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Abstract

A way of incorporating real events into the evolution of a quantum-mechanical
system, without altering the usual laws of quantum mechanics in any way,
is suggested. A simple model is considered, which shows how in an observ-
ing apparatus the recorded observations appear as real events occurring with
the appropriate probabilities. A characteristic feature of this model is that
before the observation the recording apparatus is in a metastable state.

1 Introduction

Although quantum mechanics is wonderfully successful for predicting the
results of experiments done in physics laboratories, it has some features that
are hard to make sense of if the theory is to be regarded as a theory of how the
world as a whole works. The standard interpretation of quantum mechanics



takes a dualistic view, dividing the world into two parts, often called the
system and the environment, or the quantum part and the classical part.
The classical part is described in terms of the familar ideas of everyday life,
according to which the world consists of objects which have definite positions
at all times (even though we may not know these positions). The quantum
part, on the other hand, is described in quite different terms, using Hilbert-
space vectors and operators that act on them. Standard quantum mechanics
gives no clear guidance about how the line between the two parts of the world
is to be drawn.

In addition, a puzzling dualism affects the time evolution of the quantum
part of the world. Most of the time the state vector changes according to the
unitary evolution rule implied by Schrédinger’s equation; this time evolution
is deterministic, continuous, and symmetric under time reversal. But when
an observation or measurement is made, the state vector changes according to
a different rule which is probabilistic, discontinuous, and asymmetric under
time reversal. As long as we stay in the physics laboratory, we know what a
‘measurement’ is and so it is easy to know which is the right rule; but most
physical processes take place outside the laboratory and are not observed by
anybody. How can the right rules for them be unambiguously formulated?

These questions have been much discussed, for example in J.S.Bell’s excel-
lent book! and many proposals have been put forward for replacing quantum
mechanics by a different theory which avoids the ambiguities. However the
alternative theories often suffer from difficulties of their own, such as trouble
in formulating them in terms of relativistically invariant concepts.

The object of the present paper is to suggest a possible way of overcoming
the ambiguities without making any modification of the usual laws of quan-
tum mechanics, if instead we look for a more unified way of doing quantum
mechanics itself. The point of view we shall take is that the reason for the
dualistic features of quantum mechanics is an inherent dualism of Nature —
in any physical process, two things are going on at the the same time. One of
them is described mathematically by the state vector, with the usual deter-
ministic evolution according to Schrédinger’s equation. But at the same time
there are taking place real events, whose occurrence is controlled by a prob-
abilistic law. The two ingredients are linked together, since the probabilities
of the real events and the times when they can occur are determined by the
state vector, whilst the choice of the state vector and the way it evolves in
time are determined by the real events that have already happened. We shall



see that in quantum systems of suitable structure both the state vector and
the real events can be included in an unambiguous and unified way, without
any need either for interactions with an outside ‘classical’ environment or for
modifications of the usual laws of quantum mechanics.

An important component of the theory to be described here is the idea
that not every self-adjoint operator is to be regarded as being observable.
In this, we differ from Dirac? who specifically assumes that every operator
whose eigenvalues form a complete set can somehow or other be observed:
indeed he uses the word ‘observable’ as his usual term for such an operator.
Our justification for making this distinction beween observable and unobserv-
able operators arises from the fact that an observation implies an interaction
between the observed system and some observing apparatus. Since only a
limited class of interactions (e.g. local interactions) are available, it seems
reasonable to suppose that only a limited class of self-adjoint operators cor-
respond to physical quantities that can be observed.

To have a hope of explaining in detail what is special about this class of
‘observable’ self-adjoint operators the theory should also provide a model or
representation of the act of observation, regarded as a process taking place
entirely within the system rather than being imposed on it by some outside
agent as in the usual treatments. We shall show that such a representation
of the act of observation is possible, at least in a simple model system. In
order for an observation to take place, it appears to be necessary for the
observing part of the system to start in a metastable state, but there does
not appear to be any need for it to be macroscopic (i.e. large) except in so
far as a system may have to be large in order to have metastable states.

Only a small part of the programme sketched above has actually been
carried out. We confine ourselves here to setting out a postulate giving the
conditions under which a real event may occur and showing how these ideas
work in the special case of a very simple system consisting of an object system
with just two states together with an idealized instrument for detecting which
of the two states it is in.

2 Interpretation of the state vector

Although the main part of this theory concerns the conditions under which it
makes sense to say that real events occur in a quantum system, we begin by



outlining the interpretation that will be put on the state vector so as to show
how the occurrence of state vector reduction can be understood without any
modification to the unitary evolution implied by Schrédinger’s equation.

The state vector will be interpreted as a thing similar to a probability
distribution, though more complicated. It is like a probability distribution
in the following ways:

(i) it is a statistical quantity, that is to say it can be measured by suit-
able statistical experiments, involving a large number of identically prepared
replicas of the system, but it cannot be measured by a single experiment on
a single system. The collection of replicas of the system generated by such a
statistical experiment is often called an ensemble.

(ii) it depends on how the system was prepared and is therefore condi-
tional on past real events. For this reason, it changes discontinously if new
real events are incorporated into the conditions, in just the same way that
the probability of a 62-year-old man’s living to see his 75th birthday changes
discontinuously if it is discovered that he has a bad heart. This discontinuous
change, in the case of the state vector, is sometimes called the collapse of the
state vector, but this collapse is not a physical event like the collapse of, say,
a bridge. All that happens is a switch to a new ensemble for the calculation
of probabilities for future events; this switch is convenient, though not log-
ically necessary, because, as far as the future is concerned, all probabilities
are conditional on the event that has just happened, so that the probability
of this event will always have the value 1.

On the other hand there are important differences between state vectors
and probabilities:

(i) the numbers used to represent the state vector are complex whereas
probabilities are real (and non-negative.) For this reason, the state vector
cannot be measured simply by counting as in the case of probabilities; and
moreover interference effects such as those found in the two-slit experiment
can occur, in which different possible ways of achieving a given outcome can
cancel one another out instead of reinforcing as they always do in the case
of probabilities.

(ii) the results of observations are not to be thought of as measurements
in the sense of finding out something that is already there3; rather, it is as if
they come into being as a part of the process of observation itself.

(iii) in classical mechanics it is possible to ‘explain’ the observed proba-
bility distributions by relating them, via the laws of mechanics, to plausible
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probability distributions at the beginning of time; but in quantum mechan-
ics such a programme, which is tantamount to a search for ‘hidden variables’
comes up against the difficulty of Bell’s inequality.

3 Superselection rules

Now we turn to our main topic, which is to identify the circumstances under
which real events can occur in a quantum system, without any interaction
with the outside world. In general the events occur at particular times, but to
introduce the ideas we consider first a case where there is no time evolution.

Consider a quantum system without time evolution, whose Hilbert space
‘H of the system is the direct sum of two orthogonal subspaces:

H="Hi+ Hs (1)

such that

(1, Ath) = (tha, A¢py) = 0 (2)
holds for all ¥y in Hq, all 15 in Hy, and all A in the set A of observable
operators.

A condition of the form (2) is called a superselection rule. Superselec-
tion rules were originally considered in quantum field theory? where the two
subspaces may correspond, for example, to different values for the total elec-
tric charge. Their relevance to the quantum measurement problem has been
noted by Wakita® and Zurek® .

The point of the definition is that if the state 1 of the system is written
in the form

P = 11 + ety (3)

with ¢; in H; and 9 in Hs, (¢; and ¢y being complex numbers and all
the ¢ vectors normalized), then the expectation of a measurement of any
observable A made at any later time ¢ is

(W(t), Ap(t)) = 1 (¥ (2), Apr (2)) + [ea] (o (t), Ada(t)) (4)

Here 1 (t) denotes a time-dependent state vector, evolving according to the
unitary evolution associated with Dirac’s? ‘Schrodinger picture’ and equal to
the initial state vector ¢ at the initial time. The definitions of ;(¢) and
1o(t) are analogous.



Eqn (4) tells us that the expected result of any measurement is precisely
the same as if, even before it had been decided which observable to measure,
the system had irrevocably chosen one of the two subspaces, H; or Hs, with
probabilities |¢;]? and |c|? respectively. Therefore, when the superselection
rule (1,2) holds, it is consistent with the predictions of ordinary quantum
mechanics to assume that, as soon as the system is set up in a definite
state, a real event occurs, either (with probability |c;]?) the event & which
corresponds to the state vector being in subspace Hi, or (with probablity
|c2]?) the event &, corresponding to H,. The basic postulate of this paper
is that under these conditions a real event, either & or &, actually does
happen, and furthermore that it does so at the earliest possible time — i.e.
in this case as soon as the system is prepared in state . If the real event
&, occurs, then the appropriate state vector for future calculations is 1q, the
projection of the original state vector ¢ into H;; and likewise if & occurs,
then the new state vector is 5.

4 Superselective subspaces

So far we have assumed that the superselection rule operates throughout the
history of the system, so that the real event may be held to occur as soon
as the system comes into existence. We are more concerned, however, with
events that happen at later times, such as the times when observations occur.
To describe these, we shall use a generalization of the idea of superselection
rule.

The generalization has two new features. First, we no longer require that
the two orthogonal subspaces have as their direct sum the entire Hilbert
space; it will instead be only a susbspace. And secondly, we require the two
orthogonal susbspaces to be invariant only under forward time evolution, not
under the full two-way time evolution of the system. So, our new definition
is this:

Consider a system whose Hilbert space H has a subspace F which is the
direct sum of two orthogonal subspaces:

F=F+F (5)
both invariant under forward time evolution, i.e.

U(t) € Fi = (ta) € Fi (i =1,2) (6)
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whenever t; < t5. Suppose further that for every observable A we have, as
in eqn (2), the superselection rule

(Y1, Atpa) = (P2, A1) = 0 (7)
for all ¢ in F; and 1 in Fo. When (5, 6, 7), hold we shall say that F is a

superselective subspace with components F; and F5. In a system whose time
evolution operator is not invariant under time translation, it may happen
that eqn (6) holds only for times ¢; after some special fixed time 7’; in that
case we shall say that F is a superselective subspace after time 7.

Theorem Suppose that at some time t; the state vector ¢ lies in a
superselective subspace F with components F; and F», so that it can be
written

P = ¢y + oy (8)
with 11 in F; and v, in F5. Then for all ¢t > ¢, we have

(©(1), A () = |er] (W (t), A (8)) + 2l (W2(t), Ata(t)) (9)

where 1 (t) denotes the time-dependent state vector that is equal to ¢ when
t = ty, and the definitions of 1;(t) (i = 1,2) are analogous.

This theorem, whose proof is obvious, has the following consequence,
analogous to the one we obtained for the simpler superselection rule in sec-
tion 2: If at some time ty the state vector of the system is in a superselective
subpace F with components Fi and Fo, then it is consistent with the predic-
tions of ordinary quantum mechanics to assume that at time ty a real event
occurs, either (with probability |c1|* ) the event & which corresponds to the
state vector’s being in subspace JFi, or (with probablity |co|* ) the event &,
corresponding to Fo. It then follows from the postulate enunciated in the
preceding section that under these conditions a real event does occur, at the
moment when the state vector first enters the subspace F: either the event
& with probability |c¢;]? or the event & with probability |c3|.

5 A model of a quantum measurement
The following model is intended to illustrate the operation of the above def-

initions and postulates and to show how a theory of measurement can be
constructed within the framework we have described.



Consider a system consisting of two subsystems. One is an ‘object system’
whose state space is spanned by just two vectors, ¢; and ¢5 . These vectors
can be thought of as ‘spin up’ and ‘spin down’ states of the object system.
The other part of the system is a ‘detector’ whose state space is spanned
by an infinite set of basis vectors: a vector g which is to be thought of
as a metastable state, and an infinite set {...A\_2, A_1, Ao, A1, Ag, ...} which
together make up the stable equilibrium macro-state of the detector. Since
this equilibrium macro-state comprises an infinite number of micro-states,
its entropy is infinite in this model. The state space of the composite system
is the tensor product of the state spaces of the two subsystems.

Time will be assumed to be discrete, taking integer values only, and the
normal time evolution rule taking the state vector at time ¢ into the state
vector at time ¢ + 1 is

An = Ans1 (= ...,—2,—-1,0,1,2, ...) (10)

States not mentioned in this rule are left unchanged by the normal time
evolution.

However, we postulate a special time T" at which a different rule applies:
at a time which we shall call T"— 0 immediately before the operation of the
normal rule (10) at time 7", we apply the following additional transformation,
which has the interpretation that if (and only if) the object system is in the
state ¢, the states p and Ay of the detector change places. In physical terms,
the detector, started in the metastable state p, is set up so as to be kicked out
of the metastable state in the same way that a silver atom in a photographic
emulsion might be kicked out of the molecule it was previously in by the
arrival of a suitable photon. Mathematically, the rule (to be applied at time
T — 0 only) is

d1 X = d1 X Ag
$1 X Ao = 1 X (11)

The set of observables will be taken to be the set of operators that affect
the detector only when it is in or adjacent to its metastable state, i.e. the
only basis vectors it affects are ¢1, ¢o, i1, Ag. The subspaces F, F; and F; are
taken to be

F = ( object system space ) x ( span of u, A1, Ag, ..)
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F1 = ( object system space ) x ( span of Aj, g, ..)
F> = ( object system space ) X (12)

Then it can be checked, using the definition in section 4, that the subspace
F is superselective after time 7', with components F; and Fs.

Initially, we take the system to be in a state where the object system is in
a linear combination of its ‘up’ and ‘down’ states, while the detector has been
prepared in its metastable state ready to detect whether or not the object
system is in the ‘up’ state. Then the time evolution proceeds as follows:

V() = [c101 + cao] X
Y(1) = (same) by (10)

) = (same)
YT —0) = c1¢1 X Ao+ 202 x u - by (11)
) = 101 X A1+ o X by (10)
) = 101 X Aa+ a2 X i
..... (13)

In all lines of this array from the ¢(7") line onwards, the first term on the
right hand side is in F; and the second is in F5. Hence we can apply the the-
orem in the preceding section, and the consequences noted there, to conclude
that (according to our basic postulate) a real event occurs at time T. With
probability |c;|* the system chooses subspace F; and the event is that the
detector has found the object system to be in state ¢; and has itself gone into
its true equilibrium state. With probability |cs|? the system chooses subspace
F5 and the event is that the detector remains in its metastable state, with
the implication that the particle was not in state ¢; and is therefore in state
¢o. The ‘measurement’ is complete, and the occurrence of the real event
automatically puts the object system into the new state ¢, or ¢ without
any departure from the unitary Schrodinger evolution.

6 Discussion

It may be helpful to compare the theory proposed here with some of the well-
known interpretations of quantum mechnics. The present theory is like the
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standard ‘Copenhagen’ interpretation in combining a quantum description
of the world in terms of state vectors with a ‘classical’ one in terms of real
events; but in the present theory the two descriptions are applied simultane-
ously to the same system instead of being applied to two different parts of
the world. The present theory is like the Bohm-de Broglie” and stochastic
mechanics®® theories in that they also have real events (the changing con-
figurations of the particles) superimposed on the state vector evolution, and
our interpretation of the ‘collapse of the state vector’ is virtually the same as
in those theories; but in that theory real events occur continuously, whereas
in ours they only occur when certain conditions are satisfied. For example in
the two-slit experiment, the Bohm-de Broglie theory says that the electron
really does go through one slit or the other, whereas ours does not say any-
thing about how it got from the emitter to the detector. The present theory
is like the ‘many worlds’ theory!® in that it envisages, in principle, a state
vector for the whole Universe, which splits up according to the various ways
that the quantum world may jump ; but it differs from that theory in that it
has only one real world rather than many, and in that it seeks to make precise
the conditions under which the splitting can occur. The present theory is
like the theories of state-vector reduction, such as that of Ghirardi, Rimini
and Weber!!, in seeking to elucidate the conditions under which events can
occur; but it differs from those theories in that it seeks to do this in a way
that is exactly compatible with standard quantum mechanics.

As presented here the theory is obviously incomplete, and of course the
possibility exists that it cannot be completed in a fully satisfactory way.
For example, the type of superselection rule envisaged in section 4 can be
shown to imply that the matrix elements of the Heisenberg operator A(t)
corresponding to the observable A in eq. (4) should be exactly zero for all
positive values of ¢; but in a continuous-time theory this is'? not compatible
with the usual type of Hamiltonian with a spectrum which is bounded below.
This suggests that a realistic continuous-time version of the present theory
can be developed, if at all, only for infinite systems, where the concept of
a Hamiltonian does not play such a central role as it does in the theory of
finite systems.
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