Lecture 5 : Thursday 20 Feb 2003

1 Dynamical variables, correlation functions

Our probability space is the 2v-dimensional phase space 2. The coordinates
of its elements w are the v momentum coordinates p;(w)...p,(w) and the v
position coordinates ¢ (w) ... g, (w).

If X : Q@ — R is a dynamical variable, its value varies with time, i.e. it is a
stochastic process (a randomly chosen function of time) X; = X;(w) := X (wy)
where w; satisfies the Hamiltonian eqns of motion

dpi(w)/dt = —0H(w)/0q;(we)
dg;(we)/dt = OH(w)/Opi(wy) (i=1...v) (1)

with initial condition wy = w.
If X and Y are two dynamical variables, their equilibrium correlation func-
tion is defined as

(X.Y) = / X (w2)Y (w1)pl) o 2)

where p is the equilibrium phase-space density, for which I'll use the canonical
ensemble p x exp(—H (w)/kT). Since the Hamiltonian for a system in equilib-
rium is independent of time, the equilibrium correlation function is time-shift
invariant, i.e. it is a function of ¢ — s only.

Provided that the expectations of X and Y; are zero, the correlation func-
tion gives a measure of the amount of correlation between these two random
variables. If these expecations are not zero, it is better to use the truncated
correlation function, defined as

<XSY;5> - <Xs><}/t> (3)

In statistical language this is the covariance of X and Y;.

2 The Liouville operator
A formal expression for the time dependence of X; can be obtained by writing

(0/01)Xi(w) = (9/01)X (wr)
= LX(w;) by (1) and the rules of calculus
= LXi(w) (4)

where L is the Liouville operator (acting in some space of functions Q@ — R)

defined by
" (0H & OH 0
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P {5’101' dq;  Og; 31%’} (5)



Eqn (4) can be written as a differential equation in some space of functions over
Q

dX;/dt = LX; (6)
If L is independent of ¢ this has the formal solution
X =exp(Lt)X (7)

which will come in useful later.
The Liouville operator is an antisymmetric operator, i.e.

(X(LY)) = =((LY)X) (8)
In terms of it, Liouville’s theorem can be written

dp/0t = —Lp (9)

3 Linear response theory

Suppose that we apply to the system a small time-dependent external force
£(t) € R conjugate to the dynamical variable X :  — R2?“. This means
changing the Hamiltonian to

H=H"+HY(t) = H° — X¢£(1) (10)

where H? is the unperturbed Hamiltonian. For example, X could be the -
coordinate of the position of an ion and £(t) the force exerted on it by an
external (i.e. controlled by the experimenter) electric field in the x direction.
Suppose that £(t) is switched on at time 0, i.e. &(¢) = 0 if ¢ < 0, and, for
simplicity, that the equilibrium expectation of X is zero. Hence (X;) = 0 for
t < 0. The purpose of the calculation is to find how the expectation of X; varies
with time for ¢ > 0.

Write p = p° + p! where p° is the canonical prob. distribution, satisfying
L%% = 0 where L° is the unperturbed Liouville operator. Liouville’s eqn gives

dp'/dt = —L%p" — L'(t)p" + O(&?) (11)

where L and L! are the contributions to L, as defined in (5), from the two
terms in the Hamiltonian (10); in particular

o Y (9X O 09X 0
L (t) = f(t) Z { 8pz- aqi aQi 6})1}

i=1

(12)

Since L? is independent of ¢ the differential eqn (11) can be solved (using the
condition pf = 0) as

t
exp(tL°)p} —/ dsexp(sL)L'(s)p°
0

ie. p; —/O dsexp((s — t)LO)L'(s)p" (13)



From the definition of the (unperturbed) canonical distribution we have
Li(s)p® = —(1/KT)(LM(5)H")"

"L (90X OHY X OH°
- (1/kT)§(8)Z{3p, 0q¢;  0q; Op; }PO by (12)
i:l 1 k3 k3 1

= —(U/RT)E(s)(LOX)p" by (5)
= —(1/KT)E(s)Xp° by (6) (14)

where X is the time derivative dX /dt calculated in accordance with (6) using
the unperturbed Hamiltonian H°. Hence we may write (13) as

p= (/K [ dsexpl(s ~ DL0)E() K (15)

Soppose we observe a dynamical variable Y (which may or not be the same
as X) at time ¢; as a result of the perturbation, its expectation changes by

mwwm>=béwm@wa

(1/kT) /Q Y (w) /0 ds exp((s — ) L)X p° dwe(t)  by(15)

= /0 oy x(t —s)é(s)ds (16)
where
pyx(t—s) = (1/kT) A Y (w)[exp((s — ) L%) X p°](w) dw
= (1/ET){Y[(exp((s — t)LO)X)D
= (I/kT)(Y[(exp((s — 1) L°)X)](w))eq
= (1/KT)([exp((t — $)LOY]X))eq (17)
by the antisymmetry of LY, eqn (8). Using (7) with L the unperturbed Liouville

operator, this last formula can be written
Py x(t —s) = (1/kT) (Y- X)eq (18)

where the formula is evaluated at equilibrium, using the unperturbed Hamilto-
nian. This is Kubo’s (or Green-Kubo) formula, or the fluctuation-dissipation
theorem.

4 Transport coeflicients

Often we are interested in the long-time response to a force that is held constant
over a long time, e.g a constant electric field applied to an ion. Differentiation



of (16) gives

(a0 = (KT) [ (i X)edst
~ Ayxé& (19)
where

Ayx = (1/kT) /OOO<KX>eth (20)

which is assumed to converge (this is a form of ”mixing”, a concept in ergodic
theory).

For example, if X is the z-coordinate of an ion and £ is the electric force
on it, then Ax x is the mobility of the ion, the velocity per unit applied force.
There are analogous 'Kubo’ formulas for a variety of transport coefficients :
viscosity, heat conductivity and so on.

5 Omnsager’s reciprocal relations

Let T be the velocity reversal operator i.e. T(p,q) = (—p, q). Suppose that H
is invariant under velocity reversal (not the case in an external magnetic field),
and suppose that X and Y are also velocity reversal invariant. Then the matrix
Axy is symmetric, i.e.

Axy = Ayx (21)
Proof: the eqns of motion give
Tw; = (Tw)_4 (22)
Then the equilibrium correlation function satisfy
(XiYs) = (X4Y_,) using T
= (XuV) (23)

by time-shift invariance (shifing by ¢ + s). Apply this to Xand Y, set s =0
and integrate w.r.t from 0 to oo and we have Onsager’s reciprocal relation (21).
In using this one has to be careful to use the right pairs (X,&) in (19) (a
point sometimes overlooked, even by authors of books on irreversible thermo-
dynamics). They can be identified using the thermodynamic formula

—(1/KT)OF/0¢

(0/0¢) log/ﬂexp(—Ho—i-XS)/kT
(1/ET)(X) (24)

ie.

(X) = —0F/0¢ (25)
where F' is the thermodynamic free energy. To use Onsager’s formula there
must be more than one externally applied force &, say £1,&s, . . .; then the partial

derivative in (25) is taken with respect to & with all the other &; parameters
held fixed.
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