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This paper discuusses the superfluidity of liquid helium below 0.5o K in a
periodic box. The main results are (i) that B.E. condensation is present and
(ii) that Landau’s method of defining vs, the superfluid velocity, is equivalent
to London and Tisza’s

It is assumed that, under the two restrictions mentioned, all important sta-
tionary states can be accurately enough constructed using the phonon theory
(1). Landau has shown how to describe superfluid flow, with vs identified as the
velocity of a moving ground state and vn as the velocity of a phonon gas built
on the moving grund state. However, his theory does not explain whiy non-
conservative collisions between phonons should not produce friction between
the two fluids, nor does it explain the observed critical velocity effects.

For a more complete decription than Landau’s, one can incorporate London
& Tisza’s ideas concerning Bose-Einstein condensation into the theory. In fact,
it has been shown (2) that B.E. condensation is present in He II at absolute
zero: one object of the present work is to extend this result to finite temperatures
without using the very crude method of section 7 of ref.2. If the presence of B.E.
condensation can be demonstrrated, then London & Tisza’s ideas suggest that
vs will equal the velocity of the condensed particles. For consistency, thaerefore,
one must show that this interpretation of vs agrees with Landaplcu’s. This was
the second object of the present work.

In the phonon theory, approximate stationary states are construced by adding
phonons to the ground state ψ or to ‘moving gorund states’ of the form

ψu := exp

imu ·
∑
j

qj/h̄

ψ (1)

where the qj ’s are the positioin vectors of the N atoms, and u is chosen to
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make mu an allowed single particle momentum. Feynman (3) has shown that
the normalized state obtained from ψ by adding a single phonon in the mode k
is approximately Fkψ, where

Fk := (2mc/Nh̄k)1/2ρk := (2mc/Nh̄k)1/2
∑
j

eik·qj (2)

in which c denotes the speed of sound. Oue first step is to generalize this to the
case where, for each k, nk phonons are added successively. Using the methods
of ref. (2), it can be shown that the excited state has the form

ψex =


(∏

k

)1/2

eFkF−k

(
∂

∂F−k

)nk
(

∂

∂Fk

)n−k

e−FkF−k

ψ (3)

where (
∏

k)
1/2

means a product where each pair (k,−k) is included once only.
The expression in braces is simply a convenient representation for a certain
polynomial in the ρk’s, analogous to a Hermite polynomial. The momentum of
the state ψex is M :=

∑
k h̄knk; its energy is E := E0 +

∑
k h̄kcnk, where E0

is the ground-state energy; its normalization integral is
∏

k(nk!).
From these stationary states one may construct a density matrix, giving

each state ψex a probability proportional to the value of exp[−β(E − v ·M)]
for that state, where β := 1/kT. and v is a velocity which Landau identifies
with vn. In contrast with the density matrix of a Gibbs distribution, we do not
inclued all stationary states, but only those built from the true ground state (not
moving ground states). the resulting distribution we call a Landau distribution.
In general, a Landau distribution is characterized by two velocity parameters,
(vn and vs : here vs = 0) while the Gibbs distribution for a moving system is
characterized by only one velocity.

The density matrix for a Landau distribution can now be written down; it
is

〈Q′|σ|Q′′〉 ∝ ψ(Q′)ψ(Q′′)〉×

(
∏

k)
1/2
{

eF
′
kF
′
−k+F ′′k F

′′
−k exp

[
γk

∂2

∂F ′−k
∂F ′′

k
+ γ−k

∂2

∂F ′
k
∂F ′′−k

]
e−F

′
kF
′
−k−F

′′
k F
′′
−k

}
(4)

where Q′ means q′1, . . . ,q
′
N , F ′k := (2mc/h̄k)1/2

∑
j exp(ik ·q′), etc., and γk :=

exp[−βh̄(kc−k ·v)]. We can evaluate the product with the help of the identity

e−FkF−k = π−1

∫ ∞
−∞

∫ ∞
−∞

e−zz̄ + i(zFk + z̄F−k)dxdy (5)

where z := x+ iy, z̄ := x− iy. The result is

〈Q′|σ|Q′′〉 ∝ ψ(Q′)ψ(Q′′)〉×

exp
{
− 1

2

∑
i

∑
j [f(q′i − q′j) + f(q′′i − q′′j ) + g(q′i − q′′j )]

}
, (6)
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where f(r) := (V/8π3N)
∫
d3k(2mc/h̄k)(e2h̄βkc − 1)−1 cos(k · r) and

g(r) := (V/8π3N)
∫
d3k(2mc/h̄k)cosech(h̄βkc) cos(k · (r− iβh̄v),

V being the volume of the container. The functions f(r) and g(r) are both very
small if r � βh̄c.

To test for B.E. condensation, we construct from (6) the one-particle reduced
density matrix

〈q′|σ1|q′′〉 = N

∫
dQ1〈q′,Q1|σ|q′′,Q1〉

∝ exp[
1

2
g(q′ − q′′)]

∫
dQ1χex(q′,Q1)χ̄ex(q′′,Q1)θ2

ex(Q1), (7)

where Q1 means q2 . . .qN (denoted by a German q in ref. (2)),

χex(q′,Q1) := χ(q′,Q1)
∏
j=2N ef(q′−qj)−(1/2)g(q′−q′j),

θex(Q1) := θ(Q1) exp
{
−(1/2)

∑N
i=2

∑N
j=2[f(qi − qj + (1/2)g(qi − qj)]

}
,

χ̄ex is the complex conjugate of χex, and the functions χ and θ are defined in
section 5 of ref. 2.

The integral in (7) can be studied by the method of section 6 of ref.2, making
use of the fact that f(r) and g(r) are small for large r. The analysis shows that
for large |q′ − q′′| the integral is approximately constant, and that

〈q′|σ1|q′′〉 ≈ const. for large |q′ − q′′| (8)

where the constant is independent of N and is positive. It follows, by section
4 of ref. 2 that B.E. condensation is present and that the wave function of the
condensed particles is a constant.

To show that the two methods of defining vs are consistent, we consider
the effect of multiplying all wave functions by exp(imu ·

∑
j qj/h̄). This trans-

formation increases the momentum of every particle by mu and hence changes
the velocity of the ground state to u, so that Landau’s definition of vs now
gives vs = u. The wave function of the condensed particles is transformed to
Ψ(q) = const. exp(imu · q/h̄. According to the ideas of London nd Tisza, one
should define vs as (h̄/im)∇(Im log Ψ(q)). Clearly this definition also gives
vs = u. Thus, under the special simplifying assumptions used here, the two
definitions of vs are equivalent.

I wish to than Professor Lars Onsager for valuable help in planning this cal-
culation.

References
1. O.Penrose, Phil. Mag., 45, 80 (1954).
2. O.Penrose and L. Onsager, Phys. Rev. 104, 526 (1956),
3. R.P. Feynman, Phys Rev. 94, 2 (1954).

3


