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1. The paradox of irreversibility

I Matter is made out of particles (atoms)

I A primary aim of statistical mechanics is to derive the
behaviour of matter from the laws desribing the motion of
these particles

I BUT

I The differential equations (‘laws of microscopic mechanics’)
describing the motion of these particles are symmetrical under
time reversal

I The actual behaviour of matter is not symmetrical under time
reversal

I AND YET

I The actual behaviour of matter is supposed to be derivable
from these laws



2. Not all mechanical laws of motion conserve energy

I Example of a (1-D) mechanical law with no friction

md2x/dt2 = −kx (with k > 0)

where x(t) denotes position of particle at time t.

I This law conserves energy because
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I Example of a mechanical law with friction

md2x/dt2 = −kx − αdx/dt (with k , α > 0)

I This law doesn’t conserve energy :
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3. Equations of motion for a system of N particles

I In statistical mechanics we can represent a material system
microsopically as a system particles with eqns of motion of
the form

m
d2xi
dt2

= −∂V (x1, . . . , xn)

∂xi
(i = 1, . . . , n)

where x1 . . . xn are the position coordinates, n(= 3N) is the
(very large) number of degrees of freedom, and V (x1, . . . , xn)
is a given function, the potential energy.

I This eqn of motion does conserve energy:
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I This eqn of motion contains no frictional terms proportional
to velocities such as dxi/dt. If friction is present, it does not
alter the total energy; rather it converts useful mechanical
energy into heat energy but the total energy is conserved.



4. An example of time-reversal symmetry
I for the simple harmonic oscillator with eqn of motion

d2x/dt2 = −x

x(t) = sin(t) is a solution of the eqn of motion;
x(t) = sin(−t) is another.

I A more general oscillator, whose eqn of motion is

m
d2x

dt2
= −dV (x)

dx

If x = ξ(t) is a solution, i.e. if mξ′′(t) = −V ′(ξ(t)) for all t,
then x = ξ(−t) is also a solution.

I The solutions have this time-reversal symmetry because the
DE is invarant under the transformation t → −t

I An eqn of motion with frictional terms, e.g.

d2x

dt2
= −αdx

dt
− kx (α > 0)

does not have time-reversal symmetry



Most macroscopic PDE’s are not time-symmetric

example: the PDE for the temperature θ(x, t) at position x, time t
in a uniform isotropic solid is

∂θ

∂t
= D∇2θ

This is not time-reversal symmetric, nor are its solutions



Kelvin’s description of a (notional) time-reversed motion

”If . . . the motion of every particle of matter in the universe were
precisely reversed at any instant the course of nature would be
simply reversed for ever after. The bursting bubble of foam at the
foot of a waterfall would reunite and descend into the water: the
thermal motions would reconcentrate their energy and throw the
mass up the fall in drops re-forming into a close column of
ascending water. Heat which had been generated by the friction of
solids and dissipated by conduction, and radiation with absorption,
would come again to the place of contact, and throw the moving
body back against the force to which it had previously yielded.
Boulders would recover from the mud the materials required to
rebuild them into their previous jagged forms, and would become
reunited to the mountain peak from which they had formerly
broken away.” (W. Thomson, The kinetic theory of the dissipation
of energy, Proc. Roy. Soc. Edinb., 1874)



B. Boltzmann’s integro-differential equation

I For a low-density gas of N hard spheres with radius a confined
to a region Λ ∈ R3 define the one-particle distribution
function f (x, v, t) so that

Number of particles in ∆ at time t ≈
∫

∆
d3x

∫
R3

d3vf (x, v, t)

where ∆ is any ”box” in the phase space ΛNR3N , large
enough to contain a huge number of particles.

I Boltzmann’s eqn is
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where the last term represents the rate of change of f due to
collisions (see next frame).



Boltzmann’s collision formula for a gas of hard spheres

I (
∂f

∂t

)
coll ′n

= N

∫
R3

d3v1

∫
n : n·(v−v1)>0

d2n ×

×a2n · (v − v1)[f (x, v′1)f (x, v′)− f (x, v)f (x, v′)]

where v′, v′1 are the post-collision velocities of two particles
whose pre-collision velocities are v, v1, the unit vector along
their line of centres at the moment of collision being n.

I It was proved by Lanford (1975), subject to certain plausible
assumptions about the initial conditions, that Boltzmann’s
integro-differential equation holds exactly in the limit where
N →∞,Na2 → const., for a limited time after the initial time
(unfortunately, only about 1/5 of the mean time between
collisions)



Boltzmann’s ”H” theorem

I For a gas in a container Λ obeying Boltzmann’s
integro-differential equation the quantity

H(t) :=

∫
Λ
d3x

∫
d3vf (x, v, t) log f (x, v, t)

satisfies
dH(t)

dt
≤ 0

I Since H is bounded below, it approaches a limit. The limiting
(equilibrium) f (x, v, t) is the t-independent Maxwellian
distribution

f (x, v, t) ∝ exp
(
−β 1

2m|v|
2
)

where m is the mass of each particle and β is a constant
related to the temperature.

I Physical interpretation: the (non-equilibrium) entropy S is
related to H by S = −kH. The constant k is called
Boltzmann’s constant)



Loschmidt’s ’reversibility’ objection to Boltzmann’s theory
I The H theorem, dH(t)/dt ≤ 0 is not reversible. How can it

follow from the reversible equations of Newtonian dynamics?
I Boltzmann: ”My minimum theorem as well as the so-called

Second Law of Thermodynamics are only theorems of
probability.It can never be proved from the equations of
motion alone that H must always decrease. It can only be
deduced from the laws of probability, that if the initial state is
not specially arranged for a certain purpose, but [chance]
governs freely, the probability that H decreases is always
greater than that it increases.” (Nature 51 413-5 (1895))

I Boltzmann again: In general when a gas . . . has initially some
improbable state, then it passes to the most probable state
. . . and remains there . . . The one-sidedness of this process is
clearly not based on the equations of motion of the molecules.
For these do not change when the time changes its sign. This
one-sidedness rather lies uniquely and solely in the initial
conditions.” (pp 441-442 of ”Lectures on Gas Theory” (1896)
translated by S G Brush (Univ. of California Press 1964))



C. A distinguished applied mathematician’s opinion

I ” In fact, it requires no great mathematician to see that the
reversibility theorem and Poincaré’s recurrence theorem make
irreversible behavior impossible for dynamical systems in the
classical sense. Something must be added to the dynamics of
conservative systems, something not consistent with it, in
order to get irreversibility at all. That has long been clear to
those competent in mechanics . . . ”. (C Truesdell, p.375 of
Rational thermodynamics, 2nd ed. (Springer 1984)).



A distinguished theoretical physicist’s opinion

I He (Boltzmann) was forced to conclude that the irreversibility
postulated by thermodynamics was incompatible with the
reversible laws of dynamics (I. Prigogine, Les Lois du Chaos
(Flammarion, Paris, 1994) cited by J Bricmont, ”Science of
Chaos or Chaos in Science?” Physicalia Magazine, 17, (1995)
3-4, pp.159-208.)



Initial conditions, probability

I

H(t)

H axis

t axis

t=0

I Some of the (presumed) H(t) curves for a gas which at the
initial time t = 0 is required to be in a given macroscopic
state (e.g. to have a given function f (·, ·, 0)). If all the phase
points compatible with that macroscopic state at time t = 0
are given equal probability-like weights (i.e. a uniform
measure) then very nearly all the H(t) functions will, it is
believed, lie close to the heavy curve, which for t > 0 (only!)
should agree with the actual behaviour.



D. Explanation vs description

I example : Kepler and Newton

I Before trying to explain irreversibility, we need a good
description.

I My proposal: characterize the ”good” motions (i.e. the ones
that could actually occur)



Two cases where it seems relatively easy to characterize
”good” motions

I A Lorentz gas with sufficiently densely packed scatterers (see
following slides)

I A dilute gas of (e.g.) hard spheres.



Lorentz gas on a triangular lattice of hard disks

(Bunimovich and Sinai Statistical properties of the Lorentz gas with

periodic configuration of scatterers Comm. Math. Phys. 78 479-497

(1981))



output of a cell

1/3
1/3

1/3

the output fractions depend only on the geometry — not on what
is happening outside the cell.



input of a cell

a

b
c

the input fractions a
a+b+c etc do depend on what is happening

outside the cell



What this example shows

I In a plausible forward motion of the Lorentz gas, the input
ratios depend on what is going on outside (and hence, for
example, on the time), but the output ratios are determined
only by the geometry of the scatterers.

I In the reversed motion, it would be the the output ratios that
depended on things besides the geometry of the scatterers

I In this model, the ’good’ solutions of the equations of motion
are distinguished by the fact that their output ratios are
determined only by the geometry of the scatterers
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