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Abstract

We study certain approximate solutions of a system of equations formulated in an
earlier paper (Physica D 43 44-62 (1990)) which in dimensionless form are

Ut + 7w(¢)t = VQU,

ac?gy = EVih+ F(o,u),

where u is (dimensionless) temperature, ¢ is an order parameter, w(¢) is the temperature—
independent part of the energy density, and F involves the ¢—derivative of the free-energy
density. The constants « and « are of order 1 or smaller, whereas € could be as small as
1078, Assuming that a solution has two single—phase regions separated by a moving phase
boundary I'(t), we obtain the differential equations and boundary conditions satisfied by
the ‘outer’ solution valid in the sense of formal asymptotics away from I' and the ‘inner’
solution valid close to I'. Both first and second order transitions are treated. In the
former case, the ‘outer’ solution obeys a free boundary problem for the heat equations
with a Stefan—like condition expressing conservation of energy at the interface and another
condition relating the velocity of the interface to its curvature, the surface tension and the
local temperature. There are O(¢) effects not present in the standard phase—field model,
e.g. a correction to the Stefan condition due to stretching of the interface. For second—
order transitions, the main new effect is a term proportional to the temperature gradient
in the equation for the interfacial velocity. This effect is related to the dependence of
surface tension on temperature.

We also consider some cases in which the temperature v is very small, and possibly ~
or « as well; these lead to further free boundary problems, which have already been noted
for the standard phase—field model, but which are now given a different interpretation and
derivation.

Finally, we consider two cases going beyond the formulation in the above equations. In
one, the thermal conductivity is enhanced (to order O(e~1)) within the interface, leading
to an extra term in the Stefan condition proportional (in two dimensions) to the second
derivative of curvature with respect to arc length. In the other, the order parameter has
m components, leading naturally to anisotropies in the interface conditions.

1 Introduction

In [PF1], the authors gave a thermodynamically consistent formalism for developing models
of phase—field type for phase transitions in which the only two field variables are temperature
and an order parameter. The present paper develops in some detail the laws governing the
motion of phase interfaces which are implied by these models and their generalizations, in
the case of both first and second order phase transitions. (The latter are defined here to
be those transitions in which the internal energy is the same in the two phases at constant
temperature.) These laws are obtained by a formal reduction of the models in [PF1] to free
boundary problems. Such a reduction is obtained by the use of systematic formal asymptotics
based on the smallness of a parameter ¢, a dimensionless surface tension. (This identification
of € is shown in (24) and Sec. 12, although its definition comes, via the coefficient % in (3),
from the gradient term in a postulated entropy functional introduced in [PF1].) This was the
procedure first followed in [CF] for the traditional phase field equations. We consider only
models in which the density is constant and the order parameter is not a conserved quantity.



Within these restrictions, our treatment here is in many respects more complete and
general than that given in [CF], [C1], [WS] and in other papers. For example, in allowing the
thermal diffusivity D to depend on the order parameter, we may include the case when this
diffusivity is enhanced within the interfacial region; the interface condition expressing energy
balance then includes an extra term involving (in two dimensions) the second derivative of
the curvature with respect to arc length along the interface and representing lateral diffusion
within that region.

We also explore other implications of the dependence of both D and the heat capacity ¢
on the order parameter, and generalize the procedure to the case when there are several order
parameters. This latter case is frequently encountered in modeling phase transitions, and leads
naturally to anisotropies in the interface conditions. It leads to some interesting mathematical
problems involved with finding a heteroclinic orbit for a special kind of Hamiltonian system.

The contrasting nature of phase interfaces for first and second order transitions is brought
out. In the latter case, we derive a forced motion-by-curvature problem.

The conditions leading to a free boundary problem of Mullins—Sekerka type are elucidated
and contrasted with those usually postulated within the framework of the traditional phase
field model. In particular, the time evolution from Stefan—type motion into Mullins—Sekerka
motion is discussed (Sec. 14).

The relation between the interface thickness, the surface tension, and the Gibbs—Thompson
law, is discussed, and our viewpoint corroborated by known physical data.

Finally, the asymptotic procedure here used is developed and discussed with great care,
and certain first order terms in the interface conditions are derived here for the first time.

The phase field models developed in [PF1] were based on certain postulated forms for the
internal energy, free energy, and entropy of the system. These are made precise in Sec. 3 of
this paper. Other assumptions, of a mathematical nature, are made in the paper, particularly
in Sec. 5. These latter are assumptions about the nature of the layered solutions we are
investigating, and are made in order to carry out a matched asymptotic expansion. Assump-
tions of this type are in fact nearly always made in formal asymptotic treatments of applied
problems, but are rarely made explicit. We strive to spell them out completely.

There has been good progress in rigorous justification of the type of formal asymptotics
used here, which means proving the existence of solutions for which our assumptions hold.
See [CC], [St], [St2] for such a justification in the case of the traditional phase field model.
(Such progress has been even more impressive in the case of the Allen-Cahn and Cahn-Hilliard
models.)

Other thermodynamically consistent models have been developed in recent years; see [T],
[UR], [AP1], [AP2], [WS], and the references given there (note also [K], described from a
thermodynamically consistent point of view in [WS]). In many cases they are more complicated
than ours, due to the inclusion of effects such as variable density.

2 The main ideas and results

As in [PF1] we start from a Helmholtz free energy function of the form

f(9,T) = w(¢) —Tso(¢) — cT'log T,

where ¢ is the order parameter, T the absolute temperature, w(¢) and 5¢ are the temperature-
independent parts of the energy density and entropy density, and c is the heat capacity at
constant ¢, which for the time being we take to be constant. The internal energy is then

o OUIT)
“D =)

and the kinetic equations, (3.8) and (3.6) of [PF1], can be written in the form of the following
equations, the main object of study in this paper:

w(p) + T (1)



T+ w(p); =V - D(p, T)VT, (2)

T 0¢
Here z € R? or R3 and t € R are space and time variables, V denotes vector differentiation
with respect to z, D is the heat conduction coefficient, x; measures the contribution to the
entropy and free energy made by gradients in ¢, and kg is a relaxation time for ¢. (The
coefficient kg is called K, ' in [PF1].) Note that @ and f are related to 5o(¢):

10 » 1,

T3 (0, 1) = 5p(¢) — T (6)- (4)

ko(¢, T)dr = k1 V>

where the primes indicate differentiation. In Sec. 18, the order parameter ¢ is generalized to
have several components, in which case (3) becomes a vector equation, xy becomes a matrix,
the first term on the right of (3) becomes a more general second order operator, and the last
term becomes —%V¢f(¢, T).

As in [PF1], the function w will be postulated to be concave (in fact, quadratic), and
at fixed T the function of ¢ on the left of (4) has the form of a “seat function” of ¢ with
three zeros, at values ¢ = h_(T'), ho(T), and h4(T) (see Figure 1). Fig. 1(a) illustrates the
possibility (used in [WS]), that one or more of these functions ‘A’ may be constants. Moreover,
we postulate the existence of a temperature T (the melting temperature if the transition is
of first order) such that f(h_(Tp),To) = f(h4(To),To). More specific assumptions on our
functions are given in Section 3.

Figure 1: Two possible functions — f(¢, T') plotted at fixed T', and their null sets (the functions
hT)) :
(@) —fo(&.T) = (" = D(¢e(T = To) = ). (b) — fs(&,T) = (1 —¢*) — T +Tp.

As indicated in [PF1] and (especially) in [PF3], the traditional phase—field model of Langer
[L] and Caginalp, in which w is linear, can be put into this general framework, but corresponds
to cases where so(¢) is a nonconcave function.

The special case of (2), (3) studied in [PF3] for purposes of illustration is revisited here in
Section 4. In that section, we relate our parameters to various physical constants in order to
gauge their orders of magnitude. In this same vein, we relate the interface thickness € to the
surface tension o. (The parameter € is defined below in Section 3, in terms of g and x1.)

If the parameters kg and k1 in (3) are small, in the sense to be explained below in Section
3, then solutions can be constructed (in the manner of formal asymptotics) which depict
spatial configurations of two distinct phases. More precisely, at any instant of time, space is
divided into regions D, and D_, with a thin mobile layer separating them. In many typical
cases, the order parameter ¢ is approximately a constant, say ¢+, in D. In the thin layer
between Dy and D_, ¢ makes a transition from near ¢_ to near ¢..

Our purpose is to study these layered solutions in detail. Our focus is on all solutions of
this type, rather than on solutions satisfying specific boundary or initial conditions.

We are mainly concerned with first-order phase transitions. A matched asymptotic anal-
ysis for this case is given in Sections 5 — 12. Only the two-dimensional case is considered, but
the method is easily extended to three dimensions. Our analysis relies on the smallness of ¢,
a parameter (actually a dimensionless surface tension) related to x; which will be given later.
We assume that the dimensionless width of the layers is O(e)) and that their internal struc-
ture scales with € in a way to be defined more carefully in Sec. 5. Under these assumptions,
the analysis allows one to deduce further information of a detailed nature about the layered
solutions. For example, it provides approximate information about how the interphase regions
move. It is this property of engendering further information which lends the assumption its
credibility.



The result of the analysis is that the layered solutions can be formally approximated
at the macroscopic level by the solution of a free boundary problem, the interphase layer
being approximated by a sharp interface. The free boundary problem, set out in Section
11, consists of heat equations in each of the two single-phase domains, coupled through their
common domain boundary (the interface) by means of two specific relations. One of them
is a Stefan-like condition, and the other is a condition relating the temperature there to the
velocity, curvature, and surface tension . These approximations, valid away from the layer,
are supplemented by fine structure approximations, valid in the vicinity of the layer, which
give information about the phase and temperature profiles within the interphase region.

The analysis reveals some new effects: (a) to order €, the temperature may be discontinuous
at the interface; (b) the effect of interface stretching is accounted for by an extra term in the
Stefan condition; and (c) there is in general a small extra normal derivative term as well as a
curvature term in the other interface condition.

In Section 13, we consider the analogous question of phase boundary motion in the case
of second order phase transitions. The previous development is easily adapted to this case,
but the results are strikingly different. The model considered by Allen and Cahn [AC] is a
particular case.

The basic free boundary problem obtained in Section 11 has many particular limiting
cases when certain order of magnitude assumptions are made on the parameters of the prob-
lem; a few of these possibilities are explored in Sections 14 and 15. As opposed to previous
derivations of similar limiting cases, we show that the various alternative free boundary prob-
lems obtained in [CF| and [C2] as formal approximations for small € when certain parameters
are taken to depend on €, appear here as corollaries of our basic results. The same is true
for the classic motion—-by—curvature problem. Thus one general analysis does it all. In the
case of curvature—driven free boundary problems of various kinds, we elucidate in Section
15 the physical conditions under which they are valid approximations. These conditions are
distinctly different from those which have been suggested in the past, and are motivated by
thermodynamic considerations.

In Section 16, the implications of allowing the coefficients to depend on ¢ and T are
explored. Section 17 is devoted to the interesting case, not considered before, when the
thermal diffusivity is enhanced within the interphase zone. Again, the analysis in Sections 5 —
12 can be adapted. The most significant new feature is the appearance, in the Stefan interface
condition, of an extra term representing diffusion within the zone. This term involves the
second tangential derivative (or, in three dimensions, the surface Laplacian) of the curvature
of the interface. An analogous result has been derived by Cahn, Elliott, and Novick—-Cohen
[CEN], in the case of Cahn—Hilliard type equations. They show that enhanced mobility within
the interfacial zone results in a limiting free boundary problem in which the motion is driven
by the Laplacian of the curvature. See [CT] for a materials scientific theory of a class of
surface motions depending on the Laplacian of curvature.

In Section 18 the generalization, important in some applications, is made to multi-compo-
nent order parameters. As we shall see, this provides a possible basis for treating the motion
of anisotropic interfaces. Free boundary problems of the same general type as before are
obtained, but the coefficients of the curvature and velocity in the free boundary conditions
are more complicated.

A systematic matched asymptotic analysis of moving layer problems of this sort was first
carried out in [CF]; see also [C2] and [F2]. Similar problems were treated using related
techniques in [P] and in [RSK]. To an extent, our conclusions are analogous to those in [CF]
and [C2], but there are many important differences, as was mentioned above.



3 The basic model and hypotheses for first order phase tran-
sitions; nondimensionalization.

The models considered here consist of field equations (2), (3) for a temperature function T'(Z, t)
and an order parameter function ¢(Z,t). In the main part of the paper we shall assume that
¢, kg, and D are positive constants, and that ¢ is a scalar function. Some assumptions about
the function f will also be needed. These depend somewhat on whether the phase transition
is of first or second order. We begin with the case of a first order transition (sections 5-12),
for which the assumptions are set out below. Second order transitions are treated in Sec. 13.

Al. f(¢,T) is twice continuously differentiable in both variables. Considered as a function
of ¢ at fixed T for any T in some interval T < T < T4, f(¢,T) has two local minima
¢ =h_(T) and ¢ = h4(T), which we order so that

h_(T) < hy(T).

It also has a single intermediate local maximum at ¢ = ho(T') € (h—(T), h(T)).

Thus — f, typically has one of the forms shown in Figure 1. The two numbers h_(T") and
h4(T) are the values of ¢ for which uniform phases can exist at temperature 7". In general
these two minima correspond to different values of the free energy. If that is the case, one of
the phases is stable and the other is metastable, so that they cannot coexist at equilibrium.
Only if they correspond to the same free energy density,

f(h(T), T) = f(hy(T), T), (5)

can the two phases coexist at equilibrium.

Our second assumption (which holds only for first order transitions) will be that phase
equilibrium is possible only at a single temperature Ty (the melting temperature, in the case
of solid-liquid transitions):

A2. Equation (5) is satisfied if and only if T'= Ty € (T, T%).

Our third assumption strengthens the local minimum condition on f(¢,T") at ¢ = hy(T)
in Al, to

A3. o2

5 (D). 1) >0, (6)

Our fourth assumption concerns the latent heat. To write it simply, we denote ¢4 =
h+(Ty); ¢ = ho(Tp). Since we are considering the case of a first order phase transition, the
energies of the two phases are different : w(¢4) # w(¢—). The more ordered phase (with the
order parameter ¢ near ¢ ) will have the lower energy, and so the latent heat is

)

= w(p-) — w(dy), (7)

satisfying
A4. )
7> 0. (8)

In view of (1) and (7), A4 is equivalent to the condition

9 [%+0f(¢,T)/09 _

Using A2, we see that this is equivalent to

(D), T) = F(h (), T)] =, > 0, )

so that if (5) holds for T' = Ty, it cannot hold for T # Tp, and hence A4 implies the “only if”
part of A2.



It will be convenient to recast our equations (2), (3) in dimensionless form. Recall that z
and ¢ are physical variables. We define dimensionless space and time by

r=1x/L; t=tD/cL? (10)

where L is a characteristic macrolength for our system. For example, we may choose it to
be he diameter of the spatial domain of definition of our functions ¢ and T or the minimum
radius of curvature of the initial interface, defined to be the curve {¢ = ¢.}. Each term of
Equation (2) has the dimensions of energy density per unit time, and the terms in (3) have
dimensions of energy density per unit temperature. We divide (2) by DLEO and (3) by ¢, to
make each term dimensionless.

To simplify the notation further, we use a new temperature variable u = Tlo — 1, where Ty
is given in A2 above, and define

w(g) =29 1=t

(11)
F6,u) = — =y &£(6,T(w),

where v is a dimensionless parameter chosen so that

OF
¢
(We are assuming that ¢4 — ¢_ is of order 1.) This is our method of normalizing the seat
function F'. But we have also incorporated - into the definitions of the dimensionless w and
¢ above; this is natural since f, w and £ are related by (1), (4), and (7) and constitute an
important point of departure from previous phase-field models (see Sec. 15). The use of v
allows us to obtain approximate but simpler forms of the laws of interfacial motion when -y is
small (Sec. 14).
Clearly, (7) continues to hold with the overbars removed. Since w and w are only defined
up to an arbitrary additive constant, we are free to choose that constant so that

(¢c,0) = 1. (12)

14
w4+ = w(qﬁi) = $§. (13)
With these representations, (2) and (3) become
ug + yw(e)e = VZu, (14)
ae’dp = V2o + F(¢,u), (15)

where V now denotes differentiation with respect to x and we have set €2 = k1/L%*yc and
a = koD /k1c. We expect a to be O(1) but, as we shall see in Sec. 4 , €2 is typically very
small. Equations (14) and (15) form the basis of the remainder of the paper.

Our assumptions A1 — A4 can now be reexpressed in terms of the new notation:

Equivalent of A1l: For each small enough u, the function F(¢,u) is bistable in ¢; that
is, it has the form of a seat function of ¢, as exemplified by the graphs in Fig. 1. (Again, we
denote the outer zeros of F' by hy(u).)

Equivalent of A2:

e ()
/ " F(,u)dé =0 if and only if u = 0. (16)
h

Equivalent of A3:

Zg(hi(u),u) < 0. (17)



It follows from (1), (5), (7), and (11) that

-/ " Fu(6,0)ds. (18)

‘We therefore have:
Equivalent of A4:

d [h+@)
—/ F(¢,u)dp <0 when u=0. (19)
du Jh_(u)

Again, note the relation between this and the “only if” part of (16).
As a first consequence of these assumptions, we note the fact, which is guaranteed (see
[F1] and its references, for instance) by (16) and (17), that the boundary value problem

U+ F(1,0)=0, z€(-00,00); w(£oo)=dx, ©»(0)= .. (20)

has a unique solution (z). Changing the integration variable in (19) from ¢ to z by the
relation ¢ = 9(z), we see that (19), and hence A4, is in turn equivalent to

/_O:O Fu(i(2), 00/ (2)dz < 0. (21)

4 Example; numerical values for the parameters.

A simple free energy function modeling liquid—solid phase transitions was considered in the
appendix of [PF3]. In dimensional form, it is

f=rf 4TTO(¢2 — 1)+ (;; — 1) a(p + 1)2] + ¢T log ;FO (22)
@0(¢) = — foa(d + 1),

where fj is a parameter with dimensions of energy density, and a is dimensionless.
To relate some of the constants in (22) to measurable quantities we note first that, by (7),
the latent heat is

{=w(-1) —w(l) = 4afo.

Another measurable quantity giving information about the parameters of the model is the
surface tension . It is equal to the excess free energy per unit area in a plane interface, which

for T =Ty is ([CA])
2
a_/ [ W(F/e), T0)+1,€1T0<Ccl;f> ]dﬁ (23)

According to (22), the function F(¢,0) is —75%0 ¢(4? —1), so that the definition (12) of 7 gives
F4(0,0) = =1 and

'ycT

fo = ~cT.

Since now F(¢,0) = —¢(¢? — 1), we have from (20)

¥(z) = tanh %

Using the relations z = r/e = 7/eL, ¢(7') = ¥ (z) = tanh(z/v/2), and f(¢, Tp) = 1 fo(¢?—1)* =
1 fosech?(2/v/2), we can simplify (23) to



o =eL[% [ifosech4 (%) + 4”5€°2 sech? ( z )} dz

S

(24)
2 _ K1

= 6L70T0¥ since fo=~clp and e 'ycL2

Therefore we can think of the product ey as a measure for the magnitude of the surface
tension.

The surface tension at a solid-liquid interface can be deduced from the value of the Gibbs—
Thompson coefficient

UT() JT()
€ 4af0
From (24) and this we obtain for the width of the interface

36 3V2 2aG
2V/2 fycTO To

The value of a can be estimated as follows: first, if the entropy is to be a concave function
of ¢, then, as shown in [PF3], we must have a > %; secondly, if the liquid can be supercooled
to a temperature 7_ then f must have a local minimum at ¢ = —1 when T' = T_, which
with (22) implies T_ /Ty > a/(1 + a) i.e. a < T_/(Ty — T-). For example in the case of the
ice-water transition we might take Ty = 273K, T = 233K, giving a < 5.8. We shall take the
value a = 1 to be typical.

Typical values of G and Tj are 10~° cm-deg and 300K, respectively. Using them, we obtain

el =

eL~15%x107" cm,

which is of the order of a few lattice spacings of an ice crystal, a not unreasonable interface
thickness. If L equals, say, 10 cm., then € is less than 10~7 and the approximations to be
developed in this paper should be very accurate.

5 The approximation scheme.

Our procedure is based on assumptions which have been used implicitly in various earlier
studies of similar problems ([CF], [RSK], [P], etc.) and have been rigorously justified, under
certain conditions, in the analogous cases of the Cahn-Allen equations [MSc|, [Chenl]| and
the Cahn—Hilliard equation [ABC]. We spell them out completely. Their plausibility rests in
large part on the fact that they lead to a succession of reasonable formal approximations. For
simplicity we consider only the two dimensional case.

The core assumption is that there exist families of solutions (u(x,t;¢€), ¢(x,t;€)) of (14),
(15), defined for all small ¢ > 0, all z in a domain D C R?, and all ¢ in an interval [0,%1],
with “internal layers.” This concept is defined precisely in the form of assumptions (a) — (e)
below, as follows.

For such a family, we assume that, for all small € > 0, the domain D can at each time ¢ be
divided into two open regions D (t; €) and D_(t;€), with a curve I'(¢; €) separating them. This
curve does not intersect 0D. It is smooth, and depends smoothly on ¢ and e. In particular,
its curvature and its velocity are bounded independently of €. These regions are related to
the family of solutions as follows.

(a) Let © be any open set of points (z,t) in D X [0,¢;] such that
dist(z,I'(t;0)) is bounded away from 0. Then for some €y > 0, u can, we assume, be extended
to be a smooth (say, three times differentiable) function of the three variables x, t, and e
uniformly for 0 < e < ¢y, (z,t) in . The same is assumed true of ¢(x,t;¢€).

It follows in particular that the functions wuy(z,t) = %(%u\e:o, k=0,1,2,3, are defined
in all of D\ T'(#;0). A similar statement holds for 0% @|.—o.



It also follows from (15) that for (x,t) in any region € as described above, F(¢,u) = O(e?).
This implies, by the definition of hy, that ¢ is close either to hy(u) or h_(u). (The third
possibility would be ¢ near hg(u); but in view of the instability of this constant solution of
(15) (for fixed u), we assume there are no extended regions where ¢ is close to this value.)

(b) For Q in D4 (t;0) x [0,t1], we assume that ¢ is close to hy(u). Our interpretation
is that the material where ¢ is close to h_(u) is in “phase I” (the less ordered phase, since
¢_ < ¢ ) and that where ¢ is near h; is in phase II, the more ordered phase.

Much of our analysis will refer to a local orthogonal spatial coordinate system (r,s) de-
pending parametrically on ¢ and €, defined in a neighborhood of I'(¢;€), which we define
precisely as the set where ¢ = ¢.. We define r(x,t;¢€) to be the signed distance from z to
['(t; €), positive on the D, side of I'(¢;€). Then for small enough 4, in a neighborhood

N(t;e) ={x:r(z,t;e) <8},

we can define an orthogonal curvilinear coordinate system (r,s) in N, where s(z,t;€) is
defined so that when x € T'(¢;¢€), s(z,t;€) is the arc length along I'(¢;€) to = from some point
x1(t;€) € T'(t;€) (which always moves normal to I' as ¢ varies).

Transforming v and ¢ to such a coordinate system, we obtain the functions

a(r, s, t;€) = u(z, t;e), qg(r,s,t;e) = ¢(z,t;¢€).
Let @y, (r, 5,t), ¢r(r,s,t) be defined in the same way as uy, and ¢y, above, in terms of derivatives
at € = 0. They exist, by virtue of (a) above.

(c) For each t € [0,¢1], we assume that the e-derivatives ug, k < 3, restricted to the open
domain D N {r > 0}, can be extended to be smooth functions on the closure D N {r > 0}
(on T', they no longer signify the derivatives indicated above). Similarly, we assume that the
restrictions to D N {r < 0} can be extended to be smooth functions on DN {r < 0} and that
the analogous statements are true of the e-derivatives of ¢.

(d) Let z = r/e, and let U(z,s,t;€) = a(r,s,t;€) in the neighborhood of T' introduced
above. Then for any positive €y and zp, we assume that U(z, s, t;€) can be extended to be a
smooth function of the variables (z, s, ¢; €), uniformly for 0 < e < €, |2| < 209, 0 < ¢ <1, all s.
The analogous statements for gZS in place of 4 are also assumed to hold.

It follows that the functions Uy(z, s, t) = %GfU(z, S, t;€)|e=o are well defined.

We now have that for any rg > 0, zp > 0, the Taylor series approximations

u(z,t;e) = up(x,t) + eur(x,t) + o(e), (25a)
u(r, s, t;€) = Go(z,t) + et (x,t) + o(e), (25b)
Ul(z,s,t;e) = Up(z, s,t) + eUi(z, s,t) + o(e), (25¢)

together with their differentiated versions, are valid for all sufficiently small € : in the case of
(25a,b), uniformly for dist(z, I'(¢;0)) > ro > 0 and in the case of (25c¢), for dist(z, ['(¢; €)) < ezp.
Similar statements hold for ¢, ¢, ®. Truncated series as in (25a) and (25b) will constitute
our ‘outer’ approximation; ones like those in (25¢) will constitute the ‘inner’ approximation.

(e) The approximations in (25b,c) above are assumed to hold simultaneously in a suitable
region: for some 0 < v < 1, we assume that (25b) holds for

dist(z, ['(t;€) > €,
and (25¢) holds for

dist(z, T'(t;€) < 2€”.



Differential equations for the functions wuy, ¢, etc. can be obtained by substituting (25a)
and its analog into (14) and (15) and equating coefficients of powers of €. For this purpose,
the only conclusion from (15) which will be needed is the relation

F(¢,u) = 0(¢?), (26)

which provides algebraic equations relating u; and ¢, k < 1. For example,

(bo = hi(uo) in 'Di. (27)
In the same way, we get from (14) that

ateo = V2U0 in 'Di,
(28)
eo = ug + yw(do)-

Our object will be to find free boundary problems satisfied by the outer functions ug, ¢x.
For this, we need not only differential equations and algebraic relations such as (27) and (28)
holding in D4, but also extra conditions on I'. These extra conditions will be obtained by
finding the inner functions Uy, ®; and using assumption (e) to obtain matching conditions
relating them to the outer functions u,¢. And to find these inner functions, we shall in
turn need to relate the surface I'(t;¢€) to the family ¢ precisely and to specify a curvilinear
coordinate system near I'. This will be done in the next section.

6 The r,s and z, s coordinate systems; matching relations.

Recall that our definition of I" will be the level surface

L(t;e) = {z : ¢(z,t;€) = &}, (29)

and the (r, s) coordinate system is attached to T'.
To go from Cartesian to (7, s) coordinates we transform derivatives as follows:

0y 1is replaced by 0 + r¢0r + 8:0s;
(30)
V2 is replaced by Op + |Vs|?0ss + V270, + V250;.

Here, we have used the fact that |Vr| = 1.

The derivatives of r and s in these expressions can be written in terms of kinematic
and geometric properties of the interface I'. The details of the calculation are given in the
Appendix; we quote only the results here. Let v(s,t;€) denote the normal velocity of T' in
the direction of D at the point s, and let xk denote its curvature, defined by k(s,t;e) =
V2r(z,t;€)|r. Then the time derivatives of r and s can be written

s
1+7rK’
where, here and below, the arguments of v and x are (s(x,t;¢€),t;€), and subscripts on v and

k denote differentiation. The corresponding expression for the space derivatives of r and s
are

Tt(x,t;e) = _U(Sat;e)a St =

(31a)

9 K
tie) = 1b
Ver(z,t;e) T (31b)
9 TKg 9 1
Ves(z,t;€) At rm) |Vs| (A5 rm)? (31c)

To obtain the equations for the inner approximation we first define, in accordance with
(1) and (11), the nondimensional internal energy

10



e=u-+yw(p). (32)

As in (25b), we shall denote by é the same quantity e expressed as a function of 7, s,¢,e. In
view of (30) and (31), our basic equations (14) and (15) then become

5 A _TUs A
O — vo,é 1+m88€ =

’&/7“7“ + 145%117" + (1+1’/€)2 ass + (111:2)3 asa (33)

a62(¢t — v — 1T;K¢s) =
TKg

2 (3 K 4 - A
€ <¢rr+ 1+I€T¢r+ (1—}—’[“/{,) (]_—|—TI€)3¢8> +F(¢,U) (34)

To obtain the inner expansion we follow the procedure set out in Sec. 5(d), defining in
N (t; €) the stretched normal coordinate

S ss +

z=rfe (35)

and the functions
U(z,s,t;e) =a(r, s, t;e), ®(z,s,t;€) = qg(r, s,ty€), E(z,s,t;€) = é(r,s,t;¢).

To obtain differential equations for U and @, we substitute (35) into (33), (34), obtaining :

U,. + exlU, + veE, — Ek*U, + €Uss — 2E; = O(€%), (36)
D.. + F(P,U) + ex®, + aevd, = O(?), (37)
E =U+yw(®). (38)

The functions U, ®, E can be expanded in powers of € as in (25¢) :
U(z,s,t;e) = Up(z,s,t) + eUi(z,8,t) + o(e)  (e—0), (39)
O =Py + P + ofe)

and so on. By the regularity assumptions in Sec. 4, v(s,t;€) and k(s, t; €) can also be expanded
in series like (39). The differential equations satisfied by the functions Uy, ®g, etc. are obtained
by substituting (39) into (36) and (37). This will be done in the next section, but first we
formulate the matching conditions (e.g. [F2]) obtained by requiring that the inner and outer
expansions represent the same function in their common domain of validity (which exists by
Assumption (e) of the previous section). They are the following, where we have omitted the
carets from the symbols u and ¢.

Tlg(r)li uo(r, s,t) = legloo Uo(z,s,t); (40)
rli%li Orug(r, s,t) = zl{r:iloo 0.U1(z,s,1). (41)

If Ui(z,s,t) = Ax(s,t) + B+(s,t)z + o(1) as z— =+ oo, then

A:I:(Sat) = ul(O:I:,s,t); B:I: = 87"u0(0j:787t)7 (42)

and so on. Similar relations apply, connecting ¢g, ¢1 to ®g, ®1, etc. Finally if 9,Us =
A% (s,t) + B (s,t)z+ o(1), then

A% (s,t) = Orur (04, s,t). (43)

11



7 The zero-order inner approximation.

We substitute (35) and (39) into (36) and (37) to obtain a series expansion in powers of € for
each side of the latter. By equating the coefficients of each power of € we obtain a sequence of

equations for the various terms U; and ®; . The first couple of them are analyzed as follows :
O(1) in (36):

Uoz = 0.

We want Uy to be bounded as z— =+ 0o, because of (40); so Uy is independent of z :

Uy = Uy(s,t).
O(1) in (37):

Dy, + F (P, Uy) = 0. (44)

By (29), we have ®y(0,s,t) = ¢.. By the equation for ® analogous to (40), we seek a
solution ®( which approaches distinct finite limits as z— =+ oo, and it is clear from (44) that
these limits must be roots ® of F(®,Uy) = 0. Moreover, it can be seen by multiplying (44)
by @, and integrating from —oco to +oo that the integral in (16) with u replaced by Uy must
vanish. By A2 (16), this implies

Therefore &y must satisfy the differential equation in (20), and by the definition of r it satisfies
the other conditions in (20) as well, so that it must actually be the function defined in (20):

(I)O(szvt) = w(z) (46)
satisfying the condition
(00) = ha(0) = g (47)

(Notice that &y does not depend on s or t.)
The matching condition (40) now gives, by (45), (46) and (47), the following boundary
condition on the lowest-order outer solution :

ug lr=+0 = 0; ¢ol,_rg = O+. (48)

At this point, we are in a position to define and evaluate, to lowest order, interfacial free
energy and entropy densities at T' = Ty. The total free energy in the system is ([PF1, egs.
3.9 and 3.12])

_ 1 _
Flo,Tw)] = [ (16 Tw) + 51T (w)|Vof)ds.
T(u) = (u + 1)T0.
Its dimensionless form follows from our previous nondimensionalization procedure:
f(@,T) T(u) , 2)
\Y dz.

(’YCTO +2To6| o) de

The (dimensionless) surface tension o is the interfacial free energy per unit length of
interface. It can be calculated, at T'= Ty (u = 0) by subtracting the free energy density of a
uniform phase, which is f(¢+,Tp), from the function f in the integrand and then integrating
with respect to z = r/e from —oo to oco. To lowest order in € we may use the approximation
¢ =1(r/e), T =Ty in this integral, obtaining

H¢M=fmﬂhduﬁzé

o= [ (Foe + 50 @) (49)

—00
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where we have set

£ . f(waTO)_f((b:t?TO)
f(d}) - 'YCTO ’

the dimensionless bulk free energy density. But since from (44), (45), and (46)

d
S dy

it follows that (¢')% = 2f(¢), so that the contributions of the two terms in the integral for o
are equal. We therefore have

"= -F(1,0) f(w),

o=c [T weva=c [ \ali(o) - fonls = o 51

This is a standard formula (see e.g. [AC]). We shall call o1 the scaled dimensionless surface
tension.

8 The jump condition at the interface.

In this section, we show how the energy balance equation (33), applied to the inner approxima-
tion, leads to a jump condition for the outer solution at the interface, from which the velocity
of the interface can be determined once the outer solution is known. We first calculate this
to lowest order, and then to order e.

In view of (39), (45), and (46), we may set

U=eU, ®=1+ed,
where U, ® = O(1). We then have by (38)

E = eU + yw(y + €®).
Since ¢ does not depend on ¢, it follows that E; = O(e), and hence from (36) that

U, +vE, + exlU, = 0(62). (52)
Integrating (52), we get

U, +vE 4 exlU + C1(s,t,€) = O(e?) (53)

for some integratiorg constant C1 = C'11 + eCys.
Since by (39a) U = Uy + €Uy + O(€2), the lowest order approximation in (53) yields

U, = —(vE)o — C11 = —yvow(¥(2)) — Cuu, (54)

where in the second equation we have used the fact that the expansions of U, v, and &
induce an expansion of vE in powers of €, with (vE)g = yvow(¢)) being the lowest order term.
Similarly induced expansions will be used below.

To obtain the lowest order jump condition for the outer approximation, we apply (40) and
(41) to the left and right sides of (54). We thus obtain

Ortig |r=0+ = —voeo|,_gyr — C11 = £yv0l/2 — Ci1, (55)
using (48) and (13). By subtraction we get the jump relation

[Orug] = —vo [eo] = yvol, (56)

where the square brackets indicate the limit from the right (r = 0+) minus the limit from the
left (r = 0—).
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We now derive the jump condition to order € analogous to (56). Consider the terms of
order € in (53). Since U; = Uy, these terms are

UQZ = —(UE)l — Ii()Ul — Cm. (57)

To evaluate Uy, we integrate (54):

Ui = —ywvop(z) — Cr1z + Co, (58)

where

pe) = [ :ww(s))ds, (59)

zo will be chosen later, and Cs is another integration constant, unknown at this stage, but
depending on zp. Hence from (57), we have

UQZ = —(’UE)l + ”y/io’l}op(z) - 012 + K/(]Cllz — H()CQ.
Applying the matching relations (43) and (40), we obtain:

Orutlr=0+ = —(ve)1|r=0x + vrovoPr — C12 — Ko Cy2, (60)
where the P’s are defined by the relation

p(z) = w(¢+)z + Py +0(1) (2— £ 00), (61)

1.e.

Po= [ )~ wios)) de

20
For the sake of symmetry in notation, we choose the lower limit zg so that P, = —P_ = P.
Thus we obtain (60) with Py = £P. Subtracting, we obtain

[Orui] = — [(ve)1] + 2ykovo P. (62)
Combining (56) with (62), we get, to order e,

[0pu] = — [ve] + 2eykvP + O(€2). (63)

This relation can be used to determine v to order e once the outer solution is known to this
order.

Physically, eqn (63) expresses the conservation of energy at the interface. The left side
represents the net flux of energy into I' per unit length; the first term on the right represents
the portion of that energy which is taken up with phase change. The second term on the right
of (63), which is a higher order term not usually displayed, represents the effect of I" stretching
or contracting as it evolves; its presence is necessary to ensure conservation of energy to this
order.

9 The zero-order outer approximation.

The zero-order outer approximation to our layered family of solutions consists of a curve I'g(t)
dividing D into two subregions D4 (t) and D_(t), and functions ug, ¢g, continuous in each
of Dy. These can now be determined: we obtain ug and I'g by solving a Stefan problem &g,
defined below, and then we obtain ¢g from (27) by taking ¢¢ = ha (uo).

(a) In D4, uy is to satisfy (27), (28)

at(% = VZuy, (64)
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where

et = ug + yw(h+(ug)). (65)

Note that in the case where hy (u) are independent of u, (64) is the usual linear heat equation
for up. This was the case for the liquid phase in the density functional model in [PF1], and
for both phases in [WS].

(b) On T'y(t) we have the interface condition (48)

ug = 0 (66)
and the Stefan condition (56)

[&»UO] = "ﬂ}og. (67)

(c¢) Our focus has been on the properties of layered solutions in general, without reference
to initial or boundary conditions. But we are now led to a free boundary problem for which
it is natural to specify these extra conditions. In fact, there may be boundary conditions for
the temperature u, and hence for ug, at 9D (exclusive of I'y), and initial conditions ug(z,0),
' (0).

If up(z,0) is nonpositive in Dy (the solid) and nonnegative in D_ (liquid), Sy is the
classical Stefan problem, and for smooth initial conditions has a unique classical solution for
a small time interval. Our basic assumptions about the families (u, ¢) in Sec. 5 imply that in
fact this is true for all ¢ € [0,¢1], the interval mentioned in Sec. 5.

If ug(x,0) has signs opposite from those, however, then it is generally believed that Sy is
an ill-posed problem, in which case our assumptions in Sec. 5 will hold only in very special
circumstances, such as when the domain and all data have radial symmetry. This ill-posed
problem would correspond to a model for crystal growth into a supersaturated liquid with no
account taken of curvature or surface tension effects. We shall see in Sec. 14 that if ug(z,0)
is very small in magnitude, then the assumptions in Sec. 5 become reasonable again; in fact
the lowest-order free boundary problem then contains regularizing curvature terms.

10 The first-order interface condition.

To obtain a more accurate outer solution we must calculate 1, and for this we need expressions
for uq on the interface I'.

First, we apply the matching condition (42) to (58), taking into account (61) and the fact
that Py = £P, to obtain

ui|r+ = FyvoP + Cs. (68)

Here the subscript I'+ means the limit as I' is approached from the + side or the — side. To
determine these limits, we must now find the constant Cs. It turns out that this can be done
by examining the O(e) terms in (37). By using (46), one can put those terms into the form

Ly = —F,((2),0)U; — ko' (2) — avgd)(2), (69)

where L is the operator defined by L® = &, + Fy(¢(z),0)®.

We know that the operator L has a nullfunction v’(z) which decays exponentially as
z— =+ oo, obtained by differentiating (44) with respect to z and setting &9 = 1. We are
seeking a solution of (69) which grows at most as fast as a polynomial at co. Multiplying (69)
by ¢’ and integrating, we see that the equation (69) has such a solution only if the right side
is orthogonal to v':

/fo F,(¥(2),0)Uy(z, s, )0’ (2)dz + Ko(s,t)o1 + ave(s, t)oy = 0,
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where (recall (51))

n= [ W)
Substituting from (58), we obtain
/_ T R ((2), 0)(—y00p(2) — Ciaz + Co)d! (2)dz + (ko + avo)or = 0. (70)

;From (18) and (20), the coefficient of C here is seen to be —¢. On the basis of Assumption
A4, we may therefore solve (70) for Cy as

Cy(s,t) = (ad +vp) vo(s,t) + dro(s,t) + ¢C11, (71)
where
SN ECICE S EIC T -
with
p(2) = Fu(¥(2),0)¢'(2). (72b)

Substituting (71) into (68), we find

u1|pi = (a&+’y]5:|2'yP) U0+5I€0+Lj011. (73)
Finally, the constant C7; may be found from (55):

1
011(8, t) == _8ru0|r:i0 + 5’761)0(5, t). (74)

In the classical case when the Stefan problem (64) - (67) is well posed, it can be used to
determine the quantities on the right of (73) from the initial and boundary conditions for wug
and T'y. In (74), either sign may be chosen; the right side is independent of the choice. We
shall use the upper sign in D, and the lower one in D_.

Set (Orug)+ = Orup|r=+0- Then substituting (74) into (73), we have

u|r+ + G(0ruo)+ = m+vg + GKo, (75)

where

- - 1
my = a6 +5(pF P) £ 5744. (76)

If my # m_, it is clear from (75) that the outer temperature distribution v will undergo a
discontinuity of the order € across the interface.

Ezample: Consider the particular case when F,(¢,0) is an even function of ¢, and ¢’(z)
is even. Then from the above, we have ¢ = 0, so that (75) becomes
ullpi = (a&—}-'y(ﬁ:FP))vo + oK.
If, in addition, (as in [PF1])

w(¢) = Ap — B¢? + const,

then P vanishes whenever B does. In this case, then, the possibility that u; is discontinuous
across I is associated with the presence of quadratic terms in w. The case when they are
absent is the one treated, in the context of the traditional phase field model, in [CF] and [F2].
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11 The first-order outer solution.

We can now formulate the procedure for determining the first order approximation to the
outer solution. This approximation can be determined by solving the following modified
Stefan problem S, which generalizes the problem Sy defined in section 9:

(a) In Dy, u is to satisfy (14)

dre = Vu, (77)
where
e = utyu(g),
¢ =hy(u) in Dy by (26). (78)

(b) On I'x we have, from (66), (75), and (63), the conditions

(u+ €q(Oru))|ry = emyv + €0k; (79)

[Oru] = —vle] + eyrvP, (80)

where the coefficients are given by (72a), (76).
(¢) In addition, boundary conditions, to hold on 9D, and initial data are to be prescribed.
The coefficients in (79), (80) are the same as in (75) and (62). As mentioned before, when
hy are constants, (77) is the heat equation with constant coefficients. Even when hy are not
constants, the heat equation is a reasonable approximation in typical cases (see Sec. 14 ).
The term in 0,u in (79) appears to introduce a singular perturbation into the problem, but
this is not likely to be true. We consider a model problem consisting of (77) and (79) on the
half line {r > 0} with the right side of (79) taken to be a known constant. The potential effect
of such a singular perturbation can be ascertained from the inner equations associated with
stretching the variable r. In the model problem it is readily seen to be a regular perturbation.
What we have shown so far is that under the assumptions in Sec. 5 , the exact solution
family (u(w,t;€), ¢(x,t;¢€)) satisfies (77) - (80) except for error terms of the order €2. Let us
now suppose that S, is a well-posed problem, and let (&(w,t;e),q;(:):,t; e),f(t; €)) denote its
solution when the conditions in (¢) are the same as those of the exact family. Thus (@, ¢, T')
satisfy the same equations and initial conditions as (u, ¢,T"), except that the O(e?) terms are
discarded. It is natural to expect the following assertion, which is basic to the paper, to hold:
Expectation: |u(z,t;e) — a(z,t;e)|, |o(...) — ¢(...)], |T(t;e) — D(t;e)| = O(?)  (e—=0),
uniformly in D x [0, t1].

12 Discussion; surface tension.

As in previous phase field models, a Gibbs—Thompson term e6x and a kinetic undercooling
term em v appear on the right of (79). In addition, there appears an O(€) normal derivative
term on the left, which can be important for second order transitions, as we shall discover.
The last term in (79) may be compared with the thermodynamic formula for the Gibbs—
Thompson effect, which can be written
(- To) lr = 70

where & is the surface tension, ¢ the latent heat and & the curvature in physical units. The
corresponding formula in our dimensionless units is

ulr = "7’* (81)
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where 0 = /~vcTpL. From (51) and (72a),

o= e/ V' (2)%dz = eoy = el5.

Thus (81) simplifies to u|r = edk, which indeed agrees with the relevant terms in (79).

The problem (77)—(80) differs from the modifications of the Stefan problem obtained in
[CF] in three respects:

(a) The O(e) correction to the value of the temperature at the interface involves a flux
term (on the left of (79)), so that it is perturbed into a Robin boundary condition. In the
example given in section 10, of course, ¢ vanishes, making this correction zero.

(b) The value of v will in general be discontinuous at the interface because of the first term
on the right of (79) if my # m_. Again in the above example, when B = 0, the discontinuity
disappears. The amount of the discontinuity will be O(e).

(c) the Stefan condition (80) involves a small correction term due to the stretching of
the interface. A term like this was noted in [UR]; otherwise, all these effects were absent in
previous models of phase field type.

It will be shown in Sec. 14 that there are circumstances when the free boundary problem
(77)—(80) can be approximated, in a formal sense, by other (generally simpler) free boundary
problems. There are a number of possibilities here; they include different types of curvature-
driven interfacial motion.

13 Second-order transitions.

By a second-order transition we mean one where the internal energy is the same in the two
phases, for each fixed value of the temperature in the interval [T_,T]. A good example is
the case when w is an even function of ¢ and F' is odd in ¢. For second order transitions,
there is no unique transition temperature 7y, contrary to postulate A2. Instead, we define Ty
to be some other characteristic temperature of the problem, for example the average of the
system’s initial temperature distribution.

In the notation of (1), we have e(h(T"),T) = e(h_(T),T), and in that of (65),

ed (u) = eg (u) for each w. (82)

In view of (1), this implies that the quantity diT {% f(he(T), T)} is the same for either choice

of sign. Thus % f}?_*(%) [%f¢(¢, T)} d¢ = 0. In nondimensional terms (11), we have

" Bo.wds =0 (53)
— ,u)dg = 0.
du Jn_(u)

Therefore in place of Assumption A4, the inequality sign in (19) becomes an equality for all
u, hence the latent heat ¢ = 0, and similarly (21) becomes

/ F,(¢¥(2),u)y'(2)dz =0 for all u in the range of interest. (84)

In dealing with second order transitions, our formal assumptions will simply be Al and
(84).

Following the asymptotic development in sections 4-11, we see that the following changes
are necessary.

The conclusion (45), hence also the left part of (48), no longer hold. In fact, the value
of ug on the interface is no longer determined a priori. Therefore in the lowest order outer
problem (64)—(67), (66) is to be replaced by [ug] = 0, and the right side of (67) is replaced
by zero. Thus ug and its derivative are continuous across I'g. In view of (82), we see that
up is determined as the solution of the heat equation (64) in all of D, with no reference to T’
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(appropriate boundary and initial conditions may be prescribed). The interface’s location is
found independently, as we now describe.
We pass to (70), which by virtue of (84) and (74) with ¢ = 0 becomes

mivo + ko = Mma0,ug, (85)

where Y e | o
my=a— — p(2)p(z)dz, mg=—— zp(z)dz,
01 J— 01 J—o0
the functions p and p being defined in (59) and (72b).

To find the interface I'(t), then, ug is first determined by (64), and then I" is found from
the “forced” motion—by—curvature problem (85), with known forcing term mo0,u¢ dependent
on position and on time.

In Sec. 16 , we shall examine the more realistic case when the thermal diffusivity D is
different in the two phases; then it can be checked that the problem for uy can no longer be
decoupled from that for I.

The interface condition (85) is similar to the motion-by-curvature law given by the Cahn—
Allen theory of isothermal phase transitions ([AC], [MSc]), but there is now an extra term
proportional to the temperature gradient (which is continuous across the interface). For a
physical interpretation of this term, suppose that the surface tension (excess free energy of the
interface) decreases with temperature. Then the interface will tend to move so as to increase
its temperature. This tendency is borne out by (85) in the typical case that m; and mqy are
positive. There is an analogous forcing term in the corresponding equation (79) for first—order
transitions, but in that context its effect is relatively small.

When the temperature deviation u is small (6 << 1 in the context of Sec. 14 ), then
the forcing term can be neglected, and the interfacial motion follows the classical motion—
by—curvature law. This case was noted in [C3], and is the law of motion found for a simpler
model in [CA] and [AC]. (In [C3], it was erroneously implied that our model gives only second
order transitions; see [PF2].)

14 The transition from Stefan to Mullins-Sekerka evolution.
Other free boundary problems.

There are several special circumstances in which our basic free boundary problem (77) - (80)
can be approximated formally by simpler free boundary problems.

For example, the nonlinear diffusion equation (77) can typically be approximated by a
linear one. In fact, the left side can be written as

¢+ (u)ug, where éx(u) =1+ w' (he(u))hy(u),

and the specific heat functions ¢4 (u) can be approximated by constants when the functions
hi(u) are constants (as in [WS] and for one case in [PF1]), nearly constant, and/or when u
is small enough. In such cases, they may by replaced by ¢4+ (0). In the following, we shall
assume that this approximation is valid. It should be noted that the assumption u < 1 is
entirely reasonable in many cases. It simply says

‘T—T0| < Ty. (86)

In the case of water, for example, it means that the temperature range (in Centigrade degrees)
in the phenomenon under consideration is much smaller than 273.

Anticipating that the simpler problems to be examined may involve dynamics on a longer
time scale and hence slower speed, we proceed formally by rescaling u and t. We set

uw=2du, t'=pt, v=_p0,
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where the parameters § and § are < 1 and may be small. We make these substitutions in
(77) - (80) with the error terms O(e?) appended, and divide by & to obtain

Bérty = V34 O(e2/6) in Dy, (87a)
(@ + €eq(0ru))|re = ?mg) + gc}/@ +O(e?/8) on T, (87b)
[Oru] = ?@75 + ?’W{,@P +O(e*/8) on T (87¢)

To show how one kind of evolution may develop into a different kind at large times, we
consider first the “normal” case when 6 = 1. Then if we set 5 = 1 as well (so no rescaling
actually occurs) and disregard terms of orders ¢ and higher order in (87), we get the classical
Stefan problem

éxus = V> in Dy, (88a)
u=0onT, (88b)
[Oru] = vyf on I (88¢)

Let D represent a bounded vessel containing the material under consideration, and suppose
it is thermally insulated, so that the normal derivative 0,u = d,u = 0 on 9D. Suppose that
u > 0 in the liquid phase, u < 0 in the solid. Consider layered solutions with interface I'(t)
evolving according to (88). Then it can be checked that

4 é+/ u2d$+é_/ ulda :—2/ |Vu|*dx
dt Dy D_ D

which in view of (88b) is strictly negative as long as u does not vanish identically. Suppose
that I'(¢), the solution of (88), exists for all ¢ and does not intersect 9D. Then it is natural
to conjecture that as t—oo, u(z,t)—0 uniformly in D and that I'(¢) approaches a limiting
configuration I'.

Eventually, then, u = O(e) and the quantity ek on the right of (79) and (87b) can no
longer be neglected on I' relative to u. (This term indicates, in fact, that the temperature u
can in general never achieve smaller orders of magnitude than e.) When u achieves this order
of smallness, we set § = € in (87) and observe that if we select 5 = € as well, and drop higher
order terms, we obtain a reasonable problem of “Mullins-Sekerka” type [MS]:

V2 =0 in Dy, (89a)
u=0k on T, (89b)
[Opu] = vyl on T. (89¢)

An existence theory for the solution (u,I") of (89) has recently been given by Chen [Ch2]; for
the Hele-Shaw problem, which bears some similarity, see [CP].

In short, when the temperature becomes small enough, the evolution according to (88) is
conceptually replaced by the much slower evolution according to (89). The evolution (89) is
well known to decrease the length of I'(#) and to preserve the area inside it, so it is expected
that under the slow process, I' will typically evolve from I's, (or something near it) into a
circle with the same area.
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Other free boundary problems can be obtained by assuming v and/or « are small, i.e. that
the latent heat is small or the relaxation process for ¢ is quick. For example, if €2 < § = v < €,
we may set § = 1 to obtain the classical motion-by-curvature law

av=—k on I, (90)

coupled to a heat equation with prescribed jump condition (88c) on I' (known from solving

(90)).

A number of other possibilities can occur; we leave them for the reader to discover.

15 Comparison with other models and limiting arguments.

The free boundary problem (89) and its companion with (89a) replaced by

u = V2a,

have been derived by asymptotic methods from other phase field models, most notably in [C2]
and [WS]. Here we compare both the model in [WS] and its asymptotic development with
ours; similar considerations hold for the Langer model in [C2].

The model in [WS] has the property that our functions introduced in Al are constant:
h_(T) =0, hy(T) = 1. Thus the order parameter in the purely liquid or solid phase does not
depend on T. On the other hand, the latent heat ¢(T) may depend on 7. To compare the
model in [WS] to ours, we must replace ¢ by 1 — ¢ (distinguishing “order” from “disorder”
parameters). In our notation, their evolution problem (their eqns. 40, 41) corresponds to our
(14), (15) with

1 /1 1\ 1
Fo.uT) = - (= ) #(0) 4000 = D6 - 3) (o1)
and w(¢) = Ip(Y)|yp=1-¢, where p(1)) is a function with p(0) = 0, p(1) = 1, whose first and
second derivatives vanish at ¢ =0 and 1.

Note that this model provides no theoretical limit to the extent of supercooling of the
liquid or superheating of a solid, unlike the equations depicted in our Fig. 1 and the example
in Sec. 4 . In fact, at each value of T the free energy F' has local minima (in ¢) at ¢ = 0 and 1,
representing stable liquid and solid phases. If the temperatures under consideration are kept
fairly near to Tg, this should not be an important deficiency.

The temperature-independent part of the correponding dimensionless bulk entropy density
given by (4), si = %5{), satisfies

/ 1. @'(¢)
$0(6) = ~46(6 ~ 10— 5) + ~ =,
and since @”(3) = 0, we have s{j(1) = 1, showing that the entropy in this model is not a
concave function of ¢.

Further notational comparisons are the following: the parameters €, m, and a in [WS]
correspond to our parameters ¢/2,a !, and 1/4vc, respectively.

Their asymptotics is based on the assumption that the first term in (91) is O(e). We

rewrite the assumption as:

/ To
1-22) (1 - ¢) = O(e).
= (1-2) -9 =00
Let us assume that the dimensionless quantity % = O(1); this is reasonable in typical
scenarios. Since p'(¢) is also O(1), this implies that
1. T

7‘1—T — O(e).
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This relation can be guaranteed, for example, by requiring either

(@) v=0(e1), or

(b) T:;OTO = O(e).

Physical meaning can be given to both of these cases. In case (a), the implication is that

OF 0 _ J1y
ar =~ 7chp(1 —¢)=0(y") =0(e),
whereas
oF
— =0(1).
25 =OW

The meaning is that the free energy depends much more (by a factor e~!) sensitively on ¢
than on the temperature 7T'.

In case (b), we have, in our notation, u = O(e), which is exactly the assumption (6 = ¢)
under which we have derived (89). This says simply that the temperature is close, as measured
by €, to the melting temperature 7.

16 Variable ¢, D, and a.

All of the preceding can be extended in a straightforward way to the case when ¢, D, and «
are given functions of ¢ and 7', and w depends on T as well as on ¢. This allows these first
three physical parameters to differ in the different phases. It was observed by Chen [Chen3]
that if ¢ differs in the two phases, then ¢ must depend on T'. It is often the case that the
temperature variation in the problem under consideration is small enough that it does not by
itself induce a significant variation in the values of these physical constants. For simplicity,
we assume this is the case, i.e. that ¢ and D depend on ¢ but not on D.

The results under this generalization are quite analogous to those obtained before, and so
are not surprising. We record them here for the sake of completeness.

The first observation is that the expression (4) for a term in the right side of (3) must be
supplemented by the extra term —c'(¢)log T

By way of notation, we set

D(¢) = D1d(¢), c(¢) = c1k(e),

where D; and ¢; are defined to be the minimal values of D and ¢, respectively. We assume
that the dimensionless functions d and k are O(1).

In the definitions of dimensionless variables given in (10) and (11), we now replace the
symbols D and ¢ by Dy and ¢;. The basic equations (14) and (15) now become

Oy(k(d)u +yw()) =V - d(¢)Vu, (92)

(@)’ dr = V¢ + F(o,u). (93)

All of the analysis in the previous sections has its analog in the present more general
context. The resulting free boundary problem (77)-(80) takes the following form:
In Dy,

Ores(u) =V - dy(u)Vu, (77) = (94)

ex(u) = k(he(u))u +yw(he(v)), di(u)=d(hi(u)),
(78)" = (95)
¢ =hy(u) in Dg.

On I'y,
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u+ eny (dOyu)|re = emyv + €0k; (79)" = (96)

[d(u)0ru] = — [ve] + eykvP. (80)" = (97)

Here the constants m4+ and n4+ have to be defined as follows. Let

do(2) =), p(2) = [(@E)/o(2)dz, q() = [(fdo())dz (98)

and let the constants P and @ be such that

p(z) = dé‘;t)z:tp—l—o(l), 2— + 00,

q(2) = d(éi)z +Q +o(1).

In the following, p, ¢ are the same as before. Let
my = /a(w(z), 0)(¢/(2))2dz > 0,

po LA, et

Then
- 1 -
me=-—-mi+y(pFP)+£ 575((1:!: Q),

nt =qFQ.

For future reference, we give here the modified versions of relations (33) and (52):

5 s _TUs 5 —
O —v0ré — {75056 =

(33)" = (99)
(diy)r + difim e + e (dits)s + digiiss s,
(dU.), + vE, + exdU, = O(€%). (52)” = (100)

Referring to Sec. 14 , we obtain the following generalizations of the examples in (88)—(90).

The “normal” case (88):

¢10u =V -dy(u)Vuin Dy, (88a)” = (101a)
u=0 on T, (88b)” = (101b)
[dOyu] = vyl on T, (88¢)” = (101c)

where a different but obvious definition is given for ¢4.

Motion by curvature (90) (0 =~v < e, [=1).
miv = —o1k on I. (90)” = (102)
The “Mullins-Sekerka” case (89) (8 =09 =¢).

V-diVi=0 in Dy, (89a)" = (103a)
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=6k on T, (89b)” = (103b)

[dy0yu] = ~yol on T. (89c)” = (103c)

Similar considerations hold for second order transitions. The coupling of the generalization
of (85) with that of (64) is particularly interesting.

17 Enhanced diffusion in the interface.

In some materials science connections ([CT], and references therein), it is important to take
into account increased material diffusivity in surfaces. In our models it is heat rather than
material which is diffusing. Nevertheless, there is clearly an analogy with material diffusion,
and so it may be interesting to adapt our results to the case when diffusivity is much greater
in the interfacial region than it is elsewhere. Specifically, we treat the case when this ratio
is of the order e~!. We show, among other things, that an effect of this is the presence, in
(89¢) or (103c), of an extra term on the right taking the form of the second derivative of the
curvature x with respect to arc length along the interface. A similar result was obtained by
a different route for a Cahn-Hilliard model in [CFN].

Our basic assumption is that the function D can be written as the sum of two terms as
follows. Let D1 = Min [D(¢4), D(¢—)]. Then

D = D(¢:) = D1 (' D(9) + D(9)) = Drd(#:6), (104)

where D and D are O(1) functions, and 15(q5) vanishes when ¢ = ¢. In fact, we assume that
for some positive number w,

D(¢)>0 for ¢_+w<¢<¢, —w; D(p)=0 otherwise. (105)

The function d(¢;e€) is analogous to the function d(¢) used in Sec. 16 , so in particular Dy is
used again in the definitions of the nondimensional variables.

We shall direct attention to the modifications in the previous treatment occasioned by
(104). They begin in Sec. 6 . Concentrating on the first term in (36), we see that it must be

replaced by [(G_ID + D) (Up + €Uy + )z} . Therefore the terms of orders O(e~!) and O(1)
in the revised version of (36) (analog of (100)) are:

0: [(e—lﬁ(cpo(z)) + D(®0(2)) + D' (®o(2))®1)Uo: + ﬁ(@o(z))Ulz] = 0.
Integrating this with use of the fact that Up.(z) = D(®o(z)) = 0 at z = +00, we obtain

(€7 D(®o(2)) + D(Do(2)) + D' (D0(2))®1)Upz + DUy = 0. (106)
The O(e~1) term in this equation tells us that

D(®o(2))Up. = 0. (107)
Now let I = {z: ®y(z) € [¢— + w, p4+ — w]}. It follows from (105) and (107) that

U()Z = 0, zel.
Moreover since D'(®g(z)) = 0 for z ¢ I, we see that the third term in (106) vanishes. Hence

E((I)o(z))Uoz + D(q)o(z))Ulz =0.
This tells us (a) that for z € I, Uy, = 0, so that in fact for all z,
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UOz = O;
and therefore (b) that

U.=0, zel. (108)

In Sec. 7, (44)—(48) remain unchanged. In particular, ®o(z) = 1(z) as before.
Recall (99), which shows the way that our d enters into the energy balance equation. In
view of that and (104), equation (52)" = (100) must be corrected to

0. (d0.) + vE. + endl. — ex* D2U. + ed, (DU, ) = O(e%), (52)” = (109)
and the new version of (53) is
dU, + vE + mfdﬁzdz — ek? fﬁzUZdz + e[ 05 (ﬁUs) dz

(53)" = (110)
+C1(s,t,€) = O(€2).

Here C7 = C11 + €C1a. As before (54), (vE)g = yvow(t)(z)). Therefore the O(e~1) and O(1)
terms in (110) are

(7' D (=) + D' (6(2)®1 + D((2))) Utz + D(t(2)Vzz = = yuow(tp(2)) = Cur.

But we know from (108) that DUy, = D'Uy, = 0, so in fact our alternate version of (54) is:

D(4(2)Us: + D(3(2))Ur. = —yvow((2)) = Cuu. (54)" = (111)

Let x(z) be the characteristic function of I', i.e. x(z) =0 for z € I, and = 1 otherwise.
In view of (108), multiplying (111) by x(z) does nothing to the term in Uy, but annihilates
the term in D. We so obtain

Ulz = —’YUQW — Cll%v (112)
Uy = —yu0 / (xw/D)dz — C1. / (x/D)dz + Ca, (113)

C5 being an integration constant and the arguments of w and D being P(2).
;From (69), which continues to hold as written, and (113), we have the other condition

0 = [% Fu(th(2),0)0(2)Ui(z) + (Ko + awp)oy

= [F(2) [—’)’U()f Xdz — Cn [ £dz + 02:| + (ko + awg)oy,

hence solving for Cs, we get

Cy = (Oz& + ’}/ﬁ*)vo + oKko + (j*CH,

where now
_[Fxwg, _ wi *
p(z) = [, %5dz= ?iz:tP /24 0(1) (z— £ o),
z *
q*(z) = JI Xdz= DiziQ /2+0(1) (z— £ 00),
. *od
7 o= _%,
. *od
7 = _%,

and p, &, ¢ are the same as before (see (72a), (72b), (18)).
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JFrom (113), (42), we have

wlre = FyvoP*/2F CuiQ*/2+ Cy
= FyvoP*/2 F C11Q" /2 + (ad + vp*)vo + GKro + ¢ Ch1
= o(ad +yp" FyP*/2) +Gro + (" F Q" /2)Cr1.

Also from (112), (41), we have

Yol

Doyuglr+ = + - (1,

4

Cn== — Ddyug|ra.

Hence

uy |+ + n+(Ddrug)|re = miivo + ko,

* ~ % * 1 s * s *
mi =as +y(p*FP /Z)igvf(q FQ/2),nt =7 FQ/2.

This equation provides the interface condition on I' analogous to (75). Hence the analog
of (79) is

u+ eny (D) = emiv + €6k,

We now construct the analog of (80). For this purpose, we write down the O(e) terms in
(110) (recall DU, = 0):

(dUz)z + (UE)1 + Ko/ (ﬁUQZ + DUlZ> dz + /83 (ﬁUls) dz + C19 = 0. (114)

We apply (43) to obtain an equation for (D@Tu) . I[P+, which is given in terms of the asymptotic

behavior of the first term in (114) according to (43). For this, we have to write each of the
other 4 terms in (114) in the form A% (s,t) + Bi(s,t)z + o(1) (z— £ c0). Only the terms
% will be relevant (see (43)). The contribution of (vE);, by (42), is (ve)i|r+, and the last

integral in (114) is bounded by virtue of the compact support of D. By (111), the first integral
can be expressed by means of (59) and (61) as

—yvg / w(Y(z))dz — Ci1z = —yvo (wez £ P/2) — Criz+0o(l) (2— £ 00).

Using all of these facts, we obtain

~ iw A
(D@Tu)l Ir+ + (ve)i1+ F yrovoP/2 + / 0sD(1(2))0sU1 (2, s,t)dz + C1a = 0.
20

We take the difference between the upper and the lower signs and recall that D(¢(z)) does
not depend on s, to obtain

(DOu)1] + [(ve)s] = yrovo P + / D(y(2))02U, (2, 5, t)dz = 0. (115)
(From (113) and the definitions of p*, ¢*, we may write

Uy = voMi+(2;7, 4, ) + Gro + Ms(2)(D0rug)|re,
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Mis(2) = —1(0"(2) ~ ) F o a"(2) — ) + o,

M3(z) = q*(2) = q"-

Bear in mind that the M’s do not depend on s, but that vy, kg, and ug do. We therefore
have, from this and (115)

{(D&&L)J = —[(ve)1] + YkvP — asvss — brigs — cO> (ﬁ@ru) |40, (116)
where
ay = /_O:O D((2))Mi+(2)dz, b= 6/_0:0 D((2))dz, ¢= /_O:O DMsdz,

and we have dropped the subscripts “0” on the right of (116). On the right side of (116),
either sign may be chosen.

The corrections to the next order Stefan problem due to enhanced diffusion, therefore, are
as follows. Equations (77)’=(94) and (79)’=(96) are unchanged except for replacing d by D
and a slightly different definition of m4. But (80)’=(97) becomes

[]_T)({),nu} = —[ve] + € (’ym;P — 1Vgs — bRgg — cOZ (f)@ruo) |i0) (80)” = (117)

Thus, O(e) corrections to the Stefan condition are found, depending on the second deriva-
tives of the velocity and curvature.

The new form of the special limit Mullins-Sekerka problem in Sec. 14 is perhaps more
interesting, and constitutes the main point of this section. The interface condition (89c) is
changed to

[D0,| = 7t — brgs on T (89c)” = (118)

As mentioned before, the extra term represents the diffusion of heat within the interface itself.
Thus the Mullins-Sekerka problem (89) is now modified by this additional term in the Stefan
condition.

A comment about the qualitative behavior of this free boundary problem is in order. It
is well known that solutions of (89) or (89)’=(103) for which the interface encloses a region
D_ whose closure is contained in a bounded domain D, and for which u satisfies zero Neu-
man conditions on the outer boundary 9D, have the curve—shortening and area—preserving
properties. Thus if L(t) is the length of I'(t) and A(¢) is the area of D_(t), we have

dL
pr <0; A(t) = const. (119)

It is easily shown that our present revision of this problem with (118) replacing (103c) has
the same properties (119). In fact

0:/ ﬂV-DinL:—/ Di|vm2—/a[[78ra}
D D I

< / (Yol + brss) = &/ K (Yol + brgs)
r

r

- —dL
=ovyl | Kv+ &b/ Kkgs = OYL— — &b/(ms)2
r r dt r

< oyl—
>0 dt’

hence
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dL
=<
dt —

The other relation in (119) is derived in the same manner.

0.

18 Multicomponent order parameter.

It is commonplace to describe the local microscopic or macroscopic state of a crystalline
material by means of a multicomponent order parameter (see, e.g., [IS] and recent papers
[Lai], [BB]).

Going further, we remark that in some density—functional theories (e.g. [Ha]), the mi-
croscopic probability distribution of atoms at any location is described by a number density
function. This function provides detailed information about the degree to which, and sense
in which, the material is ordered at that location. It is therefore an infinite—dimensional gen-
eralization of a scalar order parameter. One way to extract a scalar order parameter ¢ from
such a theory was described in [PF1], namely artificially to restrict the allowed density func-
tions to a one—dimensional subspace of function space. Then the scalar ¢ serves to designate
locations on that 1-D subspace, which can be pictured as a straight line. In the resulting
phase—field model, the transition from liquid to solid across an interface corresponds to the
density function changing while restricted to that line, whereas in the unrestricted model, it
may change along some other curve in function space. In principle, this discrepancy could be
partially remedied by restricting to a higher dimensional subspace, in which case we would
be dealing with several order parameters.

We sketch now how our analysis of interfacial motion can be extended to the case when
the order parameter has m components,

¢ = (d1, - Pm)- (120)

To avoid compounding complications, we treat D, ¢, and « as constants, and continue to
operate in 2-dimensional physical space. We consider only first order transitions.

As mentioned in Sec. 1, the system (2), (3) was derived in [PF1] as a gradient system
with respect to the entropy functional displayed following (3). Thus, the right side of (3) is

58 1 9f(e,T) __ 95(¢:€)
53 (Note that — T4~ = 04 )

The gradient term —%m[Vqﬁ\Q in that functional was chosen as the simplest negative
definite quadratic function of V¢ = (0¢/0x1,0¢/0z2). In the case when ¢ has several com-
ponents, the analogous term must still be a negative definite function of V¢, and we still
choose it to be a quadratic form. We denote it by —% (V). Thus the more general entropy
functional is

Sto.dl = [ {s(60).e(a)) - 5Q(Ve)} . (121)

We have considerable latitude in choosing @), including the possibility of making it aniso-
tropic. Even with one order parameter, anisotropy can alternatively be modelled [MW] by
making x1 depend on the direction 6 of V¢, but if this dependence is not such that 1 ()| V|?
continues to be a quadratic form, the Laplacian in (3) is replaced by a quasi-linear second
order partial differential operator whose coefficients depend discontinuously on V¢ at places
where V¢ = 0.

The most general form @), in the case of m components, is

Q(V) = K1%ijkeaijre0; 10500,

where 0; = 9/0x; and the a’s form a positive definite array and are symmetric in the pair (7, j)
(which run from 1 to 2) as well as the pair (k,¢) (which run from 1 to m). The normalizing
parameter ki is chosen so that
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Miny Sa;jre€f ¢l = 1,

where X = {1 3, [eF? =1}

Our new assumptions Al — A4 are analogous to those given before in section 2:

A1’. As before, f(¢,T) has two and only two local minima with respect to ¢, which are
now m-tuples ¢ denoted as before by h. (7). We can no longer order them or speak of a single
intermediate maximum. (The following can be partially extended to the case when there are
more than two minima; we do not pursue this.)

A2’ Again, for a first-order transition, equation (5) holds if and only if T" = Ty € (T_,T%).

Set ¢4 = hy(Tp).

The “inner layer” equation generalizing (20) and (44) is the system of equations

2
G~ Vel (@ Th) = (122)
where A is a positive definite symmetric m x m matrix obtainable from (), which in general
depends on the orientation of the interface (see the definition of A below), and V, means
(0/06r, . .,0/06m).
A3’. For all such matrices A, (122) has a solution v (z) satisfying

P(+00) = du, (123)

which is unique except for translation. Moreover, we assume the solution (z) approaches
its limits exponentially. (There are important and interesting cases then uniqueness fails; our
analysis can be partly extended to many of those cases.)

Note (a) in case m = 1, A3’ is known to be guaranteed if (5) and (6) hold. Also (b) by
taking the L' inner product of (122) with the vector 0y/0z, it is seen that (5) is a necessary
condition for A3’ to hold. Existence theorems for boundary value problems such as (122),
(123) have been proved in [S] and [Chm]; in the latter paper examples were given in which
uniqueness does not hold.

A4’. the same as before.

We nondimensionalize as before, except that + in (11) is chosen so that

Max¢\V¢,F(<Z>, 0)| = 1,

which replaces (12).

The changes in the previous analysis are as follows.

In the generalization of (15), a becomes a positive diagonal matrix, F'(¢, u) is now defined
to be —V%Tv(ﬁf(gb, T(u)), and V2¢ is replaced by the partial differential operator E¢ defined
by

(Ed)e =Y aijredi0;dy.
ije
The equation analogous to (37) is
[Aqbzz + eBro, + eChys + v, + 0(62)} + F(¢,u) =0, (124)

where the matrices A, B, and C depend on the angle 6 of orientation of I' at the point s as
follows. We represent the unit normal to I' pointing into Dy by v = (cosf,sinf), and the
unit tangent vector obtained by rotating it through an angle /2 in the positive direction by
T = (—sin#, cosf). Then

(AO))ke =Y aijrevivy,
i
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(BO)ke = aijieTiTy
i

(CO)ke = Z aijre (ViTj + v;Ti) .
ij
Notice that
dA(0)/do = C(0), dC(0)/do =2(B(0)— A(9)) (125)

From (124), we see that the inner profile is governed by the following system of differential
equations to replace (44):

A(0)Pg,, + F(Po,0) =0, Po(£oo) = ¢ (126)
This is (122), (123) with A depending on #; we again denote the solution by ¢ (z,6).
Also, in place of (69), we obtain the following system from the O(e) terms in (124); here
we use the fact that d; = K0y, and let primes denote 9/9z:
L® = —F,((2,0),0)U; — koB(0)Y'(2,0) — koC(0)0p0' (2, 0) — voar)' (2, 0), (127)

L is the self-adjoint ordinary differential operator defined by

L = A(0)d" — G(2,0)®,

and the symmetric matrix function G(z, ) is the Hessian of the function —VCITO f(o,Tpy) with
respect to ¢, evaluated at ¢ = 1¥(z,6).
Differentiating (126) with respect to z, we find that

Ly =0 (128)
taking the (Lg)™ scalar product of (127) with ¢, we find a necessary condition for solvability:

(Fy(¥(2,0),0)Ur, 4"y + w(0)k + v{ay ') =0, (129)

where

w(0) = (BY',¢") — (Coptp, ") (130)

JFrom this point on the analysis proceeds as before. The basic first order outer approx-
imation satisfies a free boundary problem like (77) - (80) with different coefficients of x and
v in the O(e) terms. These coefficients depend on 6. For example, in place of ¢ in (79), we

hav —#, and in place of a, we have (at)’,¢') /o1 = @(f), where now

o1 =a1(0) = (A(0)Y, ¢'). (131)

The various limiting problems are obtained as before. Of special interest is the Mullins-
Sekerka problem (89), in which the coefficient & of x in (89b) is replaced by the 6-dependent
coefficient given above. A similar statement is true of the motion-by-curvature problem (90),
in which the present analog will have a coefficient of x proportional to w. Very probably the
sign of this coefficient, which is governed by the sign of w, determines whether these problems
are well posed. For this reason, it is of some interest to obtain a simpler expression for w.

In their treatment of a different phase-field model with scalar order parameter but inter-
facial energy a given arbitrary function of 6, McFadden et al [MW] obtained an expression,
which in our notation would be

w(8) = o1(0) + o7 (). (132)
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This also holds in our framework, of course, when m = 1, as can be verified by a calculation
based on our notation. However, this calculation depends very much on the matrices A, B, C
being able to commute with one another. It appears doubtful that the expression (132) will
continue to hold in the multi-component case.

Appendix. Derivation of (31)

Let us represent points on the curve I'(¢) by the position vector R(&,t), where ¢ is a
parameter on I' defined as follows. When ¢ = 0 it is arc length from some chosen point. When
t increases, the point R(¢,t) (for fixed £) has trajectory normal to I'(t) at each t. We will
denote the unit tangent to I'(¢) by T'(£,t) and the unit normal in the direction of increasing
r by N(&,1).

The normal velocity v(&,t) is defined by

Let o be arc length on I', and
0
al6t) = 560, (134)

At t = 0, we have chosen £ = o, so that

a(€,0) = 1. (135)

In all of the following, we suppose I'(¢) is regular; and in particular that its radius at
curvature is bounded away from zero.
Consider the point x(r, &, t) represented by

x(r,&,t) = R(&,t) + N (&, t). (136)

For fixed r and t the curve z(r, £, t) will be “parallel” to I'(¢) at a distance r. On this new
curve, we can find the relation between arc length (which we continue to denote by o) and
the parameter £. First, taking the differential of (136) with ¢ and r fixed, we obtain:

dr = (Re + rNg)dE.
But by definition we also have dr = T'do. Therefore

Tdo = (R¢ 4+ rNg)d€. (137)
We also have from (134)
R¢ = aT, (138)
and since T'- N = 0,

The curvature x(&,t) of I'(t) is given by

%
0o
Hence from (139), (140) and the fact that Ng is in the direction of T (note that 8%|N|2 =
N¢ - N), we have

kN = —T, = —Te—>(£,t) — —a ' T}, (140)

N¢ = arT. (141)
From (137), (138), and (141) we now obtain
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0
8—2 = a2+ rk). (142)
Since R; and R¢ are in the directions N and 1" respectively, we have

Differentiating this equation with respect to ¢, we obtain

Ry - Rg + Ry - R{t =0. (143)

But from (133)
Rt = v¢eN 4+ v Ny, (144)
Rgt = UgN + UNg; (145)

So from (143)—(145), (133), (138), we have

Ny = —a tueT. (146)
If we set dx = 0 in (136) and use (138), (133), (141), (146), we find:
0
5: _— (147)
and
% _ Vg
ot a?(2+rk)
Now recall the coordinate system r(x,t), s(z,t) defined in section 4 (we suppress e—

dependence). This r(x,t) is that in (136). At ¢ = 0, this s coincides with the previous
€. So at t = 0, we may replace £ with s in (142), set & = 1, and obtain

(148)

|Vs(z,0)| = % = (2 +7k(s,0))7 L

Howerver, if ¢ = ¢ is any other value of ¢, we can reset the clock in the original coordinate
system (7, &,t) so that time starts at tp, and make the same conclusion. Therefore in general
we will have

|Ves(z,t)| = (2 +rr(s, t) L. (149)
In the same way, we find from (147), (148)

or
a(xat) - _U(S(:U?t)vt)a (150)
s _ rus(s,t)

In these expressions, we have taken o = 1 because of (135) and the change of time setting.
Along with (149), we also have the obvious relation

|Vr(z, t)] = 1. (152)
We have established (31a) and part of (31c). Let us now calculate V27 and V?s. We have,

for any domain (2,

/ Vir(z,t)de = Onr(x,t)dl, (153)
Q oN
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Figure 2: The domain 2.

where 0, is the normal derivative and d¢ is arc length on 0.

Let  be the curvilinear rectangle (in the r, s coordinate system) shown in the diagram,
bounded by sides Ly — Ly.

As 0,7 =0 on Ly and L4, we get:

/ Durdl = |Ls| — | L.
L1UL3
On L; and Lz we have (149), so that

|L1| ~ (2 4+ rok(s0, t))ds,

|L3| ~ (2 4 (ro + dr)k(so, t))ds,
so that

/ V2r(z,t)dz ~ r(so, t)drds.
Q

But the left side of this equation, to lowest order is V?r(sg,t) times the area of 2, and this
area is approximately

|| =~ |L1|dr = (2 + rok(so, t))drds.
Thus

Vir(z,t) = % (154)

In a similar way, we have

/ Vis(x,t)dr = / (2 + rr(so + ds, t) " Ldr — / (2 + rr(so, t)) " tdr.
Q Ly L?

Now writing x(so + ds,t) = k(so,t) + dr and integrating between rg and r¢ + dr, we obtain
to lowest order,

TRg

V2s(x,t) = Qtrap

This establishes (31b,c).
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