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Abstract

For various lattice gas models with nearest neighbour exclusion (and, in one

case, second-nearest neighbour exclusion as well), we obtain lower bounds on

m, the average number of particles on the non-excluded lattice sites closest
∗We dedicate this work to the memory of Ann Stell, beloved friend of OP and beloved

wife of GS.
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to a given particle. They are all of the form

m/mcp ≥ 1− const.(Ncp/N − 1)

where N is the number of occupied sites, mcp is the coordination number,

snd Ncp is the value of N at close packing. An analogous result exists for

hard disks in the plane.
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1 Introduction

In a classic piece of work [3], L Fejes Tóth gave a proof that the highest-

density packing of non-overlapping disks in a plane is, as one expects in-

tuitively, the hexagonal close packing. His ideas were used by the present

authors [2] obtain information about the packing of such disks at densities

slightly below the close-packing density. Defining m(r) to be the average

number of disks whose centres lie within a distance r of a given disk, we

2



showed that m(r) satisfies an inequality

1 ≥ m(r)
6
≥ 1− A/Acp − 1

(r2/a2)− 1
−ε if 1 < r/a <

1
2

cosec
π

7
= 1.15 . . . HD

(1)

Here a is the diameter of the disks, A is the area of the (hexagonal) region

available to the disks, Acp = 1
2

√
3Na2 ≈ 0.866Na2 is the value of A at

hexagonal close packing, N is the number of disks, and ε denotes a correction

term which is much smaller than the term shown if A/a2 � 1 and r/a−1�

1.

This result can be used, for example, to obtain upper and lower bounds

on the energy of a system of hard disks with a sufficiently short-range square-

shoulder or square-well interaction

U(r) =



+∞ (0 ≤ r < a)

U0 (a ≤ r < b)

0 (b ≤ r)

(2)

where U0 and b are constants, with a < b < a cosec (π/7). These bounds

provide an upper bound on the error in the formula for the mean energy per

particle given by thermodymamic perturbation theory; this upper bound is

proportional to the deviation of the density from the close-packing density.

In view of the recent mathematical progress [1] on the three-dimensional
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analogue of Fejes Tóth’s problem (often called Kepler’s conjecture), one

may hope that a three-dimensional analogue of the inequality (1) may some

day be proven. In the present note, however, our ambitions are much more

modest: to prove some results analogous to (1) for lattice gases with nearest-

neighbour exclusion, both in two and three dimensions. We shall consider

(though not in that order) a square lattice with nearest-neighbour exclusion,

a triangular lattice with nearest-neighbour exclusion, a cubic lattice with

nearest neighbour exclusion, and a cubic lattice with both nearest- and

second-nearest neighbour exclusion. In all the cases considered the result

we obtain can be written in the form

1 ≥ m

mcp
≥ 1− const.

(
Ncp

N
− 1

)
eq2 (3)

where N is the number of particles (i.e. occupied lattice sites), m is the

average number of particles at the non-excluded lattice sites nearest to a

given particle, and Ncp,mcp are the values of N,m at close packing. Except

in the case of the triangular lattice, the constant is 1. Since the fractions

A/Acp in (1) and Ncp/N in (3) are equal in the thermodynamic limit, there

is a close analogy between (1) and (3).
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2 Plane square lattice

Consider a plane square lattice with L sites, N of which are occupied, subject

to nearest-neighbour exclusion. We denote by m the average number of

second-nearest neighbours per particle (the number of nearest neighbours

is, of course, zero). To avoid edge effects we take the underlying space to be

a torus and give the lattice an even number of sites along each axis, so that

a perfect close-packing arrangement is possible.

Let p0, p1, p2 denote, respectively, the number of plaquettes with 0, 1,

and 2 corners occupied; because of the nearest-neighbour exclusion rule, p2

is the number of plaquettes with two opposite corners occupied and the other

two unoccupied. The number of second-nearest neighbour pairs is then

p2 =
1
2
mN S3 (4)

by the definition of m

Since, on this lattice, the total number of plaquettes is equal to the

number of sites we have

p0 + p1 + p2 = L S1 (5)

Also, since each site meets four plaquettes, the total number of occupied

corners of plaquettes is equal to four times the number of occupied sites,
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and hence

p1 + 2p2 = 4N S2 (6)

At close packing, all the plaquettes have two occupied corners, so that p0 =

p1 = 0, p2 = L. From the above equations, the values of N and m at close

packing are

Ncp =
1
2
L S4 (7)

mcp = 4 S5 (8)

Evidently mcp is the coordination number of the lattice. From (4) and (6)

we find

(4−m)N = p1 S6 (9)

and, from (7), (5) and (6),

Ncp −N =
1
2
L−N =

1
2
p0 +

1
4
p1 S7 (10)

so that

0 ≤ (4−m)N ≤ 4(Ncp −N) S8 (11)

This gives, as our analogue of (1) for the square lattice with nearest-neighbour

exclusion,

1 ≥ m

4
≥ 1− (Ncp/N − 1) S10 (12)
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3 Simple cubic lattice, nearest-neighbour exclu-

sion

Now consider a simple cubic lattice with L sites, N of which are occu-

pied, subject to nearest-neighbour exclusion. As before, we denote by m

the average number of second-nearest neighbours per particle and take the

underlying space to be a (three-dimensional) torus. In the close-packed

arrangement, the occupied sites form a face-centred cubic lattice.

As before, let p0, p1, p2 denote, respectively, the number of plaquettes

with 0, 1, and 2 corners occupied; because of the nearest-neighbour exclusion

rule, p2 is the number of plaquettes with two opposite corners occupied and

the other two unoccupied. The number of second-nearest neighbour pairs

is again given by (4), but for this lattice, the total number of plaquettes is

three times the number of sites so that

p0 + p1 + p2 = 3L C1 (13)

Also, since each site meets 12 plaquettes, the analogue of (6) is

p1 + 2p2 = 12N C2 (14)

At close packing, all the plaquettes have two occupied corners, so that
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p0 = p1 = 0, p2 = L. The values of N and m at close packing are

Ncp =
1
2
L C4 (15)

mcp = 12 C5 (16)

From (4) and (14) we find

(12−m)N = p1 (17)

and from (15), (13) and (14),

Ncp −N =
1
2
L−N =

1
6
p0 +

1
12
p1 (18)

so that

0 ≤ (12−m)N ≤ 12(Ncp −N) (19)

This gives, as our analogue of (1) for the cubic lattice with nearest-neighbour

exclusion,

1 ≥ m

12
≥ 1− (Ncp/N − 1) (20)

4 Simple cubic lattice, nearest- and second-nearest

neighbour exclusion

A similar result also exists for the same lattice but with exclusion on both

nearest and second-nearest neighbour sites. In this case the occupied sites

in the closest-packed configuration form a body-centred cubic lattice
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This time, instead of plaquettes, we consider the small cubes whose

corners are nearest-neighbour lattice sites Let c0, c1, c2 denote, respectively,

the number of such cubes with 0, 1, and 2 corners occupied; because of the

exclusion rule, c2 is exactly the number of small cubes with two opposite

corners occupied and the other two unoccupied. Let m′ denote the average

number of second-nearest neighbours of a given occupied site, so that the

number of second-nearest neighbour pairs is given by

c2 =
1
2
m′N B3 (21)

Since the total number of small cubes is equal to the number of sites we

have

c0 + c1 + c2 = L B1 (22)

Also, since each site meets 8 small cubes, the analogue of (6) is now

c1 + 2c2 = 8N B2 (23)

At close packing, all the small cubes have two occupied corners, so that

c0 = c1 = 0, c2 = L. From the above equations, the values of N and m at

close packing are

Ncp =
1
4
L B4 (24)

m′cp = 8 B5 (25)
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From (21) and (23) we find

(8−m′)N = c1, (26)

and from (15), (13) and (14),

Ncp −N =
1
4
L−N =

1
4
c0 +

1
8
c1 (27)

so that

0 ≤ (8−m′)N ≤ 8(Ncp −N). (28)

This gives, as our analogue of (1) for the cubic lattice with nearest- and

second-nearest-neighbour exclusion,

1 ≥ m′

8
≥ 1− (Ncp/N − 1). (29)

5 Triangular lattce

To obtain an inequality for the triangular lattice with nearest neighbour

exclusion, a slightly more complicated argument is necessary. This time the

plaquettes are triangles. Using the same notation p0, p1, p2 as in section 2,

we see that p2 = 0 because of the exclusion rule, so that the analogues of

(5), (7) and (6) are

p0 + p1 = 2L = 6Ncp T1 (30)

p1 = 6N T2 (31)
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from which it follows that

p0 = 6(Ncp −N) T3 (32)

Let us define also s0, s1, s2 as the number of second-nearest neighbour pairs

of sites with, respectively, neither site occupied, one site occupied, or both

occupied. They too satisfy relations analogous to (4), (5) and (6); the ones

we shall need are

s1 + 2s2 = 6N T5 (33)

s2 =
1
2
mN T6 (34)

from which it follows that

s1 = (6−m)N T7 (35)

For every second-nearest pair of sites, one of which is occupied and the

other occupied, there is one empty plaquette and one singly occupied pla-

quette. Since each empty plaquette can belong in this way to at most three

second-nearest pairs of this type, we have

s1 ≤ 3p0 T8 (36)

From (31), (35) and (36) we find

(6−m)N ≤ 18(Ncp −N) T9 (37)
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so that the analogue of (1) for the triangular lattice with nearest-neighbour

exclusion is (since the mcp for this lattice is 6)

1 ≥ m

6
≥ 1− 3(Ncp/N − 1) T10 (38)
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