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Abstract

A method of defining non-equilibrium entropy for a chaotic dynamical system
is proposed which, unlike the usual method based on Boltzmann’s principle
S = k logW , does not involve the concept of a macroscopic state. The idea is
illustrated using an example based on Arnold’s ‘cat’ map. The example also
demonstrates that it is possible to have irreversible behaviour, involving a large
increase of entropy, in a chaotic system with only two degrees of freedom.
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1 Introduction

It is a part of everyday experience that matter behaves irreversibly: heat flows
from hot to cold, never from cold to hot; plates break when we drop them, but
never reconstitute themselves, and so on. A way of quantifying this irreversibil-
ity is provided by the second law of thermodynamics, which can be encapsulated
in the statement that the thermodynamic entropy of a thermally isolated system
cannot decrease.

Irreversibility is displayed by most of the partial differential equations we use
to model the macroscopic behaviour of matter — the heat equation, the Navier-
Stokes equations, and so on (though not the Euler equations). The irreversibility
comes from the lack of symmetry of these PDEs under time reversal — the
fact that they are not invariant under the transformation t → −t, v → −v
(reversal of the sign of the time variable and all velocity variables). From such
PDEs it is usually possible to derive a result corresponding to the second law
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of thermodynamics. If the boundary conditions permit no heat to cross the
boundary, this result takes the form that some quantity which can be interpreted
as the entropy increases with time or stays constant. Likewise, Boltzmann’s
integro-differential equation for the time evolution of the velocity distribution
in a gas is not symmetrical under time reversal, and Boltzmann showed, in his
celebrated H theorem, that the entropy-like quantity −H increases with time
or stays constant[1].

For the ‘microscopic’ descriptions used in statistical mechanics to describe
the motion of individual molecules in detail, the situation is different. The dif-
ferential equations of particle dynamics (Hamilton’s equations of motion in clas-
sical mechanics, Schrödinger’s time-dependent equation in quantum mechanics)
are symmetric under time reversal. From this symmetry it follows that in parti-
cle dynamics there cannot be a dynamical variable that increases with time for
every solution of the equations of motion. The reason is that, for every motion
on which a dynamical variable increases with time, there must be another mo-
tion, obtained from the first one by time reversal, on which the same dynamical
variable decreases with time.

What this paradoxical situation reveals is that the microscopic models, even
though they contain so much more detail than the PDE models, are incomplete
in the sense that their differential equations do not capture the difference be-
tween plausible motions (such as heat moving from hot to cold) and implausible
ones (such as heat moving from cold to hot). One way of tackling this incom-
pleteness might be to append to the differential equations a criterion for ruling
out the implausible motions. This could take the form of a dynamical variable
that is equal to the entropy; then motions for which the entropy decreased with
time would be recognized as implausible.

An important method for defining entropy in a non-equilibrium system is
Boltzmann’s principle[2, 3, 4]. To formulate this principle, let us denote by Γ
the phase space, consisting of all possible dynamical states of the system, and
by ΓM the set of all dynamical states compatible with a given macroscopic state
M . Then the entropy of the system, when it is in the macroscopic state M , can
be defined as

S = k log(c µ(ΓM )) (1)

where k is Boltzmann’s constant, µ(ΓM ) is the measure of the set ΓM , and c is
a constant depending on the number and type of particles in the system, which
is necessary in general for consistency with the thermodynamic entropy but can
be taken equal to 1 for the very simple systems considered in this paper.

While the definition (1) of entropy has the virtue of being simple in principle,
there are some difficulties. One of them is that the definition of a macrostate
is quite vague. If one defines macrostates in terms of how many particles are in
a particular region of space, for example, then it is not clear what is meant by
saying that two values for this particle number are macroscopically identical.
Suppose there are a million particles in that region. Would we say that this is
macroscopically identical to 999,999? to 999,000?

A second difficulty is that the very notion of ‘macroscopic’ seems to pre-
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suppose that the system consists of a very large number of particles. But later
in this paper an example will be given showing that irreversible behaviour is
possible in a system with only two degrees of freedom. One would like to have
a definition of entropy that can be used for systems of any size, or ones that do
not consist of particles at all.

The purpose of the present paper is to propose an alternative to the definition
(1) of entropy which can be used for any dynamical system at all, regardless of
the number of degrees of freedom and of whether the concept of macroscopic
state applies.

2 Dynamical self-correlation and non-equilibrium
entropy

In this section a purely mechanical definition is proposed for the “entropy” of a
chaotic dynamical system. It defines an entropy for a segment of a trajectory.
Very roughly, this entropy is the logarithm of the measure of the part of phase
space that can be reached from phase points near the ends of the trajectory
segment during the time while it is being traversed.

Let Γ denote the phase space and γ a general point in Γ, and let φt be
the flow or iterated mapping on Γ which defines the time evolution. It will
be assumed that φt has time-reversal invariance. This means that there is an
involution operator T with the property that if {γ(t)}t∈(−∞,∞) is a trajectory
of the dynamical system (i.e. a solution of its equations of motion), then the set
{Tγ(−t)}t∈(−∞,∞) is also a trajectory. For example, in Hamiltonian mechan-
ics, T is the operator that reverses all velocities and/or momenta, but leaves
the positions invariant. The assumed time-reversal symmetry of the dynamical
system can be written

Tφt(Tφt(γ)) = γ or Tφt(γ) = φ−t(Tγ) ∀γ ∈ Γ (2)

We assume further that there is a measure µ on Γ which is preserved by
φt, i.e. that µ(φt(A)) = µ(A) for every measurable set A in phase space. In
classical Hamiltonian mechanics µ can be the Lebesgue measure on phase space.

Consider now a trajectory segment whose ends are γ1 (arbitrary) and γ2 :=
φt12(γ1) where t12 is arbitrary and may have either sign. That is to say, t12
is arbitrary and γ1, γ2 are arbitrary subject to the condition γ2 := φt12(γ1).
Choose any small number ε and define the dynamical self-correlation of the two
end points of the trajectory segment to be

Cε(γ1, γ2) :=
µ(φt12Bε(γ1) ∩Bε(γ2))

µ(Bε)
(3)

where Bε(γ) denotes the ball of radius ε centred at the phase point γ, and
µ(Bε) := µ(Bε(γ)), the measure of a ball of radius ε, which is the same for all
γ.
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The dynamical self-correlation has the obvious properties

Cε(γ1, γ1) = 1, 0 ≤ Cε(γ1, γ2) ≤ 1 (4)

Moreover, the function Cε(·, ·) is symmetric in its two arguments:

Cε(γ2, γ1) = Cε(γ1, γ2) (5)

This property follows from the fact that the mapping φt preserves measure, so
that the sets φt12Bε(γ1) ∩ Bε(γ2)) and φt21(φt12Bε(γ1) ∩ Bε(γ2))) = Bε(γ1) ∩
φt21(Bε(γ2) (where t21 := −t12) have the same measure and hence the numera-
tors in the definitions of Cε(γ1, γ2) and Cε(γ2, γ1) are equal.

It can also be shown, using the symmetry properties of φt and Bε with
respect to the involution T , that the function Cε(·, ·) is invariant under the time
reversal involution

Cε(Tγ1, Tγ2) = Cε(γ1, γ2) (6)

Informally, Cε(γ1, γ2) as defined in (3) can (for positive t12) be interpreted as
the conditional probability that, if the system is started at time t1 from a phase
point chosen at random from the neighbourhood Bε(γ1) then its phase point
at the later time t2 will lie in the neighbourhood Bε(γ2). The larger the region
of phase space the phase point can stray to within the time interval t2 − t1,
the less likely it is to find its way to Bε(γ2) at the appointed time, and so we
might expect Cε(γ1, γ2) to be inversely proportional to the volume of phase
space the system can reach from phase points near γ1 during the available time.
According to Boltzmann’s principle, the entropy associated with this amount of
phase space is a constant plus k times the logarithm of its volume, so we may
expect to interpret k times the logarithm of 1/Cε(γ1, γ2) as an entropy.

To formulate a quantitative relation between dynamical self-correlation and
entropy, consider the behaviour of the dynamical self-correlation when the length
of the trajectory segment is very large. According to the informal interpreta-
tion just mentioned, Cε(γ1, γ2) is the probability that, at the time t2, the phase
point will be found in the region Bε(γ2). For very large t2, assuming the dynam-
ical system to be chaotic, one may plausibly equate this probability with the
equilibrium probability of finding the phase point in Bε(γ2). If the entire phase
space is ergodic (meaning that there are no invariants of the motion, not even
an energy invariant), this equilibrium probability is

µ(Bε(γ2))

µ(Γ)
(7)

Using the fact that µ(Bε(γ) is independent of γ we arrive at the following
conjecture :

Conjecture 1 If the entire phase space is ergodic, then

lim
t12→∞

Cε(γ1, γ2) =
µ(Bε)

µ(Γ)
(8)
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Some support for this conjecture is given by the result in section 3 where eqn
(8) is shown to hold (albeit for square, not circular, neighbourhoods) in the case
of the Arnold ‘cat’ map.

Using Boltzmann’s principle (1) we can use the conjecture (8) to express the
equilibrium entropy in terms of dynamical self-correlation :

Seqm = k log

(
c µ(Bε)

limt12→∞ Cε(γ1, γ2)

)
(9)

for the case where the phase space is ergodic.
Formula (9) gives us the possibility of defining an ‘entropy’ for any trajectory

segment whatever by an analogous formula

Sε(γ1, γ2) := k log

(
c µ(Bε)

Cε(γ1, γ2)

)
(10)

In the alternative case where the phase space is not ergodic, the long-time
behaviour of Cε as defined in eqn (3) is more complicated, and it seems prefer-
able to work with a revised definition. Consider, for example, the case where
there is just one invariant of the motion, the energy. To each value of E there
corresponds an ‘energy surface’, the set ΓE := {γ : H(γ) = E} where H(·) is
the Hamiltonian. The invariant measure obtained by restricting the measure µ
to ΓE (the microcanonical measure at energy E) will be denoted by µE .

In formulating a definition of dynamical self-correlation, analogous to (3),
for this case we have to take account that, although µ(Bε(γ) is independent
of γ, the microcanonical measure of the set Bε(γ) ∩ ΓE does depend on γ. At
the same time, we would like to preserve the symmetry properties such as (5).
These requirements can be met by replacing the µ(Bε) in the denominator of
formula (3) by the geometric mean of the microcanonical measures of the two
relevant neighbourhoods on the energy surface, Bε(γ1) ∩ ΓE and Bε(γ2) ∩ ΓE .
Thus the ‘microcanonical’ version of formula (3) is

C(E)
ε (γ1, γ2) :=

µE(φt12Bε(γ1) ∩Bε(γ2) ∩ ΓE)√
µE(Bε(γ1) ∩ ΓE)µE(Bε(γ2) ∩ ΓE)

(11)

As before, we consider the behaviour of the dynamical self-correlation when
the length of the trajectory segment is very large and the conditional probability
that the phase point, if started at time t1 from a point in the ball Bε(γ1) chosen
at random using the microcanonical probability distribution µE , will be found
in the ball Bε(γ2) at the later time t2. This probability is

µE(φt12Bε(γ1) ∩Bε(γ2) ∩ ΓE)

µE(Bε(γ1) ∩ ΓE)
(12)

For very large t2 it is reasonable to equate the conditional probability (12) with
the equilibrium probability of finding the phase point in Bε(γ2), as given by the
microcanonical probability measure. This conditional probability is

µE(Bε(γ2) ∩ ΓE)

µE(ΓE)
(13)
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Thus we expect the ratio of the expressions (12) and (13) to approach the limit
1 as t12 →∞, i.e

lim
t12→∞

(
µE(φt12Bε(γ1) ∩Bε(γ2) ∩ ΓE)µE(ΓE)

µE(Bε(γ1) ∩ ΓE)µE(Bε(γ2) ∩ ΓE)

)
= 1 (14)

Combining this formula with the definition (11), we are led to the following
analogue of conjecture 1:

Conjecture 2 If the energy surface ΓE is ergodic, then

lim
t12→∞

(
C

(E)
ε (γ1, γ2)√

µE(Bε(γ2) ∩ ΓE)µE(Bε(γ2) ∩ ΓE)

)
=

1

µE(ΓE)
(15)

The analogue of formula (9) for the equilibrium entropy is thus

Seqm = lim
t12→∞

k log

(
c
√
µE(Bε(γ2) ∩ ΓE)µE(Bε(γ2) ∩ ΓE)

C
(E)
ε (γ1, γ2)

)
(16)

and the analogue of (10) for the non-equilibrium entropy is

Sε(γ1, γ2) := k log

(
c
√
µE(Bε(γ2) ∩ ΓE)µE(Bε(γ2) ∩ ΓE)

C
(E)
ε (γ1, γ2)

)

= k log

(
c
µE(Bε(γ2) ∩ ΓE)µE(Bε(γ2) ∩ ΓE)

µE(φt12Bε(γ1) ∩Bε(γ2) ∩ ΓE)

)
(17)

3 Example 1: Arnold’s ‘cat’ map

To illustrate some of the properties of the entropy definition (10), we apply it to
two dynamical systems which are simple enough to permit some of the relevant
quantities to be calculated exactly.

The first example is a system with discrete dynamics, whose phase space is a
square QL := [0, L)⊗ [0, L) of arbitrary side length L, with opposite edges iden-
tified so as to make it a two-dimensional torus. The dynamical rule is the Arnold
‘cat’ map [5] obtained by multiplying the column vector [p, q]T representing the
phase point γ by the matrix

A :=

[
1 1
1 2

]
(18)

and then projecting into the square QL using the projection PL defined by
PL(p, q) := (p mod L, q mod L) in which, for example, p mod L := p− L[p/L]
where [p/L] denotes the largest integer ≤ p/L. The formula for a single step of
the evolution can be written

φ(p, q) = PL(p+ q, p+ 2q)) := ((p+ q) mod L, (p+ 2q) mod L) (19)
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This dynamical system is reversible in the following sense: let the sequence
(. . . γ0, γ1, γ2, . . .) be a trajectory, meaning that it satisfies γn+1 = φ(γn) for all
n ∈ Z; then the sequence (. . . Tγ2, Tγ1, Tγ0, . . .), where T (p, q) := (q,−p), is
also a trajectory. (Proof: since the matrix

T :=

[
0 1
−1 0

]
(20)

representing the involution T, satisfies ATA = T, it follows that if γn+1 = Aγn,
then Tγn = ATγn+1.)

This dynamicasl system has just one positive Lyapunov exponent, which
is the logarithm of the larger of the two eigenvalues of the matrix A. This
eigenvalue is G2 where G denotes the golden ratio (1 +

√
5)/2 = 1.618 . . . . The

normalized right eigenvectors of the matrix A are

u := (1 +G2)−1/2[1 G]T with eigenvalue G2 = 1 +G,

v := (1 +G2)−1/2[−G 1]T with eigenvalue G−2 = 2−G (21)

To simplify the calculations we replace the ball Bε(γ) used in the preceding
section by a square neighbourhood Nε(γ). The edges of Nε(γ) are taken to be
parallel to the eigenvectors and their length is 2ε, so that Nε(γ) is just big
enough to include the ball Bε(γ) but small enough to be included in B√2 ε(γ).
Its corners are the four points γ + ε(±u ± v). The matrix At converts Nε(γ)
into a rectangle with corners

Atγ + ε(±G2tu±G−2tv) = (x± ε)G2tu + (y ± ε)G−2tv (22)

where x, y are defined by γ = xu + yv. This rectangle will be called ‘the long
rectangle’. The lengths of its sides are 2εG2t in the u direction and 2εG−2t in
the v direction.

To apply the definition of dynamical self-correlation, eqn (3), we need the
overlap area of the square Nε(φ

tγ) with the figure φt(Nε(γ)) obtained by ap-
plying the projection PL to the long rectangle. We shall take t := t12 to be
positive; the results for negative t can be obtained using the symmetry rule (5)
if they should be needed. A simple case arises when φtγ is not too close to
the edges of QL while ε and t are small enough for the long rectangle, whose
length is 2εG2t, to lie entirely inside QL. Then the projection PL leaves the
long rectangle unaltered, and that rectangle’s intersection with Nε(γ) is simply
a smaller rectangle; the width of the intersection rectangle is the same as that of
the long rectangle, namely 2εG−2t, and the length of the intersection rectangle
is 2ε, making its area 4ε2G−2t. Putting this result into the definition (3) we find
that, for this dynamical system,

Cε(γ1, γ2) = G−2t if εG2t � L (and t > 0) (23)

This formula can also be written in terms of the positive Lyapunov exponent
λ = log(G2).

Cε(γ1, γ2) = e−λt if εeλt � L (24)
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This formula is also true, approximately, when the neighbourhoods are taken to
be balls rather than squares.

The calculation of Cε(γ1, γ2) for the opposite case, in which εG2t � 1, is
more complicated, and will be given as a theorem:

Theorem 1 For the discrete dynamical system defined by the mapping (19) the
dynamical self-correlation is given by

C(γ1, γ2) =
4ε2

L2

(
1 +O

(
L

εG2t

))
+O

(
t+ log(L/ε)

G2t

)
(25)

The proof of this theorem depends on the following lemma

Lemma 1 Let p0 satisfy 0 ≤ p0 < L, let n1, n2 be positive integers and consider
the set of points

Σ := PL{p0 + jL/G}j=−n1,−n1+1,...,n2−1,n2 . (26)

where PL(x) := x mod L. Let a, b be numbers satisfying 0 ≤ a < b < L. Then
the number of points from the set Σ that lie in the semi-open interval [a, b),
which we denote by ]{Σ ∩ [a, b)} satisfies

]{Σ ∩ [a, b)} =
b− a
L

n+O(log n) (27)

where n := n1 + n2 + 1.

Proof. We consider first the case where n = Fk for some k, where F0, F1, F2, . . .
are the Fibonacci numbers, defined by the rule Fk := Fk−1 + Fk−2 with F0 :=
0, F1 := 1. In this case the error term turns out to be O(1), a stronger result
than the O(log n) in eqn (27).

The successive continued-fraction approximants to 1/G are Fk−1/Fk. Ac-
cording to the theory of continued fractions the error in using one of these
approximants in place of 1/G has the upper bound∣∣∣∣ 1

G
− Fk−1

Fk

∣∣∣∣ < 1

FkFk+1
(28)

Under this approximation each point of Σ := PL{p0 + jL/G}j=−n1,...,n2 is
approximated by a point from the set

Σ(k) := PL {p0 + jLFk−1/Fk}j=−n1...n2
(29)

The set Σ(k) comprises n = Fk points. Since Fk−1 and Fk have no common
factor, the Fk different numbers −n1Fk−1 . . . n2Fk−1 all give different remain-
ders on division by Fk (for if two were to give the same remainder, their dif-
ference would at the same time be a multiple of Fk and the product of Fk−1
by a number less than Fk, which cannot be). Therefore each of the Fk possible
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remainders occurs just once. Consequently, denoting the remainders by r, the
set Σ(k) can be written

Σ(k) := PL {p0 + rL/Fk}r=0,...,Fk−1
(30)

Thus the set Σ(k) comprises n = Fk points, which are equally spaced along the
interval (0, L), their separation being L/n.

By (28) the error in approximating the number jL/G by jLFk−1/Fk is at
most jL/FkFk+1, whose magnitude is bounded above by L/Fk+1 since |j| ≤
n = Fk.

Suppose k is large enough to make L/Fk+1 <
1
2 (b−a) and consider the open

interval [a+ L/Fk+1, b− L/Fk+1), whose length is the positive number b− a−
2L/Fk+1. Denote the number of points of Σ(k) that lie in this interval by mk.
Each of these points lies within a distance L/Fk+1 of the corresponding point
of Σ; therefore the corresponding points of Σ all lie within the larger interval
[a, b) and it follows that ]{Σ∩[a, b)} ≥ mk. Moreover, since the separation of the
points of Σ(k) is L/n, the length of an interval occupied by mk of them is at most
(mk+1)L/n and so the number of them in the interval [a+L/Fk−1, b−L/Fk−1)
satisfies (mk+1)L/n ≥ b−a−2L/Fk−1. Putting together these two inequalities
we obtain

]{Σ ∩ [a, b)} ≥ mk ≥ (n/L)(b− a− 2L/Fk−1)− 1 (31)

In a similar way it can be shown that ]{Σ ∩ [a, b)} is bounded above by the
number of points of Σ(k) in the interval [a− L/Fk, b+ L/Fk), which in turn is
bounded above by (b− a+ 2L/Fk)n/L+ 1, so that

]{Σ ∩ [a, b)} ≤ (b− a+ 2L/Fk)n/L+ 1 (32)

The upper and lower bounds (32) and (31) taken together imply (27), and the
proof of the lemma for the case where n is Fibonacci number is complete.

For the case where n is not a Fibonacci number, choose k to be the largest
integer for which

n > Fk (33)

Let k′ be the largest integer for which n − Fk ≥ Fk′ ; if n − Fk 6= Fk′ let k′′ be
the largest integer for which n− Fk − Fk′ ≥ Fk′′ and so on. In this way we can
express n as a finite sum of decreasing Fibonacci numbers:

n = Fk + Fk′ + Fk′′ + . . . (34)

Corresponding to the decomposition (34) of the number n, we can decompose
the set Σ defined in (26) into a finite number of subsets, the first comprsing Fk
points, the second Fk′ points and so on :

Σ = Σk ∪ Σ′k ∪ Σ′′k ∪ . . . (35)

9



where

Σk := PL{p0 + (i− n1)L/G}i=0,1,...,Fk−1

Σ′k := PL{p0 + (i′ − n1 + Fk)L/G}i′=0,1,...,Fk′−1

Σ′′k := PL{p0 + (i′′ − n1 + Fk + Fk′)L/G}i′′=0,1,...,Fk′′−1 (36)

etc. . Because of the irrationality of G these sets are disjoint.
In the set Σk, we follow the procedure used in the first part of this proof,

approximating 1/G by Fk−1/Fk and arriving at the result

]{Σk ∩ [a, b)} = (b− a)Fk/L+O(1) (37)

For the set Σ′k we follow an analogous procedure, but approximating 1/G by
Fk′−1/Fk′ this time. This gives the result

]{Σ′k ∩ [a, b)} = (b− a)Fk′/L+O(1) (38)

Similarly, approximating 1/G by Fk′′−1/Fk′′ in Σ′′k , we obtain

]{Σ′′k ∩ [a, b)} = (b− a)Fk′′/L+O(1) (39)

and so on. Adding up the equations (37), (38), (39),etc., and using the formulas
(34) and (35), together with the fact that the sets Σk,Σ

′
k,Σ

′′
k , . . . are disjoint,

we obtain
]{Σ ∩ [a, b)} = (b− a)n/L+O(log n) (40)

since the number of terms in the finite sum (34) is bounded above by k which is
O(log n) by Binet’s formula Fk = (Gk− (−G)−k)/

√
5. This completes the proof

of the lemma.
Proof of theorem. We want to evaluate

Cε(γ1, γ2) :=
µ(φt2−t1Nε(γ1) ∩Nε(γ2))

µ(Nε)
(41)

as defined in eqn (3), using phase points γ1 = xu + yv and γ2 = PL(xG2tu +
yG−2tv) where t := t2 − t1, and the neighbourhoods taken to be squares with
sides of length 2ε parallel to the eigenvectors u,v. For simplicity we assume that
the distances from γ1 and γ2 to the edges of QL are greater than ε, so that both
their neighbourhoods are inside QL. Then the corners of Nε(γ1) are the phase
points (x±ε)u+(y±ε)v and those of Nε(γ2) are PL((xG2t±ε)u+(yG−2t+ε)v).
The region φtNε(γ1) is obtained by applying the projection operator PL to the
‘long rectangle’ with corners G2t(x± ε)u+G−2t(y± ε)v. The centre of the long
rectangle is the point γ2 = xG2tu + yG−2tv and (for positive t) its length is
2G2tε in the u direction and its width is 2G−2tε in the v direction.

The mid-line of the long rectangle is the line in the u direction joining the
points G2t(x± ε)u+G−2tyv. The length of this line is 2G2tε in the u direction.
The line, projected if necessary, meets the (horizontal) p axis at a point (p0, 0)
where p0 = p2 − q2/G. and (p2, q2) are the Cartesian coordinates of γ2. Each
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intersection of this line with a horizontal line q = integer × L will map, under
the projection operator PL, to an intersection with the line q = 0, i.e. the
p-axis. The number of such intersections (the n of Lemma 1) is, with accuracy
O(1), equal to 1/L times the length of the projection of the mid-line of the long
rectangle onto the q axis, i.e. (1/L) 2G2tεG(1 +G2)−1/2 +O(1) (see eqn (21)).
Using this expression in place of the number n in the lemma (eqn (27)), we
find that the number of intersections of the image of the mid-line of the long
rectangle with an arbitrary interval of length b− a on the p axis is

(b− a)

L

(
2εG2tG(1 +G2)−1/2

L
+O(1)

)
+O

(
log

(
2εG2tG(1 +G2)−1/2

L

))
(42)

For the interval [a, b) we choose the part of the p axis through which all lines
in the u direction through Nε(γ2) (extended if necessary) pass. The length of
this interval is (b− a) = 2ε(1 +G2)1/2/G; so the formula (42) tells us that the
number of intersections of Nε(γ2) with the image (under PL) of the mid-line of
the long rectangle is

2ε(1 +G2)1/2

LG

(
2εG2tG(1 +G2)−1/2

L
+O(1)

)
+O

(
log

(
εG2t

L

))
=

2ε

L

(
2εG2t

L
+O(1)

)
+O (|t|+ | log (L/ε) |) (43)

Each of these intersections is a line segment, nearly all having length 2ε. Each
of these line segments is the midline of the intersection of Nε(γ2) with part of the
image of the long rectangle; and each of these intersection rectangles, with at
most two exceptions, has length 2ε, width 2εG−2t and hence area 2ε×2εG−2t =
4ε2G−2t. Multiplying by the number of such intersection rectangles, given in
eqn (43), we find the total intersection area of Nε(γ2) with the projection of the
long rectangle to be

4ε2G−2t
[

2ε

L

(
2εG2t

L
+O(1)

)
+O (t+ log (L/ε))

]
=

16ε4

L2

(
1 +O

(
L

εG2t

))
+O

(
ε2

G2t
(t+ log (L/ε))

)
(44)

Using this result to evaluate the numerator of eqn (41), together with the obvious
formula 4ε2 for the denominator, we conclude that

C(γ1, γ2) =
4ε2

L2

(
1 +O

(
L

εG2t

))
+O

(
t+ log(L/ε)

G2t

)
(45)

This completes the proof of the theorem.

4 Example 2: a ‘cat and kitten’ map

Our second example is a dynamical system whose phase space comprises two
squares on two different copies of R2. One of the squares is Q := [0, L)⊗ [0, L);
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the other is Q′ := [0, L′) ⊗ [0, L′) where L and L′ are positive integers. In the
interesting case, L′ is chosen much larger than L. For each square the opposite
edges are identified so as to make it a two-dimensional torus.

The rule specifying the motion of the phase point is that, provided the
phase point is outside a particular small region in Q ∩Q′, which will be called
the ‘window’, it follows the Arnold dynamical rule (19) appropriate to the torus
it is in; but if the phase point lands on the window it jumps to the other torus
before continuing. We shall take the window to be a square neighbourhood of
some point ω ∈ Q∩Q′, namely Nδ(ω) where δ is a small constant. The point ω
should be chosen so that Nδ(ω) ∩ φ(Nδ(ω)) = ∅, i.e. the phase point does not
immediately jump back again at the next step. The choice ω = ( 1

2 ,
1
2 ) would be

appropriate, for example.
For this dynamical system the phase point is labelled by three variables: two

real variables p and q, plus an extra variable Z which takes only two values: L
if the phase point is in the torus Q, and L′ if it is in Q′. The analogue of the
formula (19) is now

φ(p, q, Z) := (PZ(p+ q, p+ 2q), Z) if (p, q) /∈ Nδ(ω)

but := (PL+L′−Z(p+ q, p+ 2q), L+ L′ − Z) if (p, q) ∈ Nδ(ω)(46)

Without going into any rigorous analysis, it is plausible that, over a very
long time interval, all or almost all trajectories will spend most of their time
in the larger torus, but will make occasional excursions into the smaller torus.
It is a reasonable conjecture that the probability per time step of hitting the
window and thereby moving to the other torus is the small number δ2/L2 when

the phase point is in Q, and the even smaller number δ2/L′
2

when the phase
point is in Q′. Thus we can estimate the duration of each sojourn in Q to be
of order L2/δ2, whilst the duration of each sojourn in Q′ is of order L′2/δ2, a
much larger number.

Carrying this type of reasoning a bit further we can obtain conjectural in-
formation about the dynamical self-correlations. Consider first the case where
both γ1 and γ2 are in the larger torus Q′. Then, since most trajectories spend
only a tiny fraction of their time in the smaller torus Q, the dynamical self-
correlations will be very close to what they would be if the smaller torus did not
exist at all; so, from (23) and (25), we may expect that (with t > 0 as usual)

if γ1, γ2 ∈ Q′ then Cε(γ1, γ2) ≈ G−2t when G2t < L/ε
but ≈ 4ε2/L′2 when G2t � L/ε

(47)

If, on the other hand, γ1 and γ2 are both in the smaller torus, things are more
complicated, since the fraction of the relevant trajectories that visit the other
torus is significantly larger. Estimating the probability per time step of escaping
from the smaller torus as δ2/L2, the condition for the analogue of (47) to hold
is tδ2/L2 � 1, so that we may expect

if γ1, γ2 ∈ Q then Cε(γ1, γ2) ≈ G−2t when G2t < L/ε
but ≈ 4ε2/L2 when L/ε� G2t, t� L2/δ2

(48)
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In place of the 4ε2/L2 in the last line, the formula (4ε2/L2)e−tδ
2/L2

would
probably hold over a larger time range.

The reader may find it interesting to work out what happens in the third
case, for which the two ends of the trajectory segment are in different toruses.

Using (47) and (48) we can now evaluate the entropies of various trajectory
segments as defined by the formula (10) with G2t � L/ε. The results are

S = k log
µ(Bε)

Cε(γ1, γ2)
≈ k logL′2 if γ1, γ2 ∈ Q′

but ≈ k logL2 if γ1, γ2 ∈ Q and t� L2/δ2 (49)

From the first of these formulas, eqn (47), the entropy when γ1 and γ2 are
both in the large torus is

k log
µ(Bε)

limt12→∞ Cε(γ1, γ2)
= k logL′2 (50)

According to eqn (47) this expression should be equal to the equilibrium entropy,
and (since L′ � L) it is indeed very close to the exact equilibrium entropy, which
according to Boltzmann’s formula (1) is k log(L′2 + L2).

From the second, eqn (48), we can get a non-equilibrium entropy for phase
points in the smaller torus, appropriate for the time scale t � L2/δ2 during
which the non-equilibrium state lasts, using the formula (10):

Snoneqm = k log
µ(Bε)

Cε(γ1, γ2)

∣∣∣∣
log(L/ε)�t�L2/δ2

= k logL2 (51)

There is nothing surprising about the entropy formula (51). The expression
k logL2 could have been obtained much more quickly by the ad hoc procedure of
making a small change in the dynamics, namely closing the window completely
so that the phase space splits into two mutually inaccessible parts, and then
applying Boltzmann’s principle to whichever part the phase point happens to be
in. What the calculations illustrate, however, is that the formula (10) provides
a self-contained definition of non-equilibrium entropy which requires no ad hoc
procedures and no additional input about macroscopic descriptions. All that is
necessary is to get the right time scale — the duration of a trajectory which
is long enough for the initial ‘transient’ exponential decay to have died out
(t� logL/ε) but not so long that the slow approach to equilibrium can have a
significant effect (t� L2/δ2).

An interesting feature of this dynamical system is that it can behave irre-
versibly, even though it does not satisfy the usual criteria that an irreversible
system is supposed to obey. Irreversibility is generally held to be a property
of systems that are large in the sense of comprising a large number of particles
(and therefore having many degrees of freedom), and to reveal itself in the time
evolution of macroscopic variables, such as the local density, which are defined
in terms of averages over a large number of particles. But the two-torus system
considered here has only two degrees of freedom, and there are no particles over
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which to define macroscopic variables as averages. Nevertheless, this dynami-
cal system has the ability to behave irreversibly. If it is started at a randomly
chosen point in the smaller torus Q, the chances are that, after a time of order
L2/δ2 it will emerge from that torus and that it will then remain in the larger
torus for a much longer time, of order L′2/δ2, before its next visit to the smaller
torus. By choosing L′ large enough we can make the return time L′2/δ2 as
large as we like — larger than the age of the Universe, if desired — making the
original transition from torus Q to torus Q′ almost literally irreversible.

When the ‘irreversible’ transition from the the smaller to the larger torus
takes place, the entropy increases by the amount k logL′2−k logL2 = 2k log(L′/L),
which can be arbitrary large (in comparison with k) depending on how large
we choose to make the ratio L′/L. Just as in thermodynamics, the irreversible
process is accompanied by a large entropy increase.

5 Conclusion

This paper gives a method for defining an entropy associated with a segment
of trajectory in a chaotic dynamical system. The definition is purely dynam-
ical (‘microscopic’); it does not depend on any macroscopic or observational
description. The definition depends on two parameters: ε, the size of the neigh-
bourhood and t12, the length of the trajectory segment. In order to get a useful
result, both have to be chosen sensibly — see the conditions in eqn (48)

One way to carry this work forward would be to look for a connection be-
tween the entropy defined here and the one in Boltzmann’s H theorem. It might
also be possible to prove entropy increase results : for example it may be that if
one trajectory segment is a subset of another, the larger segment must have the
larger entropy. Another topic that could be investigated is the general connec-
tion between the dynamical self-correlation at small times and the Lyapunov
exponents, illustrated by the formula (24) for the Arnold map.
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