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Abstract

For the 2D Navier-Stokes equation perturbed by a random force of a

suitable kind we show that, if g(�) is an arbitrary real continuous function

with (at most) polynomial growth, then the vorticity �eld !(t;x) satis�es

E
�
g(!(t;x))jr!(t;x)j

2
�
= 1

2
M1E(g(!(t; x)));

where M1 is a number, independent of g, which measures the strength of

the random forcing.

Keywords: two-dimensional Navier-Stokes equation, stationary mea-

sures, two-dimensional turbulence, vorticity.

1 Introduction

This paper concerns the Navier-Stokes equation for a uid in the two-dimensional

torus T2 = R
2=(2�Z2) with a random applied force

p
� �,

@tu(t;x)� ��u+ (u � r)u+rp(t;x) = p
� �(t;x); divu = 0; (1.1)

(t;x) 2 R+0 � T
2
; u(t;x) 2 R2 ; p(t;x) 2 R; �(t;x) 2 R ; (1.2)

where u is the velocity, p the pressure and � the (non-zero) kinematic viscosity.

The applied force is required to be divergence-free and to satisfyZ
T2

�(t;x)d2x = 0;

so that
R
u(t;x)d2x is an invariant of the motion. We shall require the given

initial velocity �eld in (1.1), u(0; �), to be square-integrable over T2 and to satisfyR
T2
u(0;x) d2x = 0. The (weak) solution u(t;x) will therefore satisfyZ

T2

u(t;x) d2x = 0 ; 8 t � 0:

It is known that, subject to some further assumptions about the applied force

which are detailed in the next section, the probability distribution of the solution
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of the stochastic di�erential equation (1.1) converges as t ! 1 to a unique

stationary measure1, which we shall call the equilibrium measure; convergence

results of this type were �rst obtained by Kuksin & Shirikyan [KS00, KS01] for

a case where � consists of a random sequence of kicks. The extension to the

`white noise' form of � considered in the present paper (see eqn (2.1) below)

was studied by Bricmont, Kupiainen & Lefevere [BKL02], by E, Mattingly &

Sinai [EMS01], and by others. For reviews, see [Bri02, Kuk02]. Below we use

this convergence result in the form obtained in [KS02, KS03]. Moreover, it has

been shown by Kuksin [Kuk04] that this equilibrium measure (which depends

on �) converges along subsequences �j ! 0 to stationary measures of the Euler

equation (i.e. of eqn (1.1) with � = 0).

In the study of the � ! 0 limit an important part is played by a balance

relation which equates the equilibrium rate of viscous dissipation of energy to the

average rate at which the random force supplies energy. This relation, derived

by applying the Ito formula to the total energy
R
T2
u(t;x)2d2x and taking the

equilibrium expectation, can be written

E

Z
T2

(ru(t;x))2d2x = 1
2
M0; (1.3)

where M0 is related to the time autocorrelation function of �. More precisely,

if E [�(t;x) � �(t0;x)] = F0(x)Æ(t� t0), where Æ(�) is the Dirac distribution, then
M0 =

R
T2
F0(x)d

2x. For more detail about the derivation and meaning of (1.3)

see section 3.

Another equally important balance relation is derived by applying the Ito

formula to the enstrophy
R
T2
(curl u(t;x))2d2x. This balance relation is

E

Z
T2

(�u(t;x))2d2x = 1
2
M1: (1.4)

The left side is the equilibrium rate of viscous dissipation of enstrophy, and

the right side is the average rate at which the random force creates enstrophy.

That is to say, if E [curl �(t;x) � curl �(t0;x)] = F1(x)Æ(t � t0), then M1 =R
T2
F1(x)d

2x.

The purpose of the present note is to draw attention to an additional fam-

ily of balance relations generalizing (1.4). They are related to the Helmholtz

invariants for inviscid two-dimensional ow in the same way that the balance

laws (1.3) and (1.4) are related to the energy and enstrophy invariants. These

new balance relations are given in Theorem 3.1 below.

2 The invariant measure for eqn (1.1)

As in the papers cited earlier, we take �(t; x) to be the Gaussian random �eld

� :=
d

dt
� with � :=

X
s2Z2n(0;0)

bs�s(t)es(x): (2.1)

1
Here and everywhere in this work a measure means a probability measure on the Borel

�-algebra of the relevant metric space.
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where fbs : s 2 Z2 n (0; 0)g is a set of real constants satisfying the conditions

bs = b�s (2.2)X
jsj2bs <1; (2.3)

f�s(t) : s 2 Z
2 n (0; 0)g is a set of independent standard Wiener processes

satisfying �(0) = 0, and fes : s 2 Z
2 n (0; 0)g denotes the orthonormal set of

functions from R
2 to R2 de�ned by

es(x) :=
sin(s � x)p

2�jsj

��s2
s1

�
if s1 + s2Æs1;0 > 0

and :=
cos(s � x)p

2�jsj

��s2
s1

�
if s1 + s2Æs1;0 < 0 (2.4)

in which (s1; s2) are the elements of s, jsj :=
p
s21 + s22, and Æs1;0 is the Kronecker

symbol. This de�nition makes the applied force white in time but (because of

the convergence condition (2.3)) its spatial dependence at any given time has

some smoothness.

We de�ne the moments

Mn : =
X

s2Z2n(0;0)

jsj2nb2s (n = 0; 1; 2; : : : ): (2.5)

This is consistent with the de�nitions of M0;M1 used in (1.3) and (1.4). It

follows from (2.3) that M0 and M1 are �nite, and from (2.1){(2.4) that if Mn

is �nite then E
R
T2
j(��)n=2�(t;x)j2 d2x =Mnt for all positive t.

We can eliminate the pressure from eqn (1.1) by applying the Leray projector

� (see [CF88, VF88]) which removes the gradient part of any �eld it operates

upon. Since the random force is divergence-free, eqn (1.1) simpli�es to

_u(t;x) + �L(u)(t;x) +B(u)(t;x) =
p
� �(t;x); (2.6)

where we have de�ned L(u) := ���u and B(u) := �((u � r)u).
Let H denote the Hilbert space

H :=

�
v 2 L2(T

2)� L2(T
2) j

Z
v d

2x = 0; div v = 0

�
;

with the inner product

(v; w) :=

Z
T2

[v1(x)w1(x) + v2(x)w2(x)]d
2x (2.7)

and the norm kvk := (v; v)1=2. Let u(t) denote the velocity �eld at time t, i.e.

u(t) := u(t; �). It is known [CF88] that if the initial velocity �eld u(0) := u(0; �)
lies in the space H then the stochastic Navier-Stokes equation (2.6) has a unique

solution which almost surely remains in the space, i.e.

u(0) 2 H =) u(t) 2 H for all t � 0; a.s.
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This solution is almost surely continuous in time (with respect to the Hilbert-

space metric), and satis�esZ T

0

Ekru(t)k2 dt+ sup
0�t�T

Eku(t)k2 <1

for all positive T . Moreover, the above properties still hold if the initial condition

u(0) is selected at random from H according to a probability measure satisfying

E ku(0)k2 <1.

One can think of H as the phase space for this model, and the time evolution

of the velocity �eld as a continuous trajectory in H . The actual trajectory, for

a given initial condition, depends on the realization of the stochastic processes

�s and is therefore itself a stochastic process in H . This stochastic process is

Markovian; see [VF88, DZ92].

The result about convergence to an equilibrium measure mentioned in Sec-

tion 1 is that if suÆciently many modes of the force � are excited i.e., if

bs 6= 0 8 s : jsj � N (2.8)

for a suitable N (which depends on � and goes to in�nity when � ! 0), then

as t ! 1 the probability distribution of u(t) converges to a uniquely de�ned

measure � over H :

D�u(t)�* � as t!1: (2.9)

The arrow stands for the �-weak convergence of measures in H , and D signi�es

the distribution of a random variable. We note that the assumption (2.8) is

ful�lled for all � > 0 if

bs 6= 0 8 s: (2.10)

The equilibrium measure � is a stationary measure for the Markov process

de�ned by eqn (2.6); that is to say if u(t;x) is a solution of (2.6) such that

Du(0) = �, then

Du(t) = � (t > 0):

In consequence of the symmetry condition (2.2), the Gaussian random �eld � is

translationally invariant , by which we mean that its measure is invariant under

translations in T2. This measure also invariant under reections in the origin.

That is to say, if we de�ne translation and reection operators Th; R by Thx :=

x + h; Rx := �x; Ru := �u, with h any element of T2 (so that, for example,

T�(t;x) = �(t;x + h); Ru(t;x) = �u(t;�x)), then the Gaussian random �elds

Th� and R� have the same statistical properties as the original random �eld

�. Because of these invariances of � it follows, from the uniqueness of the

equilibrium measure and the symmetry of the Navier-Stokes equation (1.1) with

respect to translations and reections, that this measure is also invariant under

translations and reections2, i.e.

Th� = R� = � (h 2 T2)
2
For example, let u(t; x) be a solution of the equation (1.1); then because of the symmetry

of this equation Thu(t;x) := u(t; x+h) is also a solution; therefore, by the uniqueness of the

stationary measure, D(Thu) = � .
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These two invariances taken together imply that for each t and x the equilib-

rium distribution of the random variable u(t;x) is symmetrical under velocity

reversal; the one-line proof of this is that if u(t;x) is distributed according to

the equilibrium measure then

D(�u(t;x)) = D(u(t;�x) = D(u(t;x) (2.11)

in which the �rst step follows from invariance under reections and the second

from invariance under translations (the shift being 2x). From this symmetry

under velocity reversal it follows further that the mean of this random variable,

E(u(t;x)), is zero.

For further information about the above results see [Kuk02, Kuk04].

3 Balance equations

Let u(t) denote a stationary solution of (2.6). The balance equation (1.3) is

derived by applying the Ito formula to the process ku(t)k2 =
R
T2

u(t;x)2 d2x,

using (1.1) and taking the expectation. This gives

d

dt
Eku(t)k2=� 2�E(Lu; u) + �M0; (3.1)

see [VF88, EMS01], also [Kuk04] and references therein. Since the process is

stationary and (Lu; u) = (ru;ru), it follows that

Ekru(t)k2= 1
2
M0 (t > 0); (3.2)

with M0 de�ned as in (2.5), and ru(t) := ru(t; �). The notation kru(t)k used
here is a generalization of that de�ned just after (2.7); it means the square root

of the sum of the squares of the L2(T
2) norms of the four components of the

second-rank tensor ru. Eqn (3.2) is equivalent to (1.3). Similarly we can apply

the Ito formula to kru(t)k2, and use the identity (rBu; ru) � 0, to get

Ek�u(t)k2= 1
2
M1 (t > 0); (3.3)

which is equivalent to (1.4).

The vorticity �eld ! is de�ned by

!(t; x) := curl u(t; x) := @u2=@x1 � @u1=@x2;

Taking the curl of (2.6) we �nd that the vorticity satis�es the equation

_!(t;x)� ��!(t;x) + (u � r)!(t;x)=p� �(t; x); (3.4)

where

�(t; x)= curl �(t; x)=
d

dt

X
s2Z2n(0;0)

bs�s(t)'s(x); (3.5)
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and

's=
jsjp
2�

cos s � x; '�s=� jsjp
2�

sin s � x; (3.6)

for all s 2 Z
2 n (0; 0) such that s1 + s2Æs1;0 > 0. Because of (2.2), (2.8) the

random �eld !(t; x), like u(t; x), is stationary and translationally invariant.

The main result of this paper is the following theorem:

Theorem 3.1. Suppose that (2.2), (2.10) hold, with M3 < 1, and denote by

!(t;x) the vorticity of a stationary solution of (2.6) with positive �. Let g($)

be a real-valued continuous function of the real variable $, satisfying

jg($)j � A(1 + j$jk) 8$ 2 R; (3.7)

for some real A and integer k, both positive. Then for all t � 0, x 2 T
2, we

have

E
�
g(!(t;x))jr!(t;x)j2�= 1

2
(2�)�2M1E(g(!(t;x))): (3.8)

Proof. Consider �rst the case where g has compact support. De�ne G to be

its second integral, so that G00($)=g($), G(0)=G0(0)=0. Since g has compact

support, there exist constants A1 and A2 such that

jG($)j � A1j$j; jG0($)j � A2 8$ 2 R : (3.9)

Let us consider the stationary processZ
T2

G(!(t;x)) d2x:

The estimates (3.9) allow us to apply the Ito formula (see [DZ92]) to this process.

After taking the expectation and using (3.4) together with the fact that the

process is stationary, as in the derivation of (3.2), we �nd that for all t � 0 the

random �eld !(t; x) satis�es

�E

Z
T2

G
0(!(t;x))(��)!(t;x) d2x = 1

2
�E

X
s2Z2n(0;0)

b
2
s

Z
T2

G
00(!(t;x))'2s(x) d

2x:

(3.10)

Integrating by parts, we see that the left side of (3.10) equals

�E

Z
T2

g(!(t;x))jr!(t;x)j2 d2x:

By (2.2) and the de�nition of G, the right side equals

1

4
�E

Z
T2

[g(!(t;x))
X

s2Z2n(0;0)

b
2
s('

2
s
+'2

�s
)] d2x = 1

2
(2�)�2�M1E

Z
T2

g(!(t;x)) d2x;

since '2
s
+ '2

�s
=
jsj

2

2�2
. Thus (3.10) implies that

E

Z
g(!(t;x)) jr!(t;x)j2 d2x= 1

2
(2�)�2M1E

Z
g(!(t;x)) d2x; (3.11)
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when g has compact support. Eqn (3.11) can be rewrittenZ
E [g(!(t;x)) (jr!(x)j2 � 1

2
(2�)�2M1)] d

2x = 0: (3.12)

Since the random �eld !(t;x) is translationally invariant, it follows that the

integrand is zero for all x, completing the proof of (3.8) for this case.

To deal with the case where g does not have compact support, we approx-

imate g by a sequence of functions which do have compact support. Take any

continuous function � such that 0 � �(t) � 1 for all t, � = 1 for jtj � 1 and

� = 0 for jtj � 2, and de�ne the sequence of functions

gn($) := �($n�1) g($) (n = 1; 2; : : : ): (3.13)

By (3.7) these functions have the properties

limn!1 gn($) = g($)

jgn($)j � A(1 + j$jk)
�
8 $ 2 R (3.14)

Since gn has compact support, the part of the theorem proved so far shows that

E

Z
gn(!(t;x)) jr!(x)j2 d2x= 1

2
(2�)�2M1E

Z
gn(!(t;x)) d

2x; (3.15)

for each n. On each side of this equation the integrand converges pointwise, as

n!1, to the integrand in the corresponding term of (3.11).

To prove that the expectations of the integrals also converge, we consider the

right side of (3.15) �rst. By analogy with the de�nition of the �eld u(t) 2 H ,

we de�ne the �eld !(t) := !(t; �). Since its space average is zero for all t, it

satis�es the Sobolev-type inequality

j!(t;x)j < const �k�!(t)kL2 8 x 2 T2 (3.16)

It is shown in Proposition 2.4 of [KS03] that the condition M3 < 1, assumed

in the statement of our theorem, implies the smoothness property

E(kr3
u(t)km) <1; (3.17)

for all positive integersm. The meaning of the notation kr3u(t)k (wherer3u(t)

is a fourth-rank tensor �eld) is analogous to that of kru(t)k, which is given just
after eqn (3.3). Since !(t) is the di�erence of two components of ru(t), eqns
(3.16) and (3.17) imply

E

Z
T2

j!(t;x)jk d2x � const �Ek�!(t)kkL2 � const �Ek�ru(t)kk <1 (3.18)

It follows, by the second line of (3.14), that the integrands on the right side of

(3.15) have a majorant whose integral has �nite expectation, and consequently

by Lebesgue's dominated convergence theorem that the right sides of (3.15)

converge as n!1 to the right side of (3.11).
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We can apply a similar argument to the left side of (3.15). Eqn (3.17), with

m = 4, implies

Ekrr!k4L2 <1 (3.19)

Using the Sobolev-type inequality

kr!(t)kL4 < const �krr!(t)kL2 (3.20)

we obtain

Ekr!k4L4 <1: (3.21)

The integrand is dominated by A(1+j!(t;x)jk)jr!(t;x)j2 d2x. By the Schwartz
inequality, the expectation of the integral of this majorant is at most

A

s
E

Z
T2

(1 + j!(t;x)jk)2 d2x
s
E

Z
T2

jr!(t;x)j4 d2x (3.22)

An argument similar to that used for the right side of eqn (3.15) shows that the

�rst factor is �nite, and the second factor is �nite because of (3.21). So we can

again use Lebesgue's dominated convergence theorem, showing that the limit of

the left side of (3.15) equals the left side of (3.11). The proof is then completed

in the same way as for g with compact support.

If g is an odd function, then both sides of (3.8) vanish because of (2.11).

The special case of (3.8) when g = 1 is the same as (3.3).

Since k�u(t; �)k2 = kr!(t; �)k2, eqn (3.3) and the translational invariance of
the process !(t) imply that E jr!(t;x)j2=1

2
(2�)�2M1 for all t and x. Thus the

right side of (3.8) equals E jr!(t;x)j2 Eg(!(t;x)), and (3.8) means that the ran-
dom variables g(!(t; x)) and jr!(t; x)j2 are uncorrelated for every continuous

g satisfying (3.7).

The theorem can be restated in terms of conditional expectations. For a

�xed (t; x) let E(�jF!(t; x)) denote conditional expectation with respect to the

�-algebra generated by the random variable !(t; x). Then Theorem 3.1 implies:

Corollary 3.2. Under the assumptions of Theorem 3.1 we have

E(jr!(t; x)j2 j F!(t;x))= 1
2
(2�)�2M1 8 t;x (3.23)

To prove this, let us treat t and x as �xed and make the abbreviations

!(t; x)=�, jr!(t; x)j2=�. We also de�ne h(�) := E(� j F�), so that

E(g(�)�)=E(g(�)h(�)):

Because of (3.8) this expression equals 1
2
(2�)�2M1Eg(�) for any bounded con-

tinuous function g. Hence, h(�)= 1
2
(2�)�2M1 a.e. with respect to the measure

D(�). This proves (3.23).
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4 The probability distribution of the vorticity

�eld

We denote by � the probability measure of !(t) = curlu(t) when u(t) is dis-

tributed in H according to the stationary measure �. It is the measure induced

in the space occupied by !(t) by the mapping u(t)! !(t) = curlu(t), and it is

time-independent. We know already, because of (3.16), that !(t) lies in L1(T2),

but on the assumption that M4 < 1 we can show that it lies in the smaller

space C1(T2). Indeed, it is shown in [KS03] that, if M4 < 1, the stationary

solution u(t) satis�es

Ekr4
u(t)kr <1 8 t > 0 (4.1)

for all positive integers r. By the Sobolev-type inequality

k!(t)kC1 � const kr3
!(t)kL2 ; (4.2)

it follows that the vorticity satis�es

E
�k!(t)krC1

�
<1 8 t > 0; (4.3)

where k!(t)kC1 denotes the maximum of the L1(T2) norms of !(t) and r!(t).
Accordingly, the vorticity ! de�nes a (time-independent) probability measure

� := D(!) on the space C1(T2). The relations (3.8) can be rewritten in terms

of �:Z
C1(T2)

g(!(t;x))jr!(t;x)j2� (d!) = 1
2
(2�)�2M1

Z
C1(T2)

g(!(x))� (d!); (4.4)

for all x 2 T2, all t > 0 and all g satisfying (3.7).

The information we have about the measure � can be codi�ed in the following

way. For every M > 0 de�ne BM to be the set of probability measures �

on (C1(T2);�) (� being the �-algebra of Borel sets) which have the following

properties:

(H1) � is translationally invariant;

(H2) � is reection-invariant, i.e. �(A)=�(RA) for every set A 2 �, with R

the reection operator de�ned at the end of section 2;

(H3) for every r � 0 we haveZ
C1(T2)

k!krC1 �(d!) <1;

(H4) for all g satisfying (3.7) and all x 2 T
2, eqn (4.4) holds with �(d!)

replaced by �(d!) and M1 replaced by M .

Because of Corollary 3.2 and the arguments used to prove it, we can replace

(H4) by

(H40) E(jr!(t;x)j2 j F!(t;x))= 1
2
(2�)�2M 8x 2 T

2, where jr!(t;x)j2 and

!(t;x) are viewed as random variables on (C1(T2); �; �).
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The properties of the stationary measure � set out in eqns (2.11), (4.3) and

(4.4) can now be compressed into the formula

� 2 BM1
: (4.5)

Consider now the time-dependent distribution D(!(t)) induced by a proba-

bility distribution for the initial velocity �eld u(0) 2 H which is arbitrary apart

from the requirement Eku(0)k2 < 1. We would like to obtain a convergence

result about the behaviour of this measure as t!1, analogous the result (2.9)

for D(u(t)). Because of Theorem 3.1 of [KS03] our new assumption M4 < 1
implies that (2.9) holds not only in the sense of �-weak convergence of measures
in H , but also in the sense of �-weak convergence of measures in the Sobolev

space H3(T2;R2 ), so that the following result holds:

Theorem 4.1. Let the assumptions of Theorem 3.1 hold and also M4 < 1.

Then for any solution u(t;x) of (2.6), with arbitrary initial condition u(0) 2 H,

we have

D �curlu(t)�* � 2 BM1
as t!1: (4.6)

where * stands for the �-weak convergence of measures on H1(T2), and � is

interpreted as a measure on H1(T2).

This result shows that the sets BM form a one-parameter family of attractors

in the space of measures on H1(T2) for the dynamics de�ned by the stochas-

tic Navier{Stokes equation (2.6). The family of attractors is the same for all

positive values of the viscosity � and for all random force �elds � of the type

speci�ed in (2.1).Because of the condition (H4), each of the attractors has in�-

nite codimension.

A slightly awkward feature of the result in Theorem 4.1 is that � has to be

interpreted as a measure in H1(T2) rather than in the smaller space C1(T2) in

which !(t) almost surely lies. The awkwardness can be eliminated by requiring

more smoothness in the applied force �: if we assume that M5 < 1, then

Theorem 3.1 in [KS03] tells us that (2.9) holds in the sense of convergence of

measures in H4(T2;R2 ). In that case (4.6) holds in the sense of measures in

H3(T2), and the inequality (4.2) implies that H3(T2) is a subset of C1(T2), so

that � in eqn (4.6) can now be interpreted in the more natural way, as a measure

on the space C1(T2) in which !(t) is known to lie.
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