Mind the Gap Computational Neuroscience

Nick Taylor Department of Computing and Electrical Engineering Heriot-Watt University Edinburgh

Topics

- Computational neuroscience
- Neurophysiology
- Connectionism
- Common problems
- Points of divergence
- Bridging examples
- Concluding remarks

Computational Neuroscience

Computational neuroscience is characterised by its focus on understanding the nervous system as a computational device rather than by a particular experimental technique.

Experimentation and Modelling

- Neuronal Networks
- Sensory Systems
- Motor Systems
- Cerebral Cortex

Two Disciplines

- Neurophysiology
 - Province of Biological Neuronal Network (BNN) Experimenters
- Connectionism
 - Province of Artificial Neural Network (ANN) Modellers

Differing Perspectives

- BNN Experimenters' agenda
 - Understanding
 - Neurogenesis; Neurotransmitters; Plasticity
 - Pathology
 - Neuronal dysfunction; Diagnosis; Treatments
- ANN Modellers' agenda
 - Performance
 - Training/execution speeds; Reliability; Flexibility
 - Applicability
 - Architectures; Complexity; Fault tolerance

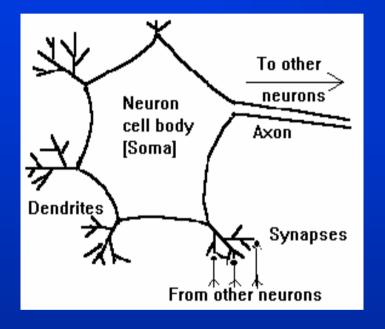
Topics

- Computational neuroscience
- Neurophysiology
- Connectionism
- Common problems
- Points of divergence
- Bridging examples
- Concluding remarks

Neurophysiology

- Background
- Axons, synapses & neurons
- Learning & synaptic plasticity
- Problems
- Summary

Background

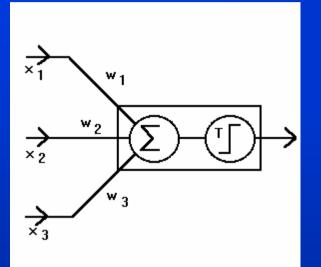


- The human brain contains about 1 billion neurons
- Each neuron is connected to thousands of others
- Neurons can be either excitatory or inhibitory
- Neurons perform very simple computations
- The computational power of the brain is derived from the complexity of the connections

Axons, Synapses and Neurons

- The primary mechanism for information transmission in the nervous system is the axon
- An axon relays all-or-nothing (binary) impulses
- Signal strength is determined from the frequency of the impulses
- An axon signal eventually arrives at a synapse
- A synapse may either attenuate or amplify the signal whilst transmitting it to a neuron
- A neuron accumulates the modified signals and produces an impulse on its own axon if the total synaptic input strength is sufficient

Model of a Neuron

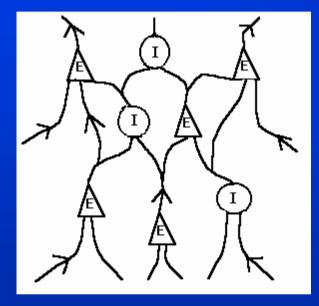


- McCulloch and Pitts model of a neuron (1943)
- Summation of weighted inputs
- Threshold, *T*, determines whether the neuron fires or not

• Firing rule:

 $\sum_{i} \chi_{i} W_{i} > T \quad then \quad fire$ $\leq T \quad then \quad don't \quad fire$

Assemblies of Neurons



- Modifications to neuron assemblies can only be achieved by adjusting the attenuation or amplification which is applied at the synapses
- Hebb Rule (1949) [after James (1890!)]
 - If a particular input is always active when a neuron fires then the weight on that input should be increased
- Learning is achieved through synaptic plasticity

Learning & Synaptic Plasticity I

- Long-Term Potentiation (LTP)
 - Hebbian increases in synaptic efficacy (amplifications) have been recorded on
 - Active excitatory afferents to depolarised (firing) neurons
- Long-Term Depression (LTD)
 - Decreases in synaptic efficacy (attenuations) have been recorded on
 - Inactive excitatory afferents to depolarised (firing) neurons
 - Active excitatory afferents to hyperpolarised (non-firing) neurons
 - Active inhibitory afferents to depolarised (firing) neurons

Learning & Synaptic Plasticity II

• Nitric Oxide

- Post-synaptic messenger discovered in 1990
- Released by depolarised (firing) neurons
- Can affect all active afferents in a local volume
- Consequences
 - NO makes it possible for one or more firing neurons to increase the synaptic efficacy of nearby neurons even if those nearby neurons aren't firing
 - NO can boot-strap synaptic efficacies which have dropped beyond redemption back to viability

Problems

- Hebbian learning paradigm inadequate
- Scant information on plasticity of inhibitory synapses
- Little known about the implications of the NO discovery for more global forms of plasticity
- Frequency-based models and analyses practically non-existent
- Behaviour of populations of neurons very complex and difficult to investigate

Neurophysiology Summary

- Much is already known
 Enough to build models
- Neurophysiological correlates for many computational requirements have been found – LTP, LTD, NO
- Much is still unknown
 - Enough to severely restrict the models
- NO research is still in its infancy
 - Wider implications yet to be investigated

Topics

- Computational neuroscience
- Neurophysiology
- Connectionism
- Common problems
- Points of divergence
- Bridging examples
- Concluding remarks

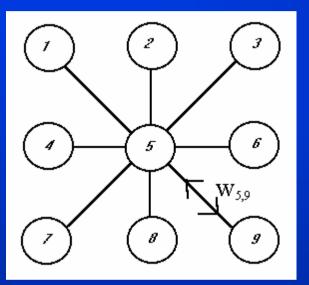
Connectionism

- Background
- Architectures
- Applications
- Problems
- Summary

Background

- Artificial Neural Networks (ANNs) are inspired, but not constrained, by biological neuronal networks
- Two very commonly used architectures
 - The Hopfield Network
 - Single layer, total connectivity within layer, autoassociative
 - The Multi-Layer Perceptron
 - Multiple layer, total connectivity between adjacent layers, no connectivity within layers, hetero-associative

The Hopfield Network

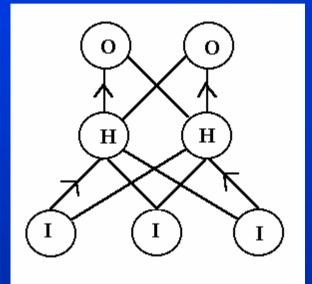


- Each node connected to every other node in the network
- Symmetric weights on connections (w_{5,9} = w_{9,5})
- Node activations either -1 or +1

N

- Training performed in one pass: $w_{i,j} = \sum p_i p_j$
- Execution performed iteratively: $s_i = sign \{ \Sigma w_{i,j} s_j \}$

The Multi-Layer Perceptron



- Each node connected to every node in adjacent layers
- Connections feed forward from input nodes (I), through hidden nodes (H) to output nodes (O)
- Training performed iteratively: $\Delta w_{j,i} = \eta \delta_j s_i$
- Execution performed in one pass: $s_i = f(\Sigma w_{i,j} s_j)$

Hopfield Applications

- Content Addressable Memory
 - Partial patterns can be completed to reproduce previously learnt patterns in their entirety
 - Partially incorrect patterns are simply partial patterns
- Optimisation
 - Learnt patterns are simply attractors minima of some energy function defined in terms of the w_{i,j} and s_i variables
 - Using the objective function in an optimisation problem as the energy function, with suitably defined weights and activation equations, a Hopfield network can find minima of the objective function

MLP Applications

• Classification/Mapping

 Kolmogorov's Mapping Neural Network Existence Theorem (Hecht-Nielsen)

Any continuous function, $f:[0,1]^n \to \Re^m$, can be implemented exactly by a three-layer MLP having n input units, (2n+1) hidden units and m outputs.

- Applications are legion
 - Classification into categories by attribute values
 - Character recognition
 - Speech synthesis (NETtalk)
 - Vehicle navigation (ALVINN)

Problems

- Local minima
 - Hopfield: Linear combinations of learnt patterns or optimal solutions become attractors
 - MLP: Gradient descent training is the inverse of Hill-climbing search and is just as susceptible to local minima as the latter is to local maxima
- Limited storage capacity (Hopfield)
 - Less than N/ln(N) patterns can be memorised safely
- Over-training (MLP)

– Too many free variables $(w_{i,j})$ thwart generalisation

Connectionism Summary

- Neurologically inspired
 - Biological neurons and assemblies of neurons
- Broad applicability
 - Various architectures and training paradigms
- Readily implemented
 - Simple algorithms and data structures
- Reliability problems

 Sub-optimality, capacity limitations, overtraining, *Black Box* naivety

Topics

- Computational neuroscience
- Neurophysiology
- Connectionism
- Common problems
- Points of divergence
- Bridging examples
- Concluding remarks

Common Problems (with Hebb)

- Local learning
 - Hebbian rules for synaptic adjustment imply local learning only (NO)
- Weight decrementing
 - Hebbian rules provide no mechanism for weights to decrease (LTD)
- Weight resurrection
 - Hebbian rules provide no mechanism for increasing the weights to a neuron whose weights are so low that it never fires (NO + LTP)

Points of Divergence

- Neurophysiological facts violated in ANNs
 - Asymmetric connectivity (Hopfield)
 - Partial connectivity (Hopfield & others)
 - Homogeneity of neuron efferents (All ANNs)
 - Immutability of neuron type (All ANNs)
- Computational requirements lacking evidence
 - Increases in inhibitory weights
 - Availability of global information during learning
 - Incremental learning methods (ANN problem)

Bridging Examples

- Two parts of the brain have received extensive study by both the BNN and ANN disciplines
 - Visual Cortex
 - Hippocampal Formation
- Other aspects of the nervous system have been targetted by the modellers
 - Willshaw (1981)
 - Model for the innervation of skeletal muscle
 - Suggested experimental work to acquire more data
 - Associative nets in general

Examples -Visual Cortex

- Hubel & Wiesel (1968)
 - Identified individual neurons which responded to dark or light bars at specific orientations
- von der Marlsburg (1973)
 - Model of Hubel & Wiesel's work
- Marr (1976-1982, died 1980)
 - Computer models based on neurophysiological and psychological findings
- Fukushima (1982)
 - Neocognitron ANN model based on the visual system

Examples - Hippocampus

• Marr (1970)

- Theory of the hippocampus as a simple memory
- Made predictions to guide neurophysiologists
- O'Keefe & Nadel (1978)
 - Model of the hippocampus for spatial mapping
 - Made refutable predictions about behaviour
- Willshaw & Buckingham (1990)
 - Further implications of Marr's theory
- Traub & Miles (1991)

- Collective neuronal behaviour and synchronisation

Examples - Associative Nets

- Marr (1969)
 - Theory of the cerebellum as an associative net
- Tyrrell & Willshaw (1992)
 - Model of the cerebellum as an associative net
- Heriot-Watt Studies (1992 present)
 - Modified Hopfield Networks
 - Asymmetric connectivity mitigates the negative effects of increasingly partial connectivity
 - Asymmetric connectivity improves tolerance to noise
 - Partial connectivity with immutable neuron type (10% inhibitory) and homogeneity of efferents improves recall

Topics

- Computational neuroscience
- Neurophysiology
- Connectionism
- Common problems
- Points of divergence
- Bridging examples
- Concluding remarks

Concluding Remarks

- BNN experimental results have to be correctly placed within a complex body of knowledge
- BNN experimenters can test theories and obtain pointers from ANN models
- ANN models lag woefully behind their BNN counterparts
- ANN modellers can obtain pointers from BNN experiments
- The more Computer Scientists, Mathematicians and Physicists learn about BNN the better