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Computational Neuroscience

Computational neuroscience is characterised
by Its focus on under standing the nervous
system as a computational device rather than

by a particular experimental technique.

Experimentation and Modelling
 Neuronal Networks
e Sensory Systems
 Motor Systems
o Cerebral Cortex




Two Disciplines

* Neurophysiology

— Province of Biological Neuronal Network
(BNN) Experimenters

e Connectionism

— Province of Artificial Neural Network
(ANN) Modellers




Differing Perspectives

« BNN Experimenters’ agenda
— Understanding
* Neurogenesis; Neurotransmitters; Plasticity

— Pathology
* Neuronal dysfunction; Diagnosis; Treatments

 ANN Modellers’ agenda
— Performance
 Training/execution speeds; Reliability; Flexibylit
— Applicabllity

« Architectures; Complexity; Fault tolerance
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Neurophysiology

Background

AXons, synapses & neurons
Learning & synaptic plasticity
Problems

Summary




Background

To other _

neurons”

e The human brain contains
_— about 1 billion neurons
cell body

(Somal e Each neuron is connected
to thousands of others

e Neurons can be either

Dendrites
" Synapses

Frum':[ﬁt'l}érrﬁeuruns eXC":a_tOry Or |nh|b|t0ry

 Neurons perform very simple computations

 The computational power of the brain Is derive
from the complexity of the connections




Axons, Synapses and Neurons

The primary mechanism for information
transmission in the nervous system isdken

An axon relaysll-or-nothing(binary) impulses

Signal strength is determined from finequency
of the impulses

An axon signal eventually arrives asynapse

A synapse may eithettenuate or amplifthe
signal whilst transmitting It to aeuron

A neuronaccumulateshe modified signals and
produces ammpulse on its own axoih the total
synaptic inpustrength is sufficient




Model of a Neuron

e McCulloch and Pitts model of a
neuron (1943)

o Summation of weighted inputs

e Threshold,T, determines
whether the neuron fires or not

* Firing rule:
> XiW;>T then fire
i

<T then don't fire




Assemblies of Neurons

e Modifications to neuron
assemblies can only be
achieved by adjusting the
attenuation or amplification
which is applied at the
synapses

 Hebb Rule (1949)dfter James (1890!)]

— If a particular input is always active when a neuro
fires then the weight on that input should be iasB=s

e Learning Is achieved through synaptic plasticity




Learning & Synaptic Plasticity |

e Long-Term Potentiation (LTP)

— Hebbian increases in synaptic efficacy
(amplifications) have been recorded on

o Active excitatory afferents to depolarised (firinggurons

 Long-Term Depression (LTD)

— Decreases in synaptic efficacy (attenuations) have
been recorded on

 Inactive excitatory afferents to depolarised (fijing
neurons

 Active excitatory afferents to hyperpolarised (nomni)
neurons

» Active inhibitory afferents to depolarised (firing¢urons




Learning & Synaptic Plasticity |

 Nitric Oxide
— Post-synaptic messenger discovered in 1990
— Released by depolarised (firing) neurons
— Can affect all active afferents in a local volume

« Consequences

— NO makes it possible for one or more firing neurons
to increase the synaptic efficacy of nearby neurons
even If those nearby neurons aren’t firing

— NO can boot-strap synaptic efficacies which have
dropped beyond redemption back to viability




Problems

Hebbian learning paradigm inadequate
Scant information on plasticity of inhibitory
synapses

Little known about the implications of the NO
discovery for more global forms of plasticity

Frequency-based models and analyses
practically non-existent

Behaviour of populations of neurons very
complex and difficult to investigate




Neurophysiology Summary

Much is already known
— Enough to build models

Neurophysiological correlates for many
computational requirements have been found

— LTP, LTD, NO
Much is still unknown
— Enough to severely restrict the models

NO research is still in its infancy
— Wider implications yet to be investigated
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Connectionism

Background
Architectures
Applications
Problems
Summary




Background

o Artificial Neural Networks (ANNS) are inspired,

but not constrained, by biological neuronal
networks

e Two very commonly used architectures
— The Hopfield Network

« Single layer, total connectivity within layer, aut
associative

— The Multi-Layer Perceptron

« Multiple layer, total connectivity between adjat&yers,
no connectivity within layers, hetero-associative




The Hopfield Network

 Each node connected to every
other node Iin the network

e Symmetric weights on
connections (W = Was)

e Node activations either -1 or +

1

e Training performed Iin one pass:w.,, = —2 pp
N

» Execution performed iteratively: s = sign & w.; s}




The Multi-Layer Perceptron

 Each node connected to
every node In adjacent layers

e Connections feed forward
from input nodes (1), through
hidden nodes (H) to output
nodes (O)

e Training performed iteratively: Aw, =nd;s

e Execution performed in one passs = f(Zwus)




Hopfield Applications

e Content Addressable Memory

— Partial patterns can be completed to reproduce
previously learnt patterns in their entirety

« Partially incorrect patterns are simply partiaiteans
e Optimisation
— Learnt patterns are simply attractors - minima of
some energy function defined in terms of the

ands variables

« Using the objective function in an optimisation
problem as the energy function, with suitably dedin
weights and activation equations, a Hopfield network
can find minima of the objective function




MLP Applications

 Classification/Mapping

— Kolmogorov’s Mapping Neural Network Existence
Theorem (Hecht-Nielsen)

Any continuous function, f:[Q,]" -~ O™, can be

implemented exactly by a three—layer MLP having
n input units, (2n+1) hidden units and m outputs.

— Applications are legion
 Classification into categories by attribute values
» Character recognition
« Speech synthesis (NETtalk)
* Vehicle navigation (ALVINN)




Problems

e Local minima

— Hopfield: Linear combinations of learnt patterms o
optimal solutions become attractors

— MLP: Gradient descent training is the inverse of
Hill-climbing search and is just as susceptible to
local minima as the latter is to local maxima

* Limited storage capacity (Hopfield)

— Less tharnN/In(N) patterns can be memorised safely
e Over-training (MLP)

— Too many free variablesv(;) thwart generalisation




Connectionism Summary

Neurologically inspired
— Biological neurons and assemblies of neurons

Broad applicabllity
— Various architectures and training paradigms

Readily implemented
— Simple algorithms and data structures

Reliability problems

— Sub-optimality, capacity limitations, over-
training, Black Box naivety
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Common Problems (with Hebb)

e Local learning

— Hebbian rules for synaptic adjustment imply local
learning only(NO)

* Weight decrementing

— Hebbian rules provide no mechanism for weights
to decreas@.TD)

* \Weight resurrection

— Hebbian rules provide no mechanism for
Increasing the weights to a neuron whose weights
are so low that it never firgddlO + LTP)




Points of Divergence

* Neurophysiological facts violated in ANNS
— Asymmetric connectivityHopfield)

Partial connectivityHopfield & others)

Homogeneity of neuron efferen(ll ANNS)

mmutability of neuron typ€All ANNS)

 Computational requirements lacking evidence
— Increases in inhibitory weights

— Availability of global information during learning
— Incremental learning metho{8NN problem)




Bridging Examples

 Two parts of the brain have received extensiv
study by both the BNN and ANN disciplines
— Visual Cortex
— Hippocampal Formation

e Other aspects of the nervous system have bee
targetted by the modellers

— Willshaw (1981)

* Model for the innervation of skeletal muscle
e Suggested experimental work to acquire more data

— Associative nets in general




Examples -Visual Cortex

Hubel & Wiesel (1968)

— |dentified individual neurons which responded to
dark or light bars at specific orientations

von der Marlsburg (1973)
— Model of Hubel & Wiesel’s work

Marr (1976-1982, died 1980)

— Computer models based on neurophysiological and
psychological findings

Fukushima (1982)
— Neocognitron ANN model based on the visual syste




Examples - Hippocampus

Marr (1970)
— Theory of the hippocampus as a simple memory
— Made predictions to guide neurophysiologists

O’Keefe & Nadel (1978)

— Model of the hippocampus for spatial mapping
— Made refutable predictions about behaviour

Willshaw & Buckingham (1990)
— Further implications of Marr’s theory

Traub & Miles (1991)
— Collective neuronal behaviour and synchronisation




Examples - Associative Nets

e Marr (1969)

— Theory of the cerebellum as an associative net

e Tyrrell & Willshaw (1992)
— Model of the cerebellum as an associative net

e Heriot-Watt Studies (1992 - present)

— Modified Hopfield Networks

o Asymmetric connectivity mitigates the negativeeett
of increasingly partial connectivity

o Asymmetric connectivity improves tolerance to ois

 Partial connectivity with immutable neuron type %40
Inhibitory) and homogeneity of efferents improvesaiec
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Concluding Remarks

BNN experimental results have to be correctly
placed within a complex body of knowledge

BNN experimenters can test theories and obta
pointers from ANN models

ANN models lag woefully behind their BNN
counterparts

ANN modellers can obtain pointers from BNN
experiments

The more Computer Scientists, Mathematician
and Physicists learn about BNN the better




