorting them by size in an electric field
 - Treating with a probe which adheres to unique patterns of DNA and creates a black line where it "sticks"

Face Recognition

- Two types of system
- Facial Metrics
 - · Measure specific features
 - · Distance between inside corners of eye
 - · Distance between outside corners of eyes and mouth
 - · Store these measures for comparison
- Eigenfaces
 - 150 eigenfaces (stereotypes)
 - Score a presented face with a "degree of fit" against each of these 150
 - The top 40 eigenfaces (the 40 with the highest scores) can reproduce a face with 99% accuracy

Fingerprints

- Not even identical twins have the same fingerprints
- Computer checking does not use the loops, whorls, etc. that we do
 - Minutiae
 - · Where a ridge starts, stops or forks
 - (x,y) position and direction recorded
 - 90 minutiae obtained from one print
 - AFIS
 - · Automated Fingerprint Identification Systems
 - 10 digits => 900 minutiae per person
 - Matcher
 - · Does the comparisons
 - Can process 5,000 6,000 people/sec
 - Parallel processing also used (and scales really well of course)

Geometry

- Geometric techniques produce small data sets and do not discriminate well
- · Geometry can be ascertained in two ways -
 - Mechanical
 - · Edge detection from an image
- Hand Geometry
 - · Estimates of key measurements are made
 - · Finger lengths
 - Thumb widths
- Two Finger Geometry
 - · A reduced form of Hand Geometry

Iris Patterns

- Iris scanning seems to be the most robust and most accurate biometric discovered to date
- Standard video cameras are sufficient to capture the images
- The probability of two irises having the same biometric value is 1 in 10⁷⁸
 - Even identical twins have different patterns
 - Are your eyes both the same?
- Just 256 bytes per person
- It is claimed that BT has a scanner that can capture the iris print of the driver of a car moving at 50mph!?

Retinal Patterns

- · Blood vessel patterns in the retina are unique
- User looks through an aperture and aligns eye with the aid of target circles which should be made to appear concentric
- · Infra-red light illuminates the retina
- This enhances the image of the blood vessels
- · Camera captures the image
- Comparison can then be performed against previously captured images

Vascular Patterns

- Infra-red light used to illuminate blood vessels (cf retinal scans)
- · Camera used to capture image
- Can be used on readily accessible parts of the body
 - Face
 - · Back of hand
 - Wrist

Signature Recognition

- Best systems do not treat this as a pattern recognition task because signature repeatability is poor
- The dynamics of the pen motions are the key properties used
 - Accelerations
 - Directions
 - Pressures
 - · Stroke lengths
- Capturing these features is not easy and consistency is difficult to achieve

Voice Recognition

- A pattern recognition task
 - · A set phrase is used to create a template
 - The phrase needs to be repeated several times during the creation of the template
- Subsequent entry of the phrase can then be compared against a number of templates
- This technique attempts to be invariant to physical characteristics of a voice and can become dangerously dependent on the behavioural characteristics of speech

Comparison if Biometric Technology III

Biometric	FAR (%)	FRR (%)	Time (secs)	Cost (£)	Size (bytes)
Fingerprint	0.001	2.0-3.0	<4	<100	200-512
Iris Scan	0.00008	0.1-0.2	5	21000	512
Hand Geometry	0.01	4.0	<5	800-1200	9
Facial Recognition	<1.0	10.0	12		88-1024
Voice Dynamics	8	<1.0	5	1000	1-2K
DNA	No Data	No Data	12 hrs	No Data	No Data
Signature Dynamics	<1.0	<1.0	5	1000	100

Authentication I Certificates

- · Web sites can present digital certificates to browsers
- The certificate is proof of identity of the site
- It will have been issued to the site by a Certificate Authority (E.g. RSA, Verisign)
- Most browsers are pre-configured to accept certificates issued by the major Certificate Authorities
- If the certificate being offered has not been issued by a known Certificate Authority the user is given the option of accepting it anyway - after checking it!

Authentication II Digests

- Digests summarise a message in a succinct form
 - They range from simple Check Sums through to Authenticators based on cryptographic Hash Functions
- Cyclic Redundancy Check (CRC)
 - · Simply an error check mechanism
 - Blocks of data are divided by a pre-selected polynomial; remainders used as check fields
- Decimal Shift and Add (DSA)
 - Repeated shifting and adding of blocks using two secret keys (of 10 decimal digits each)
- Message Authenticator Algorithm (MAA)
 - · Binary version of DSA developed at NPL
 - · Keys are 32 bit binary numbers
 - ISO approved under the name MAA

Authentication II Digital Signatures

- Digital signatures provide a recipient of a message with proof of the authenticity of the sender
- · Public key cryptography is used
- A private key is used to encrypt a compressed string derived from the message and the result is the digital signature (cf hash functions)
- · The digital signature is sent with the message
- The public key can be used by anybody to decrypt the digital signature and thus verify the authenticity of the sender in a nonrepudiatable form

Encryption I Codes and Ciphers

- Plaintext
 - The unencoded text which is to be transformed for protection
- Ciphertext
 - The encoded text which needs decoding before it can be read
- Codes
 - Transform whole words or phrases from plaintext to ciphertext
- Ciphers
 - Transform single characters or groups of characters from plaintext to ciphertext
 - · Block Ciphers
 - Transform single-sized blocks of characters from plaintext to ciphertext

Encryption II Public Key Cryptography

- In the following
 - E() = Encryption Algorithm
 - D() = Decryption Algorithm
 - P = Plaintext
 - C = Ciphertext
 - ki = Keys
- Basic Cryptography
 - $E(P) \Rightarrow C$ $E^{-1}(C) \Rightarrow P$
 - E() must be kept secret
- Private Key Cryptography (DES)
 - E(P,k) => C $E^{-1}(C,k) => P$
 - E() can be published but k must be secret
- Public Key Cryptography (RSA)
 - E(P,k1) => C D(C,k2) => P
 - E(), D() and k1can be published
 - k2 must be kept secret $[D() =/= E^{-1}()]$