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Abstract

A stochastic differential equation is conjectured for approximately modelling
the fluctuating size changes of an individual droplet in a fluid that is metastable
with respect to nucleation of a new phase, in the limit when the critical droplet
size is very large. The Freidlin-Wentzell formula for this S.D.E. is used to make
estimates of large-deviation type for probabilities of such events as the formation
of a critical droplet at a specified time. A relation is obtained connecting these
estimates to the nucleation rate predicted by the ‘classical’ theory of Becker and
Döring.

1 Introduction

Nucleation is the initiation of a phase transition (such as the transition from
gas to liquid or liquid to gas) when a significant droplet of the new phase forms.
For example, when the atmospheric temperature drops in the evening, or when
a stream of air cools on going up a mountainside, a phase transition becomes
possible in which the water vapour mixed with the air will change from gas to
liquid. At first only very small droplets of liquid water are formed. The droplets
may never grow large enough to be seen; but if the atmospheric conditions are
right the droplets can eventually become large enough to be seen as a mist, fog
or cloud.

The growth of any individual droplet is a stochastic process: its size can
either increase or decrease, as molecules attach themselves to the droplet or
detach themselves from it. There is a contest between, on the one hand, the
general preference of the water molecules (at a sufficiently low temperature) to
be in the liquid rather than the vapour phase, which tends to increase the size
of the droplet and, on the other hand, the surface tension, which tries to reduce
the surface area of the droplet and, in consequence, its size. The surface tension
effect is stronger for small droplets than for large ones because of the greater
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curvature of the surface of a small droplet. There is a critical droplet size at
which the surface tension exactly balances the water’s preference for being in the
liquid rather than the vapour phase. Droplets of super-critical size tend to grow,
while those of sub-critical size tend to shrink. At first, no super-critical droplets
at all are present (except, perhaps, at places on the edge of the vapour, such
as leaves on which dew may form); there is no mist, and the vapour is said to
be metastable. If all the droplets followed the average behaviour, super-critical
droplets would never form and the metastable state would last for ever. But
this is a stochastic process, and the sizes of the droplets fluctuate. Eventually,
as a result of these fluctutations, some droplets will reach and then surpass the
critical size, and when enough of them have done so the mist will be visible.

This paper is concerned with the mathematical description of nucleation as
a stochastic process. For mathematical simplicity we shall consider the limiting
case of very large critical droplet size — in the physical example mentioned, this
means that the temperature is only just below the dew point. The idea is to
approximate the behaviour of the droplets by a stochastic differential equation,
and to obtain quantitative information about the nucleation process by applying
the Freidlin-Wentzell formula to this equation.

2 A mathematical description of nucleation

In 1935 R Becker and W Döring proposed a mathematical model of nucleation
in which each droplet is considered to be fully described by its size, that is, by
the number of molecules comprising it. The shapes and positions of the droplets
are ignored. The size can be any positive integer, and by convention molecules
of the vapour are treated as droplets of size 1 (usually called monomers). The
Becker-Döring model includes two characteristic assumptions: (i) the only way
the size of a droplet (other than a monomer) can change is by emitting or
absorbing a monomer (ii) the probability per unit time that a given droplet will
emit a monomer depends only on the size of that droplet, while the probability
per unit time of absorbing a monomer depends on the size of the droplet and
on the overall concentration of monomers.

Focussing attention on a particular droplet, let us denote its size (i.e. the
number of molecules in it) by N(t). Then, following the assumptions of Becker
and Döring, we can treat N(t) is a stochastic process, in which the probability
per unit time for N to increase by 1 is anz and for it to decrease by 1 is bn, where
z is a parameter representing the overall concentration of monomers (i.e. the
number of monomers per unit volume). In symbols, the transition probabilities
are

Pr(N(t + δt) = n + 1 |N(t) = n) = anzδt + O(δt)2 (n = 1, 2, . . .)
Pr(N(t + δt) = n− 1 |N(t) = n) = bnδt + O(δt)2 (n = 2, 3, . . .)

Pr(|N(t + δt)−N(t)| ≥ 2 |N(t) = n) = O(δt)2 (1)

where the constants a1, a2, . . . , b2, b3, . . . depend on the physical situation. Here
we shall assume them to be given by the following approximate formulas, for
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which there is some physical justification (Lifshits and Slyozov 1961, Wagner
1961, Penrose and Buhagiar 1983, Penrose 1997)1:

an = nγ (n = 1, 2, . . .)
bn = nγ(1 + µn−1/3) (n = 2, 3, . . .)

(2)

where µ is a positive constant proportional to the surface tension at the surface
of a droplet and γ is a constant satisfying γ ≥ 1

3 . Later in this paper we
shall specialize to the case γ = 1

3 . The significance of the exponents 1
3 and

− 1
3 is that the radius of a droplet is proportional to the cube root of its size.

From the formulas (2) it can be seen that anz < bn if n1/3(z − 1) < µ, but
anz > bn if n1/3(z − 1) > µ; so provided that z > 1 there is a critical droplet
size nc := [µ/(z − 1)]3 such that any droplet whose size exceeds this is more
likely to grow than to shrink.

To finish specifying the model we need to say how z depends on time. In
this paper, following the original paper of Becker and Döring (1935), we shall
assume that z is a constant. Physically, z is the concentration of monomers,
and is related to Pr{N(t) = 1}, the probability that a randomly chosen droplet
will be a monomer, by the formula

z = cPr{N(t) = 1} (3)

where c is the total number of molecules per unit volume. Thus the assumption
of constant z can be arrived at physically by assuming that c is a constant
and that nearly all the droplets are monomers, so that Pr{N(t) = 1} ≈ 1 and
z ≈ c = const. Alternatively one may assume that Pr{N(t) = 1} does change
with time but that c changes in such a way that z remains constant: this will
happen, for example if the process takes place at constant pressure. The case
where c is constant but both z and Pr{N(t) = 1} change with time has many
interesting features (see for example Lifshitz and Slyozov (1961), Ball et al.
(1986)) but is not our concern here

There are two ways to obtain information about metastability and nucleation
from this stochastic model. The one devised by Becker and Döring was to
study the average behaviour of the entire collection of droplets, described by
the probability distribution

pn(t) := P{N(t) = n} (4)

They found a steady-state distribution in which, for each droplet size n, the rate
of occurrence of events which increase the droplet size from n to n + 1 slightly
exceeds the rate for events which decrease the size from n + 1 to n. The excess,
which is independent of n, can be interpreted as at the rate at which droplets

1The formulas in eqn (2) are often presented in a more general form such as an = anγ , bn =
anγzs(1+µn−1/d) where a and zs are positive constants, d is the number of space dimensions
(at least 3), and γ satisfies γ ≥ 1/d. The version used in (2) can, however, be obtained from
the more general version by setting d = 3 and making a suitable choice of time and length
units
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surpass the critical size; it is called the nucleation rate. This approach, now
known as ‘classical nucleation theory’, is summarized in section 5.

In 1984 Cassandro et al introduced an alternative way of obtaining informa-
tion about metastability and nucleation in stochastic models. In this method,
the ‘pathwise approach’, we focus not on averages but on the stochastic be-
haviour of a single droplet. The pathwise approach has been used to study
metastability in a variety of statistical mechanics models. A very thorough ac-
count of this body of work and the related theory is given in the book by Olivieri
and Vares (2006); for a shorter account see den Hollander (2004).

It is the purpose of this article to apply a variant of the pathwise approach
to the Becker-Döring model. The idea is to concentrate on a particular droplet
and represent its size as a stochastic process. We can treat such questions as
how likely it is that the size of a given droplet will reach or pass the critical size,
and if it does so how long that is likely to take.

3 The proposed SDE

One can think of the process (1) as a biassed random walk along the positive
integer axis – or as a birth-and-death process. The expected rate of increase in
the droplet size N is given by

E(N(t + δt)−N(t)|N(t) = n) = (anz − bn)δt + O(δt)2 (5)

Thus there is a drift in the expected size of N(t); the rate of drift is

anz − bn = nγ((z − 1)− µn−1/3) (6)

The rate of increase in the variance of n per unit time may be estimated as

lim
δt→0

1
δt

E((N(t + δt)−N(t))2|N(t) = n) = anz + bn (7)

The idea of the present work is to approximate this stochastic process by one
in which the unit-size jumps are replaced by jumps with a Gaussian distribution
having the same mean and variance. This approximating process corresponds
to the stochastic differential equation

dN = (anz − bn)dt +
√

anz + bndW (t) (8)

where W (t) is a Wiener process.
Although such an SDE would not be a good approximation for the individual

jumps, it may be a good one if we look at the process on a different scale where
the jumps look very small and there are a large number of them. There is an
analogy with Khinchin’s method of deriving the Central Limit Theorem2, which
involves re-scaling the time and space variables in a similar way, although in
their case the re-scaled equation is deterministic (the heat equation) rather

2There is a description of this method on page 10 of Ito and McKean 1996
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than stochastic. Our re-scaling will use, in place of N , a new random variable
X proportional to N/nc. The jumps in X will then be proportional to 1/nc, so
they will be small if we consider a limit in which nc is large. As we have seen,
nc is proportional to (z − 1)−3 so z is close to 1 in this limit; we shall write

z := 1 + ε

X := ε3N (9)

and consider the limit ε → 0.
In addition to re-scaling the size of the jumps, it is useful to re-scale the

time, so that X is regarded as a function of a re-scaled time variable τ rather
than of the original time variable t. The advantage of re-scaling the time is that
the drift velocities of the two processes, each with respect to its own time scale,
can be made comparable. According to eqn (5), the drift velocity of the random
walk variable N is

DtN(t) := lim
δt↘0

E
{

N(t + δt)−N(t)
δt

∣∣∣∣ N(t)
}

= aN(t)z − bN(t) = N(t)γ(z − 1− µN(t)−1/3) (10)

Consequently the drift velocity of X, with respect to the re-scaled time variable
τ , is

DτX(τ) := lim
δτ↘0

E
{

X(τ + δτ)−X(τ)
δτ

∣∣∣∣ X(τ)
}

= ε3
dt

dτ
nγ(z − 1− µn−1/3) where n = ε−3X(τ)

= ε3
dt

dτ
(ε−3X(τ))γ(ε− µ(ε−3X(τ))−1/3)

= ε4−3γ dt

dτ
X(τ)γ(1− µ/X(τ)1/3) (11)

On making the choice
τ := tε4−3γ (12)

this simplifies to
DτX(τ) = X(τ)γ(1− µ/X(τ)1/3) (13)

Comparison with (10) shows that the drift velocities of the two processes, each
relative to its own time scale, are given by the same differential equation.

We can do a similar calculation for the variance of X(τ), using the formula
(7):

E
{

[X(τ + δτ)−X(τ)]2
∣∣ X(τ)

}
δτ

=
ε6E

{
[N(t + δt)−N(t)]2

∣∣ N(t) = ε−3X(τ)
}

δτ

= ε6[ε−3X(τ)]γ(2 + ε + µ(ε−3X(τ))−1/3)ε3γ−4 + O(δτ)
= 2ε2X(τ)γ + O(ε) + O(δτ) (14)
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This is the same rate of change of variance as for a Brownian motion multiplied
by
√

2εX(τ)γ/2. Adding together this Brownian motion and the drift given by
(13), we may conjecture that in the limit of small ε the random variable X will
obey the stochastic differential equation

dX(τ) = X(τ)γ(1− µ/X(τ)1/3)dτ +
√

2εX(τ)γ/2dw(τ) (15)

where w(τ) is a Brownian motion.

4 Applying the Freidlin-Wentzell formula

4.1 A formula for the action

In this section we shall use ideas from the Freidlin-Wentzell theory (Freidlin &
Wentzell 1998, Olivieri and Vares 2006) to estimate the probabilities for different
ways in which the size of a droplet can change over time. The Freidlin-Wentzell
theory applies to SDEs of the form

dX(τ) = v(X(τ))dτ + εσ(X(τ))dW (τ) (16)

The fundamental object in this theory is the ‘action’ or rate function. For an
arbitrary trajectory x(τ) the action is defined to be

S(τ1, τ2) := 1
2

∫ τ2

τ1

(
ẋ(τ)− v(x(τ))

σ(x(τ))

)2

dτ (17)

where ẋ(τ) := dx/dτ . The main property of the action is that, in the limit of
small ε, the probability of executing the path x(τ), or one very similar to it,
between times τ1 and τ2, conditional on starting at the given point x(τ1) at time
τ1, is exp{−ε−2 S(τ1, τ2) + o(ε−2}.

The conjectural SDE (15) is of the Freidlin-Wentzell form, with

v(x) = xγ(1− µx−1/3), σ(x) =
√

2xγ/2 (18)

and so the action for eqn (15) is

S(τ1, τ2) := 1
2

∫ τ2

τ1

[ẋ(τ)− x(τ)γ(1− µx(τ)−1/3)]2

2x(τ)γ
dτ

= 1
2

∫ τ2

τ1

[ẋ(τ) + x(τ)γU ′(x(τ))]2

2x(τ)γ
dτ (19)

where
U(x) := 3

2µx2/3 − x (20)

and the prime denotes a derivative, so that U ′(x) = µx−1/3 − 1.
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4.2 The minimization problem

Let (x1, τ1) and (x2, τ2) be given inital and final states of the re-scaled process.
The most probable path connecting them can be found by minimizing the action
S(τ1, τ2) subject to the constraints x(τ1) = x1, x(τ2) = x2, using the calculus of
variations. To carry out the minimization we first multiply out the integrand in
(19), obtaining

2S(τ1, τ2) = 1
2

∫ τ2

τ1

x(τ)−γ ẋ(τ)2dτ +
∫ τ2

τ1

U ′(x(τ))ẋ(τ)dτ +

+ 1
2

∫ τ2

τ1

x(τ)γU ′(x(τ))2dτ

=
∫ τ2

τ1

L(ẋ(τ), x(τ))) dτ + U(x2)− U(x1) (21)

where L is a ‘Lagrangian’ defined by

L(ẋ, x) := 1
2x−γ ẋ2 + 1

2xγU ′(x)2 (22)

The minimizer satisfies the Euler-Lagrange equation

d

dτ

∂L

∂ẋ
=

∂L

∂x
(23)

The following procedure gives a first integral of this equation, enabling its solu-
tion to be reduced to a quadrature. We define a ‘momentum’ p by3

p :=
∂L

∂ẋ
= x−γ ẋ (24)

and a ‘Hamiltonian’ H by

H := pẋ− L(ẋ, x) = 1
2xγp2 − 1

2xγU ′(x)2 (25)

These definitions imply dH = ẋdp + pdẋ − (∂L/∂ẋ)dẋ − (∂L/∂x)dx = ẋdp −
(∂L/∂x)dx. Consequently, looking on H as a function of p and x and using
(23), we find that Hamilton’s equations

∂H(p, x)
∂p

=
dx

dτ
,

∂H(p, x)
∂x

= −dp

dτ
(26)

are satisfied on the minimizer. It follows that dH/dτ = 0, so that H is a
constant along the minimizer. The value of this constant, which is analogous to
the energy in mechanics, will be denoted by E.

3This use of the symbol p is traditional in Hamiltonian dynamics. It is hoped that there
will be no confusion with the use of the same symbol for probability in other parts of this
paper.
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4.3 Paths for which E = 0

The calculation of the action is particularly simple in the case E = 0 . Setting
H = 0 in eqn (25) yields p = ±U ′(x) and then, from (24), ẋ = ±xγU ′(x), so
that the equation of the minimizer is

dx

dτ
= ±xγ(µx−1/3 − 1) (27)

With the minus sign, this is the equation of the ‘average’ path which, according
to equation (15) the droplet size would follow if there were no noise at all. For
that path the value of S is zero (by eqn (19)) and so the the probability of the
‘average’ path, or one very similar to it, is exp{−o(ε−2)}.

With the plus sign, the path is the time inverse of an ‘average’ path. Since
the right side is zero at the critical cluster size x = µ3 and varies approximately
linearly nearby, with a negative derivative, the value of x(τ) for this path ap-
proaches the critical size asymptotically as τ →∞. For a path of this type the
action is, using first (19) and then the fact that ẋ = xγU ′(x) on this path,

S(τ1, τ2) := 1
2

∫ τ2

τ1

[ẋ(τ) + x(τ)γU ′(x(τ))]2

2x(τ)γ
dτ

= 1
2

∫ τ2

τ1

[2x(τ)γU ′(x(τ))][2ẋ(τ)]
2x(τ)γ

dτ

=
∫ τ2

τ1

U ′(x(τ))ẋ(τ)dτ = U(x2)− U(x1) (28)

In particular, if the initial scaled droplet size is small and the final size is close
to the scaled critical size, which is µ3, the action is U(µ3)−U(0) = 1

2µ3, so that
the probability of the droplet’s reaching the critical size by a path close to the
E = 0 path is exp

{− 1
2ε−2µ3 + o(ε−2)

}

4.4 General values of E

Putting H = E in eqn (25), solving for p and then using (24) we get

x−γ ẋ = p = ±
√

2Ex−γ + (µx−1/3 − 1)2

i.e. ẋ = xγp = ±
√

2Exγ + (µxγ−1/3 − xγ)2
(29)

The qualitative features of the solution depend on the value of E. They can
be worked out by studying how the radicand (the expression under the radical
sign) depends on x. We give below the analysis for the important case γ = 1

3 ,
in which eqn (29) simplifies to

ẋ = ±
√

µ2 + 2(E − µ)x1/3 + x2/3 (30)

1. if E < 0 the radicand (now a polynomial in x1/3) is zero for two positive
values of x, whose geometric mean is µ3. The solution can have a minimum
at the root lying between x = 0 and x = µ3, or a maximum at the root
above µ3, or it can oscillate between these two roots.
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2. if E = 0 the radicand has a double zero x = µ. The formula (30) simplifies
to

ẋ = ±(µ− x1/3) whence τ = const±
∫

(µ− x1/3)−1dx (31)

The solutions are monotonic and have an asymptote x = µ3. The most
probable path through any given point (x0, τ0) is of this type (with the
negative sign chosen if 0 < x0 < α3). For the calculation of the action in
this case, see eqn (28).

3. if 0 < E < 2µ the radicand is positive for all x. The solutions go mono-
tonically from −∞ to +∞ or vice versa

4. if E = 2µ the radicand has a double zero at x = −µ3. The formula (30)
simplifies to

ẋ = ±(µ + x1/3) whence τ = const±
∫

(µ + x1/3)−1dx (32)

The solutions are monotonic and have an (unphysical) asymptote x =
−µ3.

5. if E > 2µ the radicand is zero for two different values of x, both negative,
whose geometric mean is −µ3. The solutions oscillate between these two
values. (These solutions are irrelevant to the problem under consideration,
for which x cannot be negative.)

4.5 The probability of a given droplet’s becoming critical
in a given time

To get a path which increases from a subcritical value (x1 < µ3) to a supercritical
one (x2 > µ3) we need the positive sign in the formula (29) and we also need
E > 0. The time to get from x1 to x2 along such a path is, by (29),

τ2 − τ1 =
∫ x2

x1

dx

ẋ
=

∫ x2

x1

dx

xγ
√

2Ex−γ + (µx−1/3 − 1)2
(33)

If we assume x1 < µ3 ≤ x2 and τ1 < τ2, then, as E increases from 0 to +∞,
the value of the integral decreases (at fixed x1, x2) from +∞ to zero, and so the
given values of x1, x2, τ1, τ2 determine a unique positive value of E.

The action along this path is, by (19) and (29)

S = 1
4

∫ τ2

τ1

x−γ [ẋ + xγU ′(x)]2
dx

ẋ
= 1

4

∫ τ2

τ1

xγ [x−γ ẋ + U ′(x)]2
dx

ẋ

= 1
4

∫ τ2

τ1

{
√

2Ex−γ + (µx−1/3 − 1)2 + µx−1/3 − 1}2dx√
2Ex−γ + (µx−1/3 − 1)2

(34)
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4.6 Exact solutions for the case γ = 1/3

In the physically important case γ = 1/3, the integrals in (33) and (34) simplify
to

τ2 − τ1 =
∫ x2

x1

dx√
2Ex1/3 + (µ− x1/3)2

(35)

S(τ1, τ2) = 1
4

∫ x2

x1

[
√

2Ex1/3 + (µ− x1/3)2 + µ− x1/3]2 dx

x1/3
√

2Ex1/3 + (µ− x1/3)2
(36)

Both integrals can be done analytically.
Of particular interest is the case where x1 = 0, x2 = µ3, in which the droplet

starts out very small and ends up at the critical size. Fig. 1 shows a graph of S
as a function T for this case, obtained by eliminating E between eqns (35) and
(36). The interpretation of the graph is that the probability for a very small
droplet to reach the critical size after a time T is exp{−ε−2S + o(ε−2)}.

S*

1.2

1

T*

3

0.4

0.2

41

0.8

0.6

0
2 50

Figure 1: The action (approximately ε2 times the negative logarithm of the
probability) of the most probable path taking a small cluster to one of critical
size in a given time, plotted as a function of that given time. The abscissa,
labelled T ∗, is µ−2 times the integral in eqn (35), which in turn is ε3 times the
physical time for the droplet to grow. The ordinate, labelled S∗, is µ−3 times
the action S(τ1, τ2) as given by eqn (36). At large times, S∗ approaches the
limit 1

2 , in agreement with eqn (41).
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5 Relation of the results of section 4 to the ‘clas-
sical’ Becker-Döring nucleation theory

The method used by Becker and Döring to estimate nucleation rates was based
on the time evolution equations for the probability pn(t) that the size of the
droplet at time t is n, i.e. pn(t) = Pr(N(t) = n), as in eqn (4). The evolution
equations for p2(t), p3(t), . . . can be written

dpn/dt = Jn−1 − Jn (n = 2, 3, . . .)
Jn = anzpn − bn+1pn+1 (n = 1, 2, 3, . . .) (37)

Becker and Döring looked for a solution which was stationary, in the sense that
p2, p3, .. are independent of time, and p1 (whose evolution equation they did not
discuss) varies only very slowly. For a solution that is stationary in this sense,
Jn must be independent of n. The common value of Jn is interpreted as the rate
of nucleation. Denoting this common value by J , we can solve the equations
(37) successively to get

p1 =
J + b2p2

a1z
=

J

a1z
+

b2

a1z

(
J + b3p3

a2z

)
=

J

a1z
+

b2J

a1a2z2
+

b2b3

a1a2z2

(
J + b4p4

a3z

)

= J

(
1

a1z
+

b2

a1a2z2
+

b2b3

a1a2a3z3
+ . . .

)

= J

∞∑
n=1

Q1

Qnanzn
(38)

where

Q1 := 1, Qn :=
a1a2 . . . an−1

b2 . . . bn
∼ const. exp(−3

2µn2/3) (n = 1, 2, . . .) (39)

The series in (38) converges for z > 1 and its largest term occurs at the value of
n satisfying anz = bn, i.e. the critical droplet size. Under the approximations
used earlier, this size is (µ/ε)3 and the size of the corresponding term in the
series is

Q1

Qnanzn
≈ const. exp

(
3
2µ

(µ

ε

)2

−
(µ

ε

)3

log z

)
≈ const. exp

(
µ3

2ε2

)
(40)

since log z ≈ ε. The rate of nucleation J , calculated from (38) is therefore equal
to the reciprocal of this expression, multiplied by a factor whose logarithm is
o(1), so that J = exp

(−µ3/2ε2 + o(1)
)
. This formula agrees with the large-

deviation estimate obtained in Section 4 for the probability that a given droplet
will escape, which (after division by the time needed for the escape to take place)
can also be thought of as a rate of nucleation. For large times, this probability,
according to (28) with U(x) given by (20), is

exp(−ε−2{U(µ3)− U(0)}) = exp(−µ3/2ε2) (41)
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