
Lecture 5 : Thursday 20 Feb 2003

1 Dynamical variables, correlation functions

Our probability space is the 2ν-dimensional phase space Ω. The coordinates
of its elements ω are the ν momentum coordinates p1(ω) . . . pν(ω) and the ν
position coordinates q1(ω) . . . qν(ω).

If X : Ω → R is a dynamical variable, its value varies with time, i.e. it is a
stochastic process (a randomly chosen function of time) Xt = Xt(ω) := X(ωt)
where ωt satisfies the Hamiltonian eqns of motion

dpi(ωt)/dt = −∂H(ωt)/∂qi(ωt)
dqi(ωt)/dt = ∂H(ωt)/∂pi(ωt) (i = 1 . . . ν) (1)

with initial condition ω0 = ω.
If X and Y are two dynamical variables, their equilibrium correlation func-

tion is defined as
〈XsYt〉 :=

∫
Ω

X(ωs)Y (ωt)ρ(ω)dω (2)

where ρ is the equilibrium phase-space density, for which I’ll use the canonical
ensemble ρ ∝ exp(−H(ω)/kT ). Since the Hamiltonian for a system in equilib-
rium is independent of time, the equilibrium correlation function is time-shift
invariant, i.e. it is a function of t− s only.

Provided that the expectations of Xs and Yt are zero, the correlation func-
tion gives a measure of the amount of correlation between these two random
variables. If these expecations are not zero, it is better to use the truncated
correlation function, defined as

〈XsYt〉 − 〈Xs〉〈Yt〉 (3)

In statistical language this is the covariance of Xs and Yt.

2 The Liouville operator

A formal expression for the time dependence of Xt can be obtained by writing

(∂/∂t)Xt(ω) = (∂/∂t)X(ωt)
= LX(ωt) by (1) and the rules of calculus
= LXt(ω) (4)

where L is the Liouville operator (acting in some space of functions Ω → R)
defined by

L =
ν∑
i=1

{
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

}
(5)
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Eqn (4) can be written as a differential equation in some space of functions over
Ω

dXt/dt = LXt (6)

If L is independent of t this has the formal solution

Xt = exp(Lt)X (7)

which will come in useful later.
The Liouville operator is an antisymmetric operator, i.e.

〈X(LY )〉 = −〈(LY )X〉 (8)

In terms of it, Liouville’s theorem can be written

∂ρ/∂t = −Lρ (9)

3 Linear response theory

Suppose that we apply to the system a small time-dependent external force
ξ(t) ∈ R conjugate to the dynamical variable X : Ω → R2ν . This means
changing the Hamiltonian to

H = H0 +H1(t) = H0 −Xξ(t) (10)

where H0 is the unperturbed Hamiltonian. For example, X could be the x-
coordinate of the position of an ion and ξ(t) the force exerted on it by an
external (i.e. controlled by the experimenter) electric field in the x direction.
Suppose that ξ(t) is switched on at time 0, i.e. ξ(t) = 0 if t < 0, and, for
simplicity, that the equilibrium expectation of X is zero. Hence 〈Xt〉 = 0 for
t < 0. The purpose of the calculation is to find how the expectation of Xt varies
with time for t > 0.

Write ρ = ρ0 + ρ1 where ρ0 is the canonical prob. distribution, satisfying
L0ρ0 = 0 where L0 is the unperturbed Liouville operator. Liouville’s eqn gives

dρ1/dt = −L0ρ1 − L1(t)ρ0 +O(ξ2) (11)

where L0 and L1 are the contributions to L, as defined in (5), from the two
terms in the Hamiltonian (10); in particular

L1(t) := −ξ(t)
ν∑
i=1

{
∂X

∂pi

∂

∂qi
− ∂X

∂qi

∂

∂pi

}
(12)

Since L0 is independent of t the differential eqn (11) can be solved (using the
condition ρ1

0 = 0) as

exp(tL0)ρ1
t = −

∫ t

0

ds exp(sL0)L1(s)ρ0

i.e. ρ1
t = −

∫ t

0

ds exp((s− t)L0)L1(s)ρ0 (13)
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From the definition of the (unperturbed) canonical distribution we have

L1(s)ρ0 = −(1/kT )(L1(s)H0)ρ0

= (1/kT )ξ(s)
ν∑
i=1

{
∂X

∂pi

∂H0

∂qi
− ∂X

∂qi

∂H0

∂pi

}
ρ0 by (12)

= −(1/kT )ξ(s)(L0X)ρ0 by (5)
= −(1/kT )ξ(s)Ẋρ0 by (6) (14)

where Ẋ is the time derivative dX/dt calculated in accordance with (6) using
the unperturbed Hamiltonian H0. Hence we may write (13) as

ρ1
t = (1/kT )

∫ t

0

ds exp((s− t)L0)ξ(s)Ẋρ0 (15)

Soppose we observe a dynamical variable Y (which may or not be the same
as X) at time t; as a result of the perturbation, its expectation changes by

〈Yt〉 − 〈Y0〉 =
∫

Ω

Y (ω)ρ1
t (ω) dω

= (1/kT )
∫

Ω

Y (ω)
∫ t

0

ds exp((s− t)L0)Ẋρ0 dωξ(t) by(15)

=
∫ t

0

φY X(t− s)ξ(s)ds (16)

where

φY X(t− s) := (1/kT )
∫

Ω

Y (ω)[exp((s− t)L0)Ẋρ0](ω) dω

= (1/kT )〈Y [(exp((s− t)L0)Ẋ)]〉
= (1/kT )〈Y [(exp((s− t)L0)Ẋ)](ω)〉eq
= (1/kT )〈[exp((t− s)L0Y ]Ẋ)〉eq (17)

by the antisymmetry of L0, eqn (8). Using (7) with L the unperturbed Liouville
operator, this last formula can be written

φY X(t− s) = (1/kT )〈Yt−sẊ〉eq (18)

where the formula is evaluated at equilibrium, using the unperturbed Hamilto-
nian. This is Kubo’s (or Green-Kubo) formula, or the fluctuation-dissipation
theorem.

4 Transport coefficients

Often we are interested in the long-time response to a force that is held constant
over a long time, e.g a constant electric field applied to an ion. Differentiation
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of (16) gives

(d/dt)〈Yt〉 = (1/kT )
∫ t

0

〈Ẏt−sẊ〉eqdsξ

≈ ΛY Xξ (19)

where
ΛY X := (1/kT )

∫ ∞
0

〈ẎtẊ〉eqdt (20)

which is assumed to converge (this is a form of ”mixing”, a concept in ergodic
theory).

For example, if X is the x-coordinate of an ion and ξ is the electric force
on it, then ΛXX is the mobility of the ion, the velocity per unit applied force.
There are analogous ’Kubo’ formulas for a variety of transport coefficients :
viscosity, heat conductivity and so on.

5 Onsager’s reciprocal relations

Let T be the velocity reversal operator i.e. T(p, q) = (−p, q). Suppose that H
is invariant under velocity reversal (not the case in an external magnetic field),
and suppose that X and Y are also velocity reversal invariant. Then the matrix
ΛXY is symmetric, i.e.

ΛXY = ΛY X (21)

Proof: the eqns of motion give

Tωt = (Tω)−t (22)

Then the equilibrium correlation function satisfy

〈XtYs〉 = 〈X−tY−s〉 using T

= 〈XsYt〉 (23)

by time-shift invariance (shifing by t + s). Apply this to Ẋ and Ẏ , set s = 0
and integrate w.r.t from 0 to ∞ and we have Onsager’s reciprocal relation (21).

In using this one has to be careful to use the right pairs (X, ξ) in (19) (a
point sometimes overlooked, even by authors of books on irreversible thermo-
dynamics). They can be identified using the thermodynamic formula

−(1/kT )∂F/∂ξ = (∂/∂ξ) log
∫

Ω

exp(−H0 +Xξ)/kT

= (1/kT )〈X〉 (24)

i.e.
〈X〉 = −∂F/∂ξ (25)

where F is the thermodynamic free energy. To use Onsager’s formula there
must be more than one externally applied force ξ, say ξ1, ξ2, . . .; then the partial
derivative in (25) is taken with respect to ξi with all the other ξj parameters
held fixed.
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6 References

To be supplied

5


