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1 Introduction

Two-dimensional flow is much simpler than three. Nevertheless it has some
relevance to real life — the flows in the atmosphere that are responsible for
the weather are said to be essentially two-dimensional.But we also study it
for its own interest and the possibility that some of the ideas may be helpful
for three-dimensional turbulence.

The main formula arrived at in this paper, eqn (48) is not new: an
equivalent formula was obtained by Miller[4] based on a discrete-space ap-
proximation, and Robert[5] gave a derivation of the formula which does not
make this approximation. Robert’s derivation, however, depends upon a
principle (axiom) of ‘conditional concentration’, the rationale for which is
not entirely clear, at least to this author. The purpose of the present paper
is to provide a derivation of the Miller-Robert formula which is derived from
principles more deeply rooted in statistical mechanics. These principles are
contained in three postulates or hypotheses. The first is that at large times
the fluid approaches a state of statistical equilibrium, i.e. that it can be de-
scribed by a stationary probability measure (represented mathematically in
the theory as a Young measure). The second is that in this state of statistical
equilibrium the fluctuations at different places are uncorrelated (statistically
independent). The third hypothesis is that the only invariants of motion are
the known ones, namely the energy and the overall distribution of values for
the vorticity.

This work arose out of discussions with Sergei Kuksin who has shown[3]
that in a certain limit the two-dimensional incompressible Navier-Stokes
equation with random forcing approaches a stationary statistical solution
of the Euler equation. This paper describes a different approach to these
statistical solutions, based on the application of some ideas from statistical
mechanics to the long-time behaviour of solutions of the Euler equations
from an arbitrary initial condition.
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2 The vorticity evolution equation

We are going to consider flow of a two-dimensional inviscid fluid in a region
X which may be either the plane R2, or a finite simply-connected region
in in that plane with smooth boundary, or a two-dimensional torus (i.e. a
square or rectangular region with periodic boundary conditions). If X is a
finite region, the condition at its boundary is that the velocity of the fluid
must be tangential.The velocity field is a (vector) function u : X → R2. It
satisfies the Euler equation

∂u/∂t + u · ∇u = −∇p Euler (1)

where the pressure field p is determined by the incompressibility condition

∇ · u = 0, incompr (2)

For two-dimensional hydrodynamics, the (scalar) vorticity field w can be
defined by

kw = curl u

i.e. w(x) = ∂u1/∂x2 − ∂u2/∂x1 bwe (3)

where x := (x1, x2) and k is a unit vector perpendicular to the (x1, x2)
plane. The vorticity is equal to twice the local angular velocity of the fluid.
The two-dimensional Euler equation implies1

dw

dt
= 0 dw/dt (4)

where dw/dt denotes the convective derivative, defined by

dw

dt
=

∂w

∂t
+ u · ∇w convd (5)

Equation (4) is not a complete time evolution equation for the field w(·)
since it involves a second field u(·), which is related to w(·) through eqn (3).
To find the velocity field u we need to solve eqn (3), subject to the boundary
condition that the normal component of u on the boundary of the region X
occupied by the fluid is zero (or periodic boundary conditions in the case
where X is the torus T 2). To solve (3), define the stream function ψ as the
solution of

−∇2ψ = w(x′) psi (6)
1The three-dimensional version of (4) is given in, for example, eq (1.9) of Chorin [1].
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with Dirichlet boundary conditions in the case where X is a finite region in
R2. In the case where X is the torus T 2, eqn (6) is soluble because Stokes’
theorem and the definition of w imply that

∫
X w d2x = 0; in that case the

solution of (6) is unique apart from an additive constant. Since ∇ · ψ = 0,
we have

curl curl (ψk) = −∇2ψk = w(x′)k curlcurl (7)

so that

u = curl (ψk) = (gradψ)× k

i.e. (u1, u2) = (∂ψ/∂x2,−∂ψ/∂x1) u (8)

solves eqn (3) for given w(·). This solution satisfies the boundary conditions
(if any), since in the case where X is a finite region the boundary condition
on G implies that ψ = 0 on ∂X, and hence the the normal component of u
on ∂X is zero, as required. The solution is unique for simply-connected X,
but in the case where X is T 2 an arbitrary additive constant added to the
solution (8) gives another solution.

3 Invariants of the motion

The inviscid time evolution (in either two or three dimensions) has the usual
energy invariant

E :=
1
2

∫
X

u2 d2x = invariant. E (9)

To express this in terms of w we use the explicit solution of (6),

ψ(x) =
∫

X
G(x,x′)w(x′) d2x′ G (10)

where G is the negative of the Green’s function for Poisson’s equation in X,
with Dirichlet boundary conditions if X is a finite region. By virtue of (8)
we can then write (9) as

E =
1
2

∫
X

(curl (ψk))2 d2x

=
1
2

∫
X

ψ · curl curl (ψk) d2x

=
1
2

∫
X

ψ(x)w(x) d2x by (7)

=
1
2

∫
X

∫
X

w(x)G(x,x′)w(x′) d2x d2x′ quadform (11)
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If X is the whole of space or the torus T 2, the linear momentum is
another invariant :

d

dt

∫
X

ud2x = 0. linmom (12)

If X is a circle, then the angular momentum is also an invariant of the
motion.

For two-dimensional inviscid flow, there is another class of invariants
arising from eqn (4), which implies that each particle of fluid carries a par-
ticular value of w along with it. So, for example, if initially only two different
values of w are present, then at later times those two values are still the
only ones present. Moreover, since we are assuming incompressibility (eqn
(2)) it follows that the area of the region in which w takes any particular
value is an invariant of the motion.

To simplify the exposition I am going to assume that the distribution
of vorticity is restricted to a finite set of values W := w1, w2, . . . , wN . I’ll
denote by Pi the probability that the value of w(x) at a randomly chosen
point x in X is equal to wi, i.e.

Pi = m(Γi)/m(X) P (13)

where the set function m(·) denotes area (measure) and

Γi := {x : w(x) = wi} Gammai (14)

Then it follows from the convection of vorticity that the numbers Pi are
invariants of the motion, i.e. they do not depend on the time t.

In some theories of two-dimensional turbulence[2, 3] an important part is
played by and invariant called the “enstrophy”, which is defined as

∫
X w2(x) d2x.

It follows from the definitions that the enstrophy is equal to m(X)
∑

i w
2
i Pi,

so its invariance need not be taken into account separately here.

4 Hypotheses about the equilibrium behaviour

hypoth

Consider the time evolution under the Euler equation (1), with some
given initial velocity field. As the time t increases, it is to be expected that
the velocity and vorticity distributions will get more and more complicated,
while preserving the values of the invariants E and P1, P2, . . . defined in
the preceding section. The treatment in this paper is based on certain
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hypotheses about the long-time behaviour of the hydrodynamic field, which
will now be formulated.

We don’t expect u or w to approach limits, but it is plausible that there
is a unique equilibrium state in some statistical sense. The first hypothesis
makes this assumption precise: it is that the limiting behaviour of w at large
times corresponds to a unique Young measure2. The same hypothesis is used
by Robert [5].

From this hypothesis it follows immediately3 that for each i and each
region A in X, the event that at a randomly chosen point x ∈ A the function
w(x) takes the value wi has probability

lim
t→∞

m(Γi(t) ∩A)
m(A)

=
1

m(A)

∫
A

pi(x) dx p (15)

where pi(x) is a function which can be thought of as the probability that
w takes the value wi at the point x (or, perhaps, as the long-term fraction
of time that the equation w(x, t) = wi is true). The formula (15) is self-
consistent in its dependence on A, since after multiplication by m(A) both
sides are additive set functions.

It will be convenient to use the notation p̄i(A) for the average of pi(x)
which appears on the right side of (15):

p̄i(A) :=
1

m(A)

∫
A

pi(x) d2x barpi (16)

As an example, if we choose A to be X and use (13), we see that

p̄i(X) =
1

m(X)

∫
X

pi(x) dx = Pi : barpiX (17)

the average of pi(x) over the whole of X is the invariant Pi.
2The defining property of a Young measure νx is (as told to me by Jan Kristensen and

probably misunderstood by me) is that, for any measurable set A and any continuous func-
tion ϕ which goes to zero at ±∞ we have

∫
A

ϕ(w(x, t)) d2x → ∫
A
[
∫∞
−∞ ϕ($)dνx($)] d2x

on an unbounded increasing sequence of values of t. In our case the Young measure is
concentrated on a discrete set of w-values, so that it can be written νx =

∑
i
pi(x)δwi

and hence the defining formula becomes
∫

A
ϕ(w(x, t)) d2x→ ∫

A
[
∑

i
ϕ(wi)pi(x)] d2x. Our

hypothesis is that the Young measure is unique, i.e. that the limit is the same whatever
increasing sequence of t-values is used.

3In the defining formula for the Young measure given in the preceding footnote, choose
ϕ(w) to be equal to 1 for w = w1 and to 0 for all the other possible values that w(x) can
take; this gives the formula (15)
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It follows (I think) from the hypothesis (15) and the integral formula
(10) for the stream function that

lim
t→∞ψ(x) =

∑
i

wi

∫
X

G(x,x′)pi(x′) d2x′ psip (18)

Likewise, using the formula (11) for the energy we obtain:

E =
1
2

∑
i,j

wiwj

∫
X

∫
X

G(x,x′)pi(x′)pj(x) d2x

=
1
2

∑
i

wi

∫
X

pi(x)ψ(x) d2x Ep (19)

In order to get the results I want, I shall need a strengthened form
of the hypothesis, which extends (15) to simultaneous events in different
places. Let A and B be two disks in X of equal radius and let T be the
translation operator such that TA = B; then the hypothesis concerns the
joint probability that the value of w(x) a randomly chosen point x in A is
wi and that simultaneously the value of w(Tx) is wj . If this event occurs,
then x lies in Γi∩A and at the same time Tx lies in Γj∩TA, that is to say x
lies in T−1Γj ∩A; so the joint event occurs if and only if x ∈ Γi∩T−1Γj ∩A.
Our hypothesis is that in the limit t → ∞ the events in A and TA are
statistically independent, i.e. that the probability of the joint event equals
the product of the individual probabilities. In symbols, this hypothesis is

lim
t→∞

m(Γi ∩ T−1Γj ∩A)
m(A)

= p̄i(A)p̄j(B) pp (20)

where (15) and (16) have been used on the right-hand side. It will be
assumed that the equations corresponding to (20) for more than two regions
are also true, in particular the one for four regions, which will be crucial
later on.

Our second hypothesis concerns the nature of the equilibrium Young
measure. Obviously it will depend on the invariants of the motion. The
ones we know are the energy and the invariants Pi. We shall assume that
there are no other invariants so that, for example, the functions pi(x) are
fully determined by the values of these invariants4. This is analogous to
the standard assumption of (microcanonical) statistical mechanics that the
probability distribution in phase space depends only on the energy, and

4Sometimes there are others, for example the angular momentum if the region X is a
disk
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other invariants such as angular momentum if they exist. Our hypothesis
is that the Young measure is invariant under any transformation R of the
hydrodynamic states that leaves the energy and the Pi invariants unchanged.
By a hydrodynamic state I mean a function w(·).

5 A four-point theorem

Let ε be a small number and let D1, D2, D3, D4 ⊂ X be four non-overlapping
disks of area ε, centred at points x1,x2,x3,x4. For each pair (m, n) with
m, n ∈ {1, 2, 3, 4}) let Tmn) the translation operator such that TmnDn = Dm.
The independence hypothesis analogous to (20) four four regions asserts
that, for a point x chosen at random in D1, so that T21x ∈ D2,etc, the lim-
iting joint probability of the four simultaneous events w(x) = wi, w(T21x) =
wj , w(T31x) = wk, w(T41x) = wl equals the product of their separate prob-
abilities. Since T−1

21 = T12, etc, the equations defining the four events are
equivalent to x ∈ Γi,x ∈ T12Γj ,x ∈ T13Γk,x ∈ T14Γk and so the statement
about the probabilities can be written

lim
t→∞

m(∆1)
m(D1)

= p̄i(D1)p̄j(D2)p̄k(D3)p̄l(D3) pppp (21)

where
∆1 := D1 ∩ Γi ∩ T12Γj ∩ T13Γk ∩ T14Γl Delta1 (22)

and p̄i(D1), etc. are defined in (16).
We define a transformation R by

R(x) := T21x if x ∈ ∆1

and := T12x if x ∈ ∆2 := T21∆1

and := T43x if x ∈ ∆3 := T31∆1

and := T34x if x ∈ ∆4 := T41∆1

else R(x) := x

R (23)

It is easily checked that R2 is the identity, therefore R is invertible, and
being constructed by translating different measurable subsets of X it must
preserve measure. Moreover, it has the properties

R(∆1) = ∆2

R(∆2) = ∆1

R(∆3) = ∆4

R(∆4) = ∆3

RDelta (24)
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Its effect is to exchange the two sets ∆1 and ∆2, and also to exchange the
two sets ∆3 and ∆4. By (27), ∆1 is a subset of Γi and hence all points x
in ∆1 have w(x) = wi. Again by (27), ∆2 := T21∆1 is a subset of Γj and
hence all points x in ∆2 have w(x) = wj . The transformation R exchanges
a measurable set of points in which w(x) = wi for one of the same measure
in which w(x) = wj . At the same time, it also exchanges the measurable
set ∆3, in which w(x) = wk, for the set ∆4, in which w(x) = wl.

From these considerations, it follows that

lim
t→∞

m(R∆1)
m(D1)

= p̄j(D1)p̄i(D2)p̄l(D3)p̄m(D3) Rpppp ) (25)

I want to apply the second hypothesis to show that the right hand sides
of (21) and (25) are equal. Let us calculate the change in energy brought
about by the transformation R. According to formula (11) the increase in
energy is

δE :=
1
2

∫
X

∫
X

G(x,x′)[w(Rx)w(Rx′)− w(x)w(x′)] d2x d2x′

=
∫

X
d2x′

∫
∆

d2xG(x,x′)w(x′)[w(Rx)− w(x)]

−1
2

∫
∆

∫
∆

G(x,x′)[w(Rx)w(Rx′)− w(x)w(x′)] d2x d2x′ deltaE(26)

where
∆ := ∆1 ∪∆2 ∪∆3 ∪∆4 Delta (27)

In the second line of (26) we have used the fact (see (23)) that the integrand
is zero unless at least one of x,x′ is in ∆; we have also used the symmetry
of the integrand. The part of the domain of integration where both x and
x′ are in ∆ is counted twice in the first double integral on the right, and
the second one corrects for this. However, the measure of the domain of
integration in the second double integral is m(∆)2 < [4m(D1)]2 = 16(ε2 and
is therefore small for small ε; so we can write (26) more simply as

δE =
∫
∆

d2xψ(x)[w(Rx)− w(x)] + c1 deltaEG (28)

where ψ is the stream function, as given in eqn (10), and c1 is an O(ε2)
correction term.

Using the definition (27) of ∆, the integral in (28) can be split into four
parts and then in each integral we can approximate ψ(x) by its value at the
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centre of the disk :

δE =
∫
∆1

d2xψ(x)[w(Rx)− w(x)] +
∫
∆2

d2xψ(x)[w(Rx)− w(x)]

+
∫
∆3

d2xψ(x)[w(Rx)− w(x)] +
∫
∆4

d2xψ(x)[w(Rx)− w(x)] + c1

=
∫
∆1

d2xψ(x)(wi − wj) +
∫
∆2

d2xψ(x)(wj − wi)

+
∫
∆3

d2xψ(x)(wl − wk) +
∫
∆4

d2xψ(x)(wk − wl) + c1

= [m(∆1)ψ(x1)−m(∆2)ψ(x2)](wi − wj) + [m(∆3)ψ(x3)−m(∆4)ψ(x4)](wk − wl)
+c1 + c2

= m(∆1){[ψ(x1)− ψ(x2)](wi − wj) + [ψ(x3)− ψ(x4)](wk − wl)}
+c1 + c2 split (29)

where

c2ε
2 :=

∫
∆1

d2x[ψ(x)− ψ(x1)](wi − wj) +
∫
∆2

d2x[ψ(x)− ψ(x2)]ψ(x)(wj − wi)

+
∫
∆3

d2x[ψ(x)− ψ(x3)]ψ(x)(wl − wk) +
∫
∆4

d2x[ψ(x)− ψ(x4)]ψ(x)(wk − wl) c2(30)

and in the last line of (29) we used the fact that ∆1 = ∆2 = ∆3 = ∆4. Tay-
lor’s theorem gives

∫
∆n

d2x[ψ(x)−ψ(xn)] ≈ 1
2

∫
∆1

d2x(x− xn)2∇2ψ(xn) =
O(ε2), therefore c2 = O(ε2).

By eqn (6), the function ψ is differentiable and therefore continuous, so
its range is an interval of the real line. Given any choice of wi, wj , wk, wl it
is therefore possible to find points x1, . . .x4, all different, such that

(ψ(x1)− ψ(x2))(wi − wj) + (ψ(x3)− ψ(x4))(wl − wk) = 0 psixrule

(31)
and at the same time ∇ψ(xn) 6= 0 (n = 1, 2, 3, 4). With this choice of
x1, . . .x4, eqn (29) leads to δE = c1 + c2 = O(ε2). In order to make δE = 0,
we need a slightly different choice. Let x′1 be a point close to x1; replacing
x1 by x′1 then the right side of (29) can be written (again using Taylor’s
theorem)

δE = m(∆1)(wi − wj)(x′ − x) · ∇ψ(x1) + O(x− x′)2 + c1 + c2 (32)

By choosing a suitable x′, which can be within a distance of order ε2 from
x, we can arrange to have δE = 0.
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By the second hypothesis in (4), the probabilities under the two distri-
butions are the same. That is to say, the right sides of (21) and (25) are
equal:

p̄i(D′
1)p̄j(D2)p̄k(D3)p̄l(D4) = p̄j(D′

1)p̄i(D2)p̄l(D3)p̄k(D4) (33)

where D′
1 is the disk of area ε centred at x′1. Taking the limit ε → 0 and

x′ → x we obtain

pi(x1)pj(x2)pk(x3)pl(x4) = pj(x1)pi(x2)pl(x3)pk(x4) probrule

(34)
This equation holds at all points x1, x2, x3, x4 which satisfy (31) and are
points of continuity of the functions pi(·), pj(·), pk(·), pl(·).

6 Solving eqn (34)

Defining
θij(x) := ln[pi(x)/pj(x)] theta (35)

we can write the result (34) as

θij(x1)− θij(x2)− θkl(x3) + θkl(x4) = 0 thetarule (36)

If we vary x1 while holding x2,x3,x4 fixed, eqns (29) and (36) show that
both ψ(x1) and θij(x) stay fixed; therefore it would appear that θij(x1)
depends on x1 only through the value of ψ(x1), so that we may write

θij(x) = ϑij(ψ(x)) thetasol (37)

where ϑ is a real function of one real variable satisfying

ϑij(ψ1)− ϑij(ψ2)− ϑkl(ψ3) + ϑkl(ψ4) = 0 varthetarule (38)

whenever ψ1, ψ2, ψ3, ψ4 satisfy

(ψ1 − ψ2)(wi − wj) + (ψ4 − ψ4)(wl − wk) = 0 psirule (39)

Now consider varying ψ1, ψ2 while holding ψ3, ψ4 fixed. Eqns (39) and
(38) imply

ϑ′ij(ψ1)dψ1 − ϑ′ij(ψ2)dψ2 = 0, dψ1 − dψ2 = 0 (40)

so that
ϑ′ij(ψ1) = ϑ′ij(ψ2) varth’ (41)
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By suitable choice of ψ3, ψ4 we can prove this last result for any pair ψ1, ψ2

and it follows that ϑ′ij(ψ) is a constant, call it aij and hence that

ϑij(ψ) = aijψ + bij varth (42)

To find out more about the constants aij and bij , substitute this into (38),
obtaining

aij(ψ1 − ψ2)− akl(ψ3 − ψ4) = 0 arule (43)

which must hold whenever ψ1, ψ2, ψ3, ψ4 satisfy (39). Combining (43) with
(39) we find

aij

wi − wj
=

akl

wk − wl
(44)

and since this has to hold for all i, j, k, l there must be a constant β such
that aij = −β(wi − wj) (the minus sign is purely conventional). Thus, (42)
becomes

ϑij = −β(wi − wj)ψ + bij (45)

from which (37) and (35) give

pi(x)
pj(x)

= exp[−β(wi(x)− wj(x))ψ(x) + bij ] (46)

From this it follows that

pi(x) = p1(x) exp[−βwi(x)ψ(x) + βw1(x)ψ(x) + bi1] pisol1 (47)

Using the normalization condition
∑

i pi(x) = 1 we can eliminate p1(x),
so that (47) becomes

pi(x) =
λi exp[−βwi(x)]∑
j λj exp[−βwj(x)]

answer (48)

where λi := exp bi1. Formula (48) is not new: it was given by Robert.
In the language of statistical thermodynamics, the constants β and λi

are analogues of the inverse temperature and of the activities of the dif-
ferent types of fluid particle (carrying different vorticities) although with
the difference that 1/β has dimensions of energy pser unit area rather than
energy.

To finish finding the equilibrium states, we have to solve eqn (6) relating
the stream function and the vorticity, which, using (48), can now be written

−∇2ψ(x) =
∑

i wiλi exp[−βψ(x)wi(x)]∑
j λj exp[−βψ(x)wj(x)]

DE (49)
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The existence of solutions of eqn (49) is discussed by Robert[5]; applying the
Schauder fixed point theorem he arrives at the conclusion that with Dirichlet
boundary conditions on the boundary of X it has a unique solution. The
solution depends on the values of the parameters β, λ1, . . .. These values are
related to the energy E and the initial overall distribution of vorticity values
by the following relations, obtained using (13) and (19):

E =
∫ ∑

Pi(x)wiψ(x) = −∂Z

∂β

m(X)Pi =
∫

X
pi(x) d2x = λi

∂Z

∂λi
derivs (50)

where Z(β, λ1, . . . , ψ(·)) is a ’partition functional’ defined by

Z :=
∫

d2x ln
∑
j

λj exp[−βwj(x)ψ(x))] Z (51)

In thermodynamic terms, the logarithm of the functional Z can be
thought of as the grand canonical potential (generalized Helmholtz free en-
ergy). As noted by Miller and Robert [4, 5], it has an interesting variational
property: the Euler equations for minimization of Z with respect to the
function ψ(·) and the values of β and the numbers λi at given values of E
and the numbers Pi are eqns (49 ) and (50). THIS STATEMENT MAY
NOT BE QUITE CORRECT : NEEDS CHECKING
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