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1 Formulation of the equations

In 1935 Becker and Döring [2] introduced a system of kinetic equations which
can be used to model a variety of phenomena — the metastability of a ferro-
magnet magnetized in the opposite direction to the applied magnetic field, the
coarsening of the granular structure during phase separation in a binary alloy,
and the breakdown of metastability in a supersaturated vapour, such as the
water vapour in the air on a cold evening. In each case we are dealing with
a two-component system: in the case of the ferromagnet the two components
are the two possible directions of spin for the elementary magnets (spinning
electrons); in the case of the alloy, they are the two types of metal atom; in the
case of water vapour they are air and water.

The equations apply to the case where the amounts of the two components
are very unequal. The distribution of the molecules of the minority component
is described by assuming that they clump together in clusters or droplets of
various sizes. To describe the size of a droplet we use a variable l, defined as
the number of particles (atoms or molecules) of the minority component in it.
A cluster containing l minority particles will be called an l-cluster. A 1-cluster
is usually called a monomer Let us define cl(t) to represent the concentration
of l-clusters at time t in our system. The clusters are assumed to be distributed
uniformly in space, so that cl does not depend on a space variable.

To obtain equations for the time evolution of cl Becker and Döring made
the important assumption that only two types of process change the cluster size
distribution. One of these processes is for a cluster of any size to combine with
a monomer to give a single larger cluster; the other one is its inverse, where a
cluster splits into two parts one of which is a monomer. See diagram.
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The net rate at which l-clusters are being converted to (l + 1)-clusters as
a result of these two processes will be denoted by Jl (in units of clusters per
unit time per unit volume). If Jl is positive, this process tends to decrease cl,
but it is counterbalanced by the net effect of the corresponging interconversion
between (l−1)-clusters and l clusters, whose rate is J(l−1), and which tends to
increase cl if this rate is positive. The total rate of change of cl for any l other
than 1 is then obtained as the algebraic sum of the two effects:

dcl

dt
= Jl−1 − Jl (l ≥ 2) dc/dt (1)

In the case l = 1 the equation is different because the monomers participate
in every process. The processes involving l-clusters and (l + 1)-clusters use up
monomers at a rate Jl, except in the case where l = 1 where they are used at a
rate 2J1 because two monomers participate in the processes. So the total rate
of change of c1 is

dc1

dt
= −2J1 −

∞∑
l=2

Jl dc/dt1 (2)

These two equations have the character of conservation laws. To complete
the system of equations we need a constitutive relation giving the Jl’s in terms of
cl’s. This takes the same form as in chemical kinetics. That is to say, we assume
that the number of times an l-cluster reacts with a monomer, per unit time per
unit volume, is proportional to the densities of l-clusters and of monomers;
so this type of process contributes a term alc1cl to Jl, where the coefficient
al is independent of time.. At the same time, the process of breaking-up of
a (l + 1)-cluster into an l-cluster and a monomer is spontaneous and so the
number of times it happens per unit volume per unit time is proportional to
cl+1; therefore this type of process contributes a term −bl+1cl+1 to Jl. The
complete constitutive relation is thus

Jl = alclcl − bl+1cl+1 (l ≥ 1) Jl (3)

The system of equations (1), (2), (3) is the Becker-Döring system, our object of
study for the rest of this article.

In their original paper, Becker and Döring did not use eqn (2). Instead they
made the approximation of treating c1 as a constant. This approximation has
the disadvantage that the resulting equations do not have the density-conserving
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property to be proved in the next section. The full form of the equations in-
cluding (3) appears to be due to Burton [3].

There is also a slightly different form of the equations appropriate to the case
where the objects constituting the clusters are not something whose number is
conserved, as for example in a ferromagnet where the clusters could be clusters
of up-spins. For purposes of comparison I give these equations below:

dcl

dt
= Jl−1 − Jl (l ≥ 1) (4)

Jl = alζcl − bl+1cl+1 (l ≥ 1) (5)
J0 = a0ζ − b1c1 (6)

where ζ is a parameter which in the case of a ferromagnet is given by

ζ = e−2H/kT (7)

with H the magnetic field (in suitable units). These equations are very similar to
the original treatment of Becker and Döring, in which c1 was held fixed instead
of varying with time according to (2)

2 Existence, Uniqueness, Density conservation

Since the B-D equations (1), (2), (3) are infinite in number, it is not obvious
that they have a solution at all. A theorem proved in [1] (page 663) proves that
they do: provided that

a(l) = O(l) (l →∞)
cl(0) ≥ 0

∞∑
l

lcl(0) < ∞ (8)

then the equations do indeed have a solution for all positive times t (on the
other hand if al increases more rapidly than l as l → ∞, then they do not.)
Moreover, if the initial conditions obey the stronger condition

∞∑
l

l2cl(0) < ∞ (9)

then ([1], p. 624) the solution with the given initial not only exists but is also
unique.

Since the B-D equations were formulated for conserving dynamics, every
step of which leaves the number of particles unchanged, we would expect them
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to imply the conservation of density. The density (overall number of particles
per unit volume) at time t is defined as

ρ(t) :=
∞∑

l=1

lcl(t) rho (10)

where the colon indicates a definition. Using equations (1) and (2) we can
calculate the time derivative of ρ as

dρ

dt
= −2Jl −

∞∑
l=2

Jl +
d

dt

∞∑
l=2

lcl by (1)

= −2J1 −
∞∑

l=2

Jl +
∞∑

l=2

l(Jl−1 − Jl) by (2)

=
∞∑

l=2

(−1 + (l + 1)− l)Jl by rearrangement

= 0 drho/dt (11)

So if the interchange of the time diffentiation with the infinite sumation in the
second line and the rearrangement of the infinite series in the third are justified,
it follows that ρ(t) is independent of time and therefore stays at its initial value:

ρ =
∞∑

l−1

lcl(0) rho= (12)

Because we are dealing with an infinite system of equations, it is not obvious
that the steps used in lines two and three of (11) are justified, and indeed
systems of equations do exist for whiche ρ is not constant in time but instead
decreases. The physical interpretation of such behaviour would be that the
series defining ρ includes only the material in clusters that are of finite size,
albeit indefinitely large. If any of the material goes into infinitely large clusters,
which might for example correspond to the formation of a liquid phase, then
there is that much less material for the finite clusters that make up ρ. However,
for the BD equations Ball et al ([1], p.668) show that if the above conditions
for the existence of a solution are satisfied then the density conservation result
(12) is indeed true.

3 Equilibrium

To find out something about the solutions of the BD equations, consider first
the equilibrium solutions. An equilibrium solution is one where all the cl’s are
constant in time. For such a solution we must, by (1), have every Jl equal to
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the next one, so that all the Jl’s are equal; and by (2) the number they are all
equal to must be zero. Hence by (3) we have

alc1cl − bl+1cl+1 = 0 (l = 1, 2, . . .) eqmRR (13)

The solution of this recurrence relation is

cl = Qlc
l
1 eqm (14)

where the Ql’s are defined by

Ql =
a1a2 . . . al−1

b2b3 . . . bl
Q (15)

If the forces between the molecules are known, the Ql’s can be found in
terms of those forces using equilibrium statistical mechanics (see Appendix 2
for the formula). In that case eqn (15) can be used to give information about
the kinetic coefficients — the ratios al/bl+1 to be specific — in terms of the
known Ql’s. The formula is

alQl = bl+1Ql+1 db (16)

The equilibrium states (14) form a one-parameter family labelled by values
of c1. The eqilibrium density at that value of c1 is given by (10) as

ρ = ρ(c1) :=
∞∑

l=1

lQlc
l
1 rhoeqm (17)

For the Ql that arise in practice the series has a finite radius of convergence,
which we shall call zs, and the series converges when c1 = zs, so that

ρs := ρ(zs) =
∞∑

l=1

lQlz
l
s < ∞. rhos (18)

The physical reason for this is that ρs is the density of a saturated gaseous phase
(i.e. one that can be in thermodynamic equilibrium with another phase, which
in this theory can be thought of as a droplet of infinite size).

4 Long-time limiting behaviour

LTAB

Having found the equilibrium solutions, we want to know whether an arbi-
trary initial state {cl(0)} will approach some equilibrium state, and if so which
one. A useful approach to problems connected with the long-time behaviour of
any differential equation is to look for a Lyapunov function, that is a function
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which can be shown to change monotonically with time. For physicists the best-
known such function is Boltzmann’s H, essentially the negative of the entropy;
Boltzmann’s H-theorem, showing that H is a non-increasing function of time, is
the key to proving that a gas obeying Boltzmann’s kinetic equation approaches
a Maxwellian distribution at late times.

We now show that

L :=
∞∑

l=1

cl[log(cl/Ql)− 1] L (19)

is a Lyapunov function for the BD system of equations. Indeed, we have

∂L

∂t
=

∞∑
1

dcl

dt
log

(
cl

Ql

)
by (19)

= (−2J1 −
∞∑
2

Jl) log(c1/Q1) +
∞∑
l

(Jl−1 − Jl) log(cl/Ql) by (2) and (1)

= J1 log
(

c2Q
2
1

Q2c2
1

)
+

∞∑
2

Jl log
(

cl+1Ql

Ql +1clc1

)
after rearrangement

= (a1c
2
1 − b2c2) log

b2c2

a1c2
1

+
∞∑
2

(alc1cl − bl+1cl+1) log
bl+1cl+1

alclc1)
by (3) and (16)

≤ 0 Lyap (20)

It is not difficult to show (see Appendix 1) that L has a lower bound; there-
fore it must approach a limit as t → ∞. Moreover, its derivative dL/dt will
approach zero. Since all terms on the right side of the penultimate line in (20)
are non-positive it follows that the individual terms approach zero:

alc1cl − bl+1cl+1 → 0 as t →∞ 15 (21)

so that, as in the discussion of (13)

cl −Qlc
l
1 → 0 as t →∞ 16 (22)

To complete the argument we need to know how c1 behaves as t → ∞. From
the conservation of density, eqn (11), we know that

lim
t→∞

∞∑
l=1

lcl(t) = ρ0 :=
∞∑

l=1

lcl(0) 17 (23)

Eqn (22) tells us that

∞∑
l=1

lim
t→∞ lcl(t) =

∞∑
l=1

lQl[ lim
t→∞ c1(t)]l 18 (24)

6



The question is whether we can interchange the two limit operations t → ∞
and l →∞ to get (using (11) as well)

ρ( lim
t→∞ c1(t)) = ρ0 19 (25)

The answer to this question is given by the rigorous analysis of Ball et al [1].
They prove, subject to suitable conditions on the coefficients al, bl and the initial
data cl(0), that

(i) if ρ0 ≤ ρs, then

lim
t→∞ cl(t) = Qlz

l (l = 1, 2, · · ·) 20 (26)

where z is the solution of

ρ(z) = ρ0 21 (27)

with ρ(·) the function defined in (11). In this case the convergence is
strong in the sense that

lim
t→∞

∞∑
l=1

l|cl(t)−Qlz
l| = 0, 22 (28)

and so the interchange of limits leading to (25) is justified.

(ii) if ρ0 > ρs, then

lim
t→∞ cl(t) = Qlz

l
s (l = 1, 2, · · ·) 23 (29)

where zs is the radius of convergence of the series in (11). In this case the
convergence is weak; i.e. the individual terms of the series in (28) converge
to zero, but their sum does not. Consequently the interchange of limits
leading to (25) is not justified; in fact the right-hand side of (24) is equal
to

∑
lQl = zl

s = ρs and is therefore different from the right-hand side
of (23) which equals ρ0. A mathematical example showing how the two
expressions can be unequal is (assuming for simplicity that t only takes
integral values)

cl(t) = Qlz
l
s + (ρ0 − ρs)δl,t/l 24 (30)

where δl,t := 1 if l = t and := 0 otherwise. The physical interpretation of
this non-uniform convergence is that the excess density ρ−ρs is contained
in a set of clusters which get larger and larger as time progresses.
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5 Metastability

If c1 > zs then the series (17) diverges; nevertheless if c1/zs is small enough
(small supersaturation) the successive terms may become very small before they
eventually start to grow beyond all bounds. The value of l at the smallest term is
called the critical cluster size. Clusters that are smaller than this size will tend to
shrink, though from time to time they grow as the result of fluctuations; clusters
that are larger than this size tend to grow and are called super-critical clusters.
A metastable state, if it exists initaially, will persist so long as the concentration
of supercritical clusters remains negligibly small. Slowly, supercritical clusters
will form and then grow, but this may happen very slowly. Eventually, when
their concentration has become significant, one can say that the metastable state
has broken down through homogeneous nucleation (it can, of course break down
from other causes too, for example nucleation due to inhomogeneities such as
particles of dust, which are ignored in the BD equations.)

In the original Becker-Döring treatment of metastability, the idea is to look
for a very slowly varying solution of the basic equations (1), (2), (3), in which
c1 has a value slightly greater than the critical value zs:

c1 > zs M0 (31)

Since the solution is slowly varying, we replace eqn (2) by the approximation

dc1

dt
= 0 M1 (32)

The physical interpretation sometimes given for this approximation is that any
cluster that exceeds a prearranged value L larger than l∗, perhaps 2l∗ say, is
artificially removed from the system and recycled (i.e. broken up into monomers
which are then restored to the system). To implement this idea systematically
one would have to change the l ≥ L contributions in eqns (1), (2) and (3).
Since the resulting equations are completely unrealistic I will not pursue the
idea further here.

We seek a steady solution of the remaining equations (1), (3). From (1)
we see that Jl must be independent of l, a constant which we call simply J .
This constant is called the nucleation rate: it gives the number of large clusters
being formed per unit volume per unit time. Replacing the Jl in (3) by this
constant we get a recurrence relation for the cl’s which is to be satisfied subject
to the conditions that c1 has the value already assumed (see eqn (31) and that
cl aproaches 0 for large l. To solve the recurrence relation, divide both sides by
alQlc

l+1
1 and sum from l = r to∞, where r is any positive integer. In particular,

taking r = 1 we get a formula for J :

J = J(c1) (33)

where
J(z) =

1∑∞
l=0 1/(alQlzl+1)

M2 (34)
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Since al varies only slowly with l, no faster than a power of l, the series converges;
but if c1 is only just greater than zs the sum of the series can be very large, and
in that case the nucleation rate J is very small, indicating that large clusters
are formed only very slowly so that the metastable state may be expected to
last fo a very long time.

While this theory has had much success, it is not completely satisfactory
from a mathematical point of view because eqn (2) is not satisfied : the left
side is equal to zero, whereas the right side diverges to −∞. A treatment of
metastability that avoids this defect is given in [5]. The main result is this
if the coefficients al, bl, Ql obey certain (reasonable) conditions, and if the the
initial conditions are bounded above by the Becker-Döring approximate solution,
denoted here by fl and defined by

fl(z) = Qlz
lJ(z)

∞∑
r:=l

1
arQrzr+1

, fdef (35)

for some z > zs then the following results hold:

• cl(t) is bounded above by fl(z) for all positive times, and

• the number of super-critical clusters, defined as

M0(t) =
∞∑

l=l∗+1

cl(t) M0def (36)

where l∗ is defined as the value of l that maximizes alQlz
l+1, has the

upper bound
M0(t) ≤ M0(0) + J∗t M0ub (37)

where
J∗ = al∗Ql∗z

l∗+1
J* (38)

The theorem also gives a similar upper bound on M1(t) =
∑

l>l∗ lcl(t), the
number of particles in supercritical clusters.

If z is close enough to zs then the upper bound J∗ on the nucleation rate
implied by (38) is exponentially small, i.e. it goes to zero as z ↘ zs more rapidly
than any power of z − zs. The l∗ used in the theorem is not precisely the same
as the critical cluster size defined verbally in the first paragraph of this section,
but the difference is unimportant since al varies much less rapidly with l than
Ql and zl.

For the situation envisaged in this theorem to correspond to metastablity
rather than a simple approach to equilbrium it is also necessary, of course, to
have

∑
lcl(0) > ρs, so that (by the second theorem in section 4) M0 does

eventually become large.
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6 Coarsening

There is very little rigorous theory about the way the final equilibrium is ap-
proached, but the theory of coarsening, due to Lifshits and Slyozov [4] does give
some information. The theory applies to the case where the rate coefficients
have (at least for large l) the special form

al = a1l
1/3

bl+1 = zsa1(l1/3 + q) LSab (39)

where a1, zs and q are positive constants. According to eqn (15), the corre-
sponding cluster partition functions are

Ql = z−l
s

l−1∏
r=1

(1 + qr−1/3)−1 ≈ const. exp(−3
2
ql2/3) LSQ (40)

The assumption is made that cl varies quite slowly with l when l is large, so
that (let us say)

cl+1 = cl(1 + O(l−1)) smoothc (41)

Using the approximations (39) and (41) in the BD equations, we obtain for large
l

Jl = vlcl (42)

where
vl = a1[(c1 − zs)l1/3 − zsq] (43)

It is further assumed that Jl varies smoothly enough with l to justify replacing
the difference in eqn (1) by a derivative, so that it bevomes

dcl

dt
= −∂(vlcl)

dt
(44)

Appendix 1: a lower bound for the Lyapunov
function

Since cl[log(cl//l) − 1] has a positive second derivative with respect to cl, it is
a convex function of cl, and can therefore be bounded below by the tangent to
its graph at an arbitrary value of cl, say c∗l . Choosing for definiteness c∗l = Qlz

l
s

and using such a lower bound for every term in the sum (19), we obtain

L ≥
∞∑

l=1

{c∗l [log(c∗l /Ql)− 1] + (cl − c∗l ) log(c∗l /Ql)}
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=
∞∑

l=1

[cll log zs −Qlz
l
s]

= ρ log zs −
∞∑

l=1

Qlz
l
s > −∞ (45)

as required.

Appendix 2: crude estimates for the plane square
lattice

We may define the cluster partition function for clusters of size l at temperature
T to be

Zl :=
∑
K

eE(K)/kT (46)

where the sum goes over all translationally inequivalent clusters K of size l, and
E(K) denotes the energy of the cluster K, that is to say, the energy increase
when that cluster is placed on a previously cluster-free region of the lattice.
Then, assuming the density of clusters is sufficiently small to justify ignoring
the interaction between clusters, it follows from the grand canonical formalism
of statistical mechanics that the equilibrium concentration of clusters of size l
is given by

ceq
l = Zlλ

l (47)

where λ is the activity. Comparing with eqn (14) we see that

Ql = Zl/(Z1)l
QZ (48)

For our example we choose a lattice gas in which the clusters consist of
A atoms and the cluster-free sites are B atoms, and the energy of a nearest-
neighbour AA pair is −U , the other types of pair having zero energy. Our crude
approximation, which may possible be reasonable at very low temperatures, is
to consider only the largest term in the sum defining Zl and to use for this
term the formula for E(K) appropriate to a square cluster. The number of
nearest-neighbour bonds in a square cluster of side

√
l is 2l − 2

√
l, giving the

approximation Z ≈ exp(2l − 2
√

l)U/kT . Substitution into (48) then gives

Ql ≈ exp 2βU(l −
√

l) A1 (49)

where β := 1/kT . Even at very low temperatures, (49) is a gross underestimate
unless l or l + 1/4 is a perfect square, so the right side of (49) is really a lower
bound rather than a realistic approximation. Nevertheless the formula (49)
implies

zs = e−2βU (50)
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which is consistent with the Yang-Lee theorem which implies that on a finite
lattice the singularities of the exact formula for the density must lie on the circle
|z| = e−2βU , indicating that zs ≥ e−2βU .

The critical cluster size, according to this approximation, is

l∗ ≈
(

βU

2 log(z/zs)

)2

(51)

so that (assuming that al = const. = 1, say) the upper bound in (37) on the
nucleation rate is

J∗ ≈ exp− (βU)2

2 log(z/zs)
(52)

which is indeed exponentially small as z ↘ zs.
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