

Professional Development Topic 4: Dependence and Change

Prof Nick Taylor

Department of Computer Science Heriot-Watt University

Content

- · Technology and Society
 - · Bi-directional influences
- · Computer-related Risks
 - · Safety Critical Systems
 - Millennium Bug

Technology & Society

- There are two cause-effect relationships to be aware of –
 - Technological developments affect society at large, *directly* and *indirectly*
 - Work
 - Recreation
 - Domestic Life
 - · Welfare Services
 - Law Enforcement
 - Outside factors affect the direction and speed of technological developments –
 - Commercial
 - Political
 - Cultural
 - Economic

Technology => Society

The Motor Car

- · Facilitates personal travel over greater distances
 - · More places and people visited
 - · Domiciles further away from work
 - Re-location around the country more acceptable movement of workforce
- · Saves time
 - · More efficient use of work time
 - · More leisure time
- Pollution
- Safety

Technology => Society

The Telephone

- Instant communication over any distance
 - · Became essential for any workplace
 - · Facilitated communication with friends and relatives
- · Replacing the letter
- Fax
- · Computer networking
- E-mail replacing the telephone?

Technology => Society

The Television

- Entertainment
 - · Perhaps THE most popular form of entertainment
- Up to the minute news
 - · Live coverage of major events
- · Viewers exposed to variety of
 - Cultures
 - Arts
 - Sports
 - Science
 - Views

Technology => Society

Computer Technology

- · Two key elements -
 - Information
 - Storage
 - Processing
 - Communication
 - Control
 - Reliable
 - Repeatable
 - Adaptive

Technology => Society

Information

- · Became essential in any workplace
- New forms of entertainment
- Reduced need to physically go to places
 - Shopping from home, home banking, etc.
 - · For how much longer will we have to visit our GPs with minor ailments?
- · Criminal records, etc.

Technology => Society

Control

- · Automated manufacturing
- · Washing machines and other timesaving devices
- Toys, MP3 players, Mobile phones
- · Life-saving machines in hospitals
- · Speed cameras, etc.

Society => Technology

Commercial Interests

Gas Refrigerator

- Hardly any mechanical parts
- Silent
- Gas was more prevalent (it had been around longer)
- Supported by (in USA)
 - Servel
 - SORCO

Electric Refrigerator

- A compressor and a motor
- Very noisy initially (and still hums!)
- Electric services were limited
- Supported by (in USA)
 - General Electric
 - · General Motors
 - Westinghouse

WON

LOST

Society => Technology

Political Desires

Record/Playback Machine Tools

- Relatively cheap
- Skilled metal-worker needed
- Support bought out

Numerically Controlled Machine Tools

- Very expensive
- Skilled metal-worker not expected to be needed (McCarthyite concerns about reliability of union labour)
- Supported by USAF (who actually paid for installation of machines in subcontractors factories)

LOST

WON

Society => Technology

Cultural Attitudes

- The AR-15 and M-16 Rifles
 - AR-15 was
 - · most reliable
 - lethal

infantry rifle ever invented

- M-16 was
 - developed from AR-15
 - · useless!
- US Army ordnance bureaucracy made three modifications to the AR-15 (conservatism) –
 - · Added manual bolt closure
 - Unnecessary extra weight
 - · Increased twist of barrel
 - · Greater accuracy but less lethal
 - Changed the gunpowder
 - 1000 rounds/minute and it jammed

Society => Technology

Economic Factors

- Spending power can drive technology in particular directions
- Military spending has been very influential in the way computer technology has developed
- Manufacturing/Commercial needs also direct the form of computer development
- Medical developments invariably follow behind rather than leading technology

Society => Technology

Computer Industry

- Intel and Motorola
 - Intel 8086 versus Motorola 68000
- IBM and Apple
 - IBM PC versus Apple Macintosh
- Microsoft
 - MS Office versus Lotus 1-2-3
 - MS Windows versus Apple Mac OS
 - MS Windows versus GNU/Linux
 - MS Internet Explorer versus Netscape
 - MS .NET versus Sun Java Enterprise
- Proprietary versus Free Software
- · Client/Server versus Peer-to-Peer

Society => Technology

High Definition Optical Disc War

- HD-DVD versus Blu-Ray Disc
 - Blue laser based storage
 - · Same compression schemes
 - · Players will be backwards compatible
- HD-DVD
 - · Can use current DVD manufacturing process
 - Capacity 15GB or 30GB on dual layer
 - · Supported by
 - DVD Forum, Toshiba, NEC
 - Paramount, Universal, Warner
- · Blu-Ray Disc
 - Needs expensive new manufacturing process
 - · Capacity 25GB or 50GB on dual layer
 - Supported by
 - Blu-Ray Disc Association which includes everybody except Toshiba & NEC
 - Disney, Sony Playstation

Society => Technology

Afterword

- In January 2008 Warner Bros decided to cease releasing films on HD-DVD
- In February 2008 Toshiba abandoned production of HD-DVD equipment
- Victory for Blu-Ray Disc?
- · Meanwhile ...
- Holographic Versatile Disc
 - Just launched
 - · Capacity 200GB!

Computer-related Risks

- Safety Critical Systems
 - · Hazard analysis
 - · Notorious failures
- Dependence
 - · Black Monday
 - 19th October 1987 automated share selling on Wall Street led to a stock market crash there and here
 - Y2K
 - 1st January 2000 was a problem date with enormous potential for widespread havoc (2038!)
- Privacy
 - Surveillance
 - ePOS, CCTV, mobile phones
 - Databases
 - · Data, data, data, ...
 - Social Networking
 - · Privacy policies?

Safety Critical Systems

- · Hazard analysis
 - · Hazard severity
 - · Hazard likelihood
 - · Risk analysis
- · Notorious failures
 - Therac-25
 - Ariane 5
 - · Chinook Mk 2

Hazard analysis

- · Hazard identification
- · Hazard classification
 - Severity
 - US Department of Defense's 4 severities
 - Catastrophic, Critical, Marginal, Negligible
 - Likelihood
 - Levenson's 6 likelihoods
 - Frequent, Probable, Occasional, Remote, Improbable, Physically Impossible
- Hazard decomposition
 - To identify circumstances in which it might arise
- · Risk analysis
 - To balance cost and delivery time against safety using severity and likelihood factors

Notorious failures

- Therac-25
- Ariane 5
- · Chinook Mk 2

Therac-25

- The Therac-25 was a new version of a radiation therapy machine with more software control
 - Between June 1985 and January 1987 overdoses of radiation were given to six people
 - · Three of them died
- Causes
 - · Poor safety design lack of safety interlocks
 - Software errors insufficient testing and debugging
 - · Inadequate reporting and investigation of accidents
 - Overconfidence

Ariane 5

- In June 1996, 40 seconds after initiation of its flight sequence, at an altitude of about 3700m, the Ariane 5 rocket veered off its flight path, broke up and exploded
- The cause was an internal variable related to the horizontal velocity exceeding the maximum value that a 16-bit integer could hold
- This software was, in fact, unnecessary for Ariane 5 but necessary in its predecessor, Ariane 4
- It had been retained in the inertial reference system of Ariane 5 for reasons of commonality

Chinook Mark 2

- In June 1994 a Chinook helicopter transporting 25 top Northern Ireland security experts crashed on the Mull of Kintyre killing all on board
 - For the next 15 years the Ministry of Defence (MoD) insisted that the pilots, Flt Lts Jonathan Tapper and Richard Cook, were responsible and guilty of gross negligence
- In 2009 an internal MoD document claiming serious concerns and warnings over the engine control computer system (FADEC) came to light
 - 21 Category 1 and 153 Category 2 anomalies had been revealed by the report
 - "The density of deficiencies is so high that the software is unintelligible... Pilot's control of the engine(s) through FADEC cannot be assured."
- The report had been written 9 months prior to the crash

Y2K - A Post Mortem

- What was/were the problem(s)?
 - 2 digit year format (00 and overflow)
 - Leap year (29.2.2000 & 366 days)
 - Sentinels (9.9.99 error condition)
- Why all the fuss?
 - Personal Computers, Embedded systems, Safety critical systems
 - · Dependence and inter-dependence
- What were the fixes?
 - · Date expansion, Windowing
- What were the consequences?
 - · Cost of non-compliance, Cost of compliance
- What was learnt?

Y2K - The Problem(s)

- 2 digit year format
 - · Time periods in excess of 99 years not computable
 - Not new see PC "century byte"
 - · Ambiguity of century
 - · Incorrect sorting of dates by year
 - Year calculations not modulo 100
 - Year overflow on incrementing 99
- Leap year
 - 29.2.2000 not permitted
 - Days of week wrong after 29.2.2000
 - 2000 expected to have 365 days
- Sentinels
 - 9.9.99 used as error/test condition

Y2K - The Concerns

- Personal Computers
 - Century code hardwired to "19"
 - · Roll-over in BIOS missing/broken
 - Date validation code broken
- · Embedded systems
 - Field instrumentation & controllers
 - Sensors, transmitters, drives, valves
 - · Process control systems
 - · PLCs, custom chips, drivers
 - · Plant management systems
- Safety critical systems
 - · Safeguarding systems
- Dependence and inter-dependence
 - · Business Continuity
 - · Supply chains
 - · Liabilities & compliance statements

Y2K - The Fixes

- Date expansion
 - · Change to 4 digit years
 - · Finding the dates
 - Package limitations (formats)
 - · Interface limitations (EDI links)
 - · Less efficient data entry
- Windowing
 - Choose a 2 digit year and assume all earlier 2 digit years are 21st century and all later ones are 20th
 - E.g. choose 50, then 49 means 2049 and 51 means 1951
 - · Windows span only 100 years
 - · Performance degradations
 - · More processing required
 - Multiple windows
 - · Systems with different chosen years

Y2K - Consequences of Non-Compliance

- Incidents during Y2K testing
 - Simulation of roll-over at International Federation of Airline Controllers sent all screens blank
 - 4 million gallons of raw sewage dumped onto a Los Angeles street
 - Robot assembly line crashed at GM factory and security system prevented staff from leaving
- · Incidents after millennium
 - · Nuclear plant failures in Japan, Spain, USA
 - Healthcare failures in Brazil, Norway, Sweden, UK
 - · Power distribution failures in Honduras, South Korea

Y2K - Consequences of Compliance

- Cost of fixes (estimates)
 - Worldwide £300,000 million
 - US

£60,000 million

- Government
 - £5,000 million £30 million Command Centre

£20,000 million

Government

£430 million £500 million

 Italy Billboards

£1.5 million

- Side effects
 - · Inventory management
 - Software ROM, OS, Applications
 - Hardware CPU, Cards, Networking
 - · Legacy software
 - · Skill shortages COBOL, Packages
 - · Long overdue revisions
 - · Business environment awareness

Y2K - Learning Outcomes

- Computer professionals
 - · Life expectancy of software
 - · Considerably longer than realised
 - · Need for skills thought to be outdated
 - · Inventory management
 - · Importance to enterprises
 - · Need for methodologies and tools
- Computer users
 - · IT dependence
 - · Broader and deeper than realised
 - · IT cannot be left solely to the boffins
 - · Need to transfer much decision making from IT departments to Board level
 - · Hostages to fortune
 - · Need to be considerably more critical of and better informed about IT solutions and practices

Y2K - The Verdict

- · Take your pick ...
 - The fact that the Y2K problem arose demonstrates that the computer profession is immature and its practices are unsound
 - The computer profession's reaction to the Y2K problem was a double success story
 - i). Success in raising awareness of the problem and persuading enterprises to invest in fixing it
 - ii). Success in fixing the problem
 - The computer profession refused to accept any liability for the problem, provoked widespread hysteria and then exploited the fear it had generated for financial gain

2038 - Unix

- What is the problem?
 - Unix and the C language use a 32 bit signed integer to hold the time/date
 - This variable counts seconds from 00:00:00 GMT on 01.01.1970
 - It will roll over to a negative number at 03:14:07 GMT on 19.01.2038
- Why so little fuss?
 - By 2038 it is expected that all versions of Unix will be using a 64 bit integer for the time/date
 - Unix could well be obsolete by 2038
 - The C language will probably be obsolete long before 2038
 - Libraries for the C language will have been updated to use a 64 bit variable by then anyway

2038 is a problem NOW

- Try writing and running a C program which counts through the critical time on a Unix operating system and see what happens
- Any software that needs to project into the future will hit the problem before 2038
 - What will your age be in 2039?
- Legacy software has a habit of hanging on, and on, and on ...
- Embedded systems could be using old versions of operating systems and software without anybody realising it