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Computational Neuroscience
Computational neuroscience is characterised

by its focus on understanding the nervous

system as a computational device rather than

by a particular experimental technique.

Experimentation and Modelling 
• Neuronal Networks

• Sensory Systems

• Motor Systems

• Cerebral Cortex



Two Disciplines

• Neurophysiology
– Province of Biological Neuronal Network 

(BNN) Experimenters

• Connectionism
– Province of Artificial Neural Network 

(ANN) Modellers



Differing Perspectives

• BNN Experimenters’ agenda
– Understanding

• Neurogenesis; Neurotransmitters; Plasticity

– Pathology
• Neuronal dysfunction; Diagnosis; Treatments

• ANN Modellers’ agenda
– Performance

• Training/execution speeds; Reliability; Flexibility

– Applicability
• Architectures; Complexity; Fault tolerance
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Background

• Neurons perform very simple computations

• The computational power of the brain is derived 
from the complexity of the connections 

• The human brain contains 
about 1 billion neurons

• Each neuron is connected 
to thousands of others

• Neurons can be either 
excitatory or inhibitory



Axons, Synapses and Neurons

• The primary mechanism for information 
transmission in the nervous system is the axon

• An axon relays all-or-nothing(binary) impulses

• Signal strength is determined from the frequency
of the impulses

• An axon signal eventually arrives at a synapse

• A synapse may either attenuate or amplify the 
signal whilst transmitting it to aneuron

• A neuronaccumulatesthe modified signals and 
produces an impulse on its own axon if the total 
synaptic input strength is sufficient



Model of a Neuron

• Firing rule:

• McCulloch and Pitts model of a
neuron (1943)

• Summation of weighted inputs

• Threshold, T,  determines 
whether the neuron fires or not
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Assemblies of Neurons

• Hebb Rule (1949) [after James (1890!)]
– If a particular input is always active when a neuron

fires then the weight on that input should be increased

• Learning is achieved through synaptic plasticity

• Modifications to neuron
assemblies can only be 
achieved by adjusting the 
attenuation or amplification 
which is applied at the 
synapses



Learning & Synaptic Plasticity I

• Long-Term Potentiation (LTP)
– Hebbian increases in synaptic efficacy 

(amplifications) have been recorded on
• Active excitatory afferents to depolarised (firing) neurons

• Long-Term Depression (LTD)
– Decreases in synaptic efficacy (attenuations) have 

been recorded on
• Inactive excitatory afferents to depolarised (firing)

neurons

• Active excitatory afferents to hyperpolarised (non-firing)
neurons

• Active inhibitory afferents to depolarised (firing) neurons



Learning & Synaptic Plasticity II

• Nitric Oxide
– Post-synaptic messenger discovered in 1990

– Released by depolarised (firing) neurons

– Can affect all active afferents in a local volume

• Consequences
– NO makes it possible for one or more firing neurons

to increase the synaptic efficacy of nearby neurons
even if those nearby neurons aren’t firing

– NO can boot-strap synaptic efficacies which have 
dropped beyond redemption back to viability



Problems

• Hebbian learning paradigm inadequate

• Scant information on plasticity of inhibitory 
synapses

• Little known about the implications of the NO 
discovery for more global forms of plasticity

• Frequency-based models and analyses 
practically non-existent

• Behaviour of populations of neurons very 
complex and difficult to investigate



Neurophysiology Summary

• Much is already known
– Enough to build models

• Neurophysiological correlates for many 
computational requirements have been found
– LTP, LTD, NO

• Much is still unknown
– Enough to severely restrict the models

• NO research is still in its infancy
– Wider implications yet to be investigated
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Background

• Artificial Neural Networks (ANNs) are inspired, 
but not constrained, by biological neuronal 
networks

• Two very commonly used architectures
– The Hopfield Network

• Single layer, total connectivity within layer, auto-
associative

– The Multi-Layer Perceptron
• Multiple layer, total connectivity between adjacent layers, 

no connectivity within layers, hetero-associative



The Hopfield Network

• Training performed in one pass:

• Execution performed iteratively:

• Each node connected to every 
other node in the network

• Symmetric weights on 
connections (w5,9 = w9,5 )

• Node activations either -1 or +1

              1
w  i , j  =  ----  Σ  p  i p  j

              N

si  =  sign {Σ wi, j sj}



The Multi-Layer Perceptron

• Training performed iteratively:

• Execution performed in one pass:

• Each node connected to 
every node in adjacent layers

• Connections feed forward 
from input nodes (I), through 
hidden nodes (H) to output 
nodes (O)

∆ w j, i = η δ j s i

s i  =  f ( Σ w i, j s j )



Hopfield Applications
• Content Addressable Memory

– Partial patterns can be completed to reproduce 
previously learnt patterns in their entirety

• Partially incorrect patterns are simply partial patterns

• Optimisation
– Learnt patterns are simply attractors - minima of 

some energy function defined in terms of thewi , j

andsi variables
• Using the objective function in an optimisation 

problem as the energy function, with suitably defined 
weights and activation equations, a Hopfield network 
can find minima of the objective function



MLP Applications
• Classification/Mapping

– Kolmogorov’s Mapping Neural Network Existence 
Theorem (Hecht-Nielsen)

– Applications are legion
• Classification into categories by attribute values

• Character recognition

• Speech synthesis (NETtalk)

• Vehicle navigation (ALVINN)

Any continuous function f can be

implemented exactly by a three layer MLP having

n input units n hidden units and m outputs
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Problems

• Local minima
– Hopfield: Linear combinations of learnt patterns or 

optimal solutions become attractors

– MLP: Gradient descent training is the inverse of 
Hill-climbing search and is just as susceptible to 
local minima as the latter is to local maxima

• Limited storage capacity (Hopfield)
– Less than N/ln(N) patterns can be memorised safely

• Over-training (MLP)
– Too many free variables (wi , j) thwart generalisation



Connectionism Summary

• Neurologically inspired
– Biological neurons and assemblies of neurons

• Broad applicability
– Various architectures and training paradigms

• Readily implemented
– Simple algorithms and data structures

• Reliability problems
– Sub-optimality, capacity limitations, over-

training, Black Box naivety
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Common Problems (with Hebb)

• Local learning
– Hebbian rules for synaptic adjustment imply local 

learning only (NO)

• Weight decrementing
– Hebbian rules provide no mechanism for weights 

to decrease (LTD)

• Weight resurrection
– Hebbian rules provide no mechanism for 

increasing the weights to a neuron whose weights 
are so low that it never fires (NO + LTP)



Points of Divergence

• Neurophysiological facts violated in ANNs
– Asymmetric connectivity (Hopfield)

– Partial connectivity (Hopfield & others)

– Homogeneity of neuron efferents(All ANNs)

– Immutability of neuron type (All ANNs)

• Computational requirements lacking evidence
– Increases in inhibitory weights

– Availability of global information during learning

– Incremental learning methods (ANN problem)



Bridging Examples

• Two parts of the brain have received extensive 
study by both the BNN and ANN disciplines
– Visual Cortex

– Hippocampal Formation

• Other aspects of the nervous system have been
targetted by the modellers
– Willshaw (1981)

• Model for the innervation of skeletal muscle

• Suggested experimental work to acquire more data

– Associative nets in general



Examples  -Visual Cortex

• Hubel & Wiesel (1968)
– Identified individual neurons which responded to 

dark or light bars at specific orientations

• von der Marlsburg (1973)
– Model of Hubel & Wiesel’s work

• Marr (1976-1982, died 1980)
– Computer models based on neurophysiological and 

psychological findings

• Fukushima (1982)
– Neocognitron ANN model based on the visual system



Examples  - Hippocampus

• Marr (1970)
– Theory of the hippocampus as a simple memory

– Made predictions to guide neurophysiologists

• O’Keefe & Nadel (1978)
– Model of the hippocampus for spatial mapping

– Made refutable predictions about behaviour

• Willshaw & Buckingham (1990)
– Further implications of Marr’s theory

• Traub & Miles (1991)
– Collective neuronal behaviour and synchronisation



Examples - Associative Nets

• Marr (1969)
– Theory of the cerebellum as an associative net

• Tyrrell & Willshaw (1992)
– Model of the cerebellum as an associative net

• Heriot-Watt Studies (1992 - present)
– Modified Hopfield Networks

• Asymmetric connectivity mitigates the negative effects 
of increasingly partial connectivity

• Asymmetric connectivity improves tolerance to noise

• Partial connectivity with immutable neuron type  (10% 
inhibitory) and homogeneity of efferents improves recall
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Concluding Remarks
• BNN experimental results have to be correctly 

placed within a complex body of knowledge

• BNN experimenters can test theories and obtain 
pointers from ANN models

• ANN models lag woefully behind their BNN 
counterparts

• ANN modellers can obtain pointers from BNN 
experiments

• The more Computer Scientists, Mathematicians 
and Physicists learn about BNN the better


