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1 The classical Boltzmann equation and Lan-
ford’s proof

The Boltzmann equation for a classical hard-sphere gas is (p. 78 of [6])

%ft((bpl) = *%a%ft(%m)*"
+pa’ fw-(p17p2)>0 dpadw w - (B=P2) [fy(q, p1/) fe(q, p2’) — fi(a, p1) fi(q, p2)]
(1)
Here p is the overall number density, pfi(q,p) is the distribution function in
one-body phase space (i.e. the expected number of particles per unit phase-
space volume near the point p, q in one-body phase space) at time ¢, m is the
mass of each particle, a is the diameter of one of the hard spheres p1/, p2’ are
the post-collision momenta of two particles with pre-collision momenta p1, p2
and w € R3, is a unit vector in the direction from p; to pz at the moment of
collision. The explicit formula for p;’, p2” is ([6] p. 75) is

pll =p1 —ww- (pl - PQ)
P2’ = p2 +ww - (p1 — P2) (2)

Lanford gave a proof that this equation holds in the limit where a — 0 at fixed
pa?, for times less than about 0.2 of the mean free time, provided the particles
are completely independent at the initial time.

The work described here is part of an attempt to obtain results similar to
Lanford’s for a quantum mechanical system. I shall give a formal derivation of
a quantum version of eqn (1) which takes into account the effect of Bose (or
Fermi) statistics and in particular the possibility of a Bose-Einstein condensate.
For simplicity, the hard spheres have been replaced by a “soft” interaction. I
believe that essentially the same method can be used for hard spheres, but the



notation is more complicated. The derivation is certainly not a proof, but I
hope that it may have the potential to form the basis for such a proof. (For
other work on the problem of deriving a quantum Boltzmann equation see [1],
[2, 10] and [3].)

2 Length and time scales

(From smallest to largest, the relevant classical length scales are:
e a, the hard-sphere diameter
e p~1/3 a typical nearest-neighbour separation

A = h/vVmKT the thermal de Broglie wavelength (k := Boltzmann’s
constant, T' = temperature, meaning that the mean kinetic energy par
particle is of order kT

1/pa? the classical mean free path

19] 1/3 the size of the container, assumed much larger than all other lengths
in the problem.

Lanford’s proof uses the so-called Boltzmann-Grad limit, in which we take a — 0
and p — oo at fixed pa? i.e. at fixed mean free path (for more detail about his
proof, see [6] and chapter 4 of [11]. In quantum mechanics, however, taking p
to infinity at fixed A and m would have the effect of taking us to to the zero-
temperature limit, since in this limit the actual temperature 17" would be much
less than the Einstein condensation temperature const.h? pZ/ 3 /mk. To preserve
finite-temperature quantum effects we should keep the ratio A/p~/3, which is
proportional to (Teona./T)"/?, fixed. Instead of the B-G limit I will therefore
use a limit in which a — 0 at fixed p and \. In Spohn’s[11] terminology, this is
the weak coupling limit
In this limit, the mean free path tends to infinity and so does the mean free
time, which is (mean free path)/(mean particle speed), so that time variation
becomes very slow. To make this time variation visible after the limit a — 0
has been taken, we can define a re-scaled time variable proportional to ¢/(mean
free time), viz.
7= a’t tau (3)

Measured in terms of 7 rather than ¢, the time evolution should approach a
useful limit as @ — 0. This way of scaling the time appears to be due to van
Hove[13]. Tt was used by Hugenholtz[5] in a rigorous derivation of the quantum
Boltzmann equation for a Fermi gas on a lattice.

To get the full Boltzmann equation a similar re-scaling in space is also nec-
essary. However this is more complicated because we have to separate out the
macroscopic part of the space variation, which is on a scale comparable with the
mean free path and should therefore be re-scaled, from the microscopic part,
which should not. To avoid these complications, for the purpose of this talk I



assume translational invariance; then there is no macroscopic space variation
and so no space re-scaling is necessary.

3 Dynamics and the BBGKY hierarchy

We consider a system of N particles in a 3-dimensional periodic box {2, so that
its Hilbert space is L2(QY). The Hamiltonian

1 N
H::%;p?—i— >V (4)

i<j<N

where V;; (or alternatively V; ;) is the interaction between the ith and jth
particles. To mimic the a-dependence of the hard-sphere interaction, we can
take the interaction to be

V;j = anj = aU(qZ — q]-) (5)

where U is an even function on R? with positive integral, scaled in such a way
(cf [7, 8]) that

/U(X)dSX = 47h? /m (6)

and p;, q; are the momentum and position operators for the ith particle. The
motivation for this formula (which is essentially a definition of a) is that the
effective scattering length of the interaction as defined is a, so that in some
sense this system will behave like a gas of hard spheres. In particular, according
to first-order perturbation theory, the ground-state energy per particle of the
Hamiltonian H is 27rh2a/ 2m, which is the same as the ground-state energy of
a gas of hard spheres to lowest order in a [8].

These operators act in an abstract Hilbert space HY = ®fi1 ‘H;, which is
the direct product of the Hilbert spaces H; = L?(Q2) of the individual particles.
At this stage there is no need to restrict to the Bose (or Fermi) subspace of
HY. (In the case where the particles ar hard spheres of diameer a, a different
Hilbert space would be used, namely L?(QV), where (QV), means the part of
QY in which all the inter-particle separations are at least a, but here only ’soft’
interactions are considered).

If the system has probability p,, of being in quantum state ¢, € H, where
a goes over some index set, then the statistical operator (or density operator or
density matrix) D is defined by

D¢ = Zpa¢a(waa¢) V¢ € HN (7)

or, in Dirac notation,

D:= Z |¢a>pa<%| (8)



It is positive semidefinite and its trace is 1. Moreover, it must have the same
symmetry under particle permutations as the wave function, i.e. (for Bose

statistics)

PD=DP =D, 9)
for all of the N! permutation operators P permuting the N particles. For
simplicity I'll only give the formulas for Bose statistics, but the modification for
Fermi statistics is obvious.

By virtue of Schrédinger’s equation ihyy = H4, the time evolution of the
statistical operdtor is given by the quantum Liouville equation

ihD =HD — DH (10)
The s-particle reduced statistical operator Dg, an operator on the Hilbert
space H* := @;_, H;, is defined by

Ds=N(N-1)...(N—s+1)trgpq... tryD (11)

where trs;; means that the trace over the component Hg ;1 of the direct product
defining the Hilbert space Hsy1. The reduced statistical opertor D; is positive
semidefinite, has trace N(N —1)...(N — s + 1), and has the same symmetry
as D, i.e. it obeys an equation analogous to (9. Successive reduced statistical
operators are related by

(N — s+ 1)Dg = trop1 Doy (12)

so that, for example, D1 = (N — 1) ! traDs.

The quantum BBGKY hierarchy is obtained by taking the trace of the Li-
ouville equation (10) over the component one-body Hilbert spaces Hsy1 ... Hn
and then dividing by N(N —1)...(N — s+ 1); it is

. dDs

ih—= = [Hs, Ds] + > treaVisr1, Doyl (13)

i=1
where [Hg, D;] denotes the commutator HsD; — DsHs.

4 The a — 0 limit of the first BBGKY eqn

The first equation in the BBGKY hierarchy can be written
dDy

ZTZW = [K1, D] + tra[Viz, Do) (14)
where K; := p1/2m is the kinetic energy of particle number 1. Since we are

assuming translational invariance, D; commutes with p; and so the first term
on the right vanishes. Dividing by a? and using the notations defined in (3) and
(5) we get, in the limit,

dD;

ih—— = lim a™" trs[Us5, D] (15)

To evaluate the right side we need a way of calculating D> to order a.



5 The small-a formulas for Dy and Ds.

The hierarchy equation for Ds, eqn (13) with s = 2, can be written
. QdDZ
zha 7 = [(Kl +K2 +aU12),D2] + trg[a(U13+U23),D3] (16)

where K; := p?/2m denotes the kinetic energy of the ith particle. Expanding
D5 in powers of a, let us denote the zero-order term by Dy and the first-order
one by aDs, so that

DQ = DQ + abg + O(az). (17)

The zero-order and first-order parts of (16) are then

Ky + Kz, Dy] = 0 (18)

(K1 + K», Do) + [Ur2, D] + trs[(Uss + Uss), D3] = 0 (19)

where D3 denotes the lowest-order term in the expansion for Ds analogous to
(17). By the zero-order part of the s = 3 equation analogous to (16), D3 should

satisfy
[K1+ Ky + K3,D3) =0 (20)

To choose the appropriate solution of (19), we can use an ansatz analogous
to Bolzmann’s classical Stosszahlansatz. His ansatz is a product formula for
the pre-collision distribution of two particles. The analogous quantum ansatz
has two parts: (i) the zero-order part of the two-body density matrix can be
calculated from a product formula (to be elaborated below) and (ii) the order-
a part of the two-body density matrix can be calculated by the methods of
scattering theory and it corresponds to outgoing waves rather than incoming
waves.

Dealing first with part (ii), let’s write eqn (19) in the form

K12Dy = —{[Ura, Da] + tr3[(Usz + Uas), D3]} (21)

where K12 denotes a ‘super-operator’, that is to say an operator which acts in
the algebra of operators in the two-particle Hilbert space Hi ® Hs, and is defined
by

Ki2A = (K1 + Ko2)A — A(K; + K») (22)

Despite appearances, K15 is a Hermitian super-operator, if we define the inner
product between two operators A, B to be (A, B) := tr(A*B) where the star
denotes a Hermitian conjugate.

The recipe provided by scattering theory for picking out the solutions of
equations similar to (21) which correspond to outgoing scattered waves is (see,
for example, [4]) to replace the kinetic energy-type super-operator K15 by K13 —
1€Z where 7 is the identity super-operator and ¢ is a small positive number which
is to be set equal to 0 at the end of the calculation. The new super-operator



is manifestly non-singular and so the modified version of (22) has the unique
solution

Dy = —(K1g —i€Z) Y {[Ura, Do) + tra[(Uiz + Usz), D3]} (23)
Substituting this into (15) we get

. dD - o - -

Zhd—’l'l = tI‘g[Vm, DQ—(}Clg—ZGI) 1([U12, D2]+ tI‘3[<U13+U23), Dg])] raw
- - (24)

which will give a kinetic equation for D if we can express Dy and D3 in terms

of Dl.

6 Plausible assumptions about D,, Ds, etc.

I_f the particles obey Boltzmann statistics, the obvious asumption about Dy and
D3 is the product formula

Dy = Dy®D,
2 I D ohen | )

This assumption obviously satisfies the conditions (18,19), because of the as-
sumed translational invariance of Dj.

In the case of Bose statistics, the assumption (25) will not do, however. An
assumption which does give the right symmetry properties is

Dy = ZQ!PD1®D2
_ _ _ _ Boseprod 26
Dy = S¥PDy®Dy,® Dy (26)

where the sum in the first line goes over the 2! permutations of two particles and
the one in the second goes over the 3! permutations of three particles. There is
no need to put a symmetrizing sum on the right as well as on the left, because
the products D; ® Ds, etc., commute with all permutation operators.

For simplicity I am going to assume the product ansatz (25) or (26) for all
times. A better but somewhat more complicated method would be to assume
the product ansatz only for the initial time and then to verify that the equations
of motion for the diagonal parts of the s > 2 density matrices imply that the
ansatz continues to hold at later times. (At item (c) on page 98 of [6], Lanford
describes the analogous calculation for the classical case.)

The kinetic equation that results when (25) or (26) is substituted into the
formula (24) can be simplified by expressing it in the wave-number (momentum)
representation. For conceptual simplicity, consider a system in a finite periodic
box Q. The Dirac-type formula for going between the position and wave-number
representations is

(x]k) = 2 /2 exp(ik - x) (27)



It has the properties

[R P = S
ST = 8¢ — x) 23)
k

where §(-,-) is the Kronecker delta and §(-) is a Dirac delta-distribution.

Let us define nyx to be the expected number of particles with wave number
k. Tt is a diagonal element of the one-body density matrix in the wave-number
representation, a matrix which is diagonalbecause of translational invariance.
This matrix can therefore be written

(k|D1|1) = ni6(k, 1) (29)

We shall also need the diagonal elements of the two- and three-body density
matrices. Under the ‘Boltzmann’ ansatz (25) they are very simple:

nkl ,kg = nkl nkQ
My ko ks = Ty Ty Ty (30)

where ni, k, := (ki,ko|D2 ki, ko) and the definition of ny, x, k, is analogous.
For the ‘Bose’ ansatz, the corresponding formulas are

N, ks = T Nk, 0(k, ko)
Nk ko ks = nk1nk2nk30(k1:k23k3) (31)

where 0(ki, ko) is defined to equal 1 if k; and kg are different and 2 if they are
the same, while 6(ky, koks) is defined to equal 1 if ky, koks are all different, 2
if two are the same and 6 if all three are the same.

We also need the momentum representative of the interaction. It is

(ki ko[l L) = / 1 dxa (K1, alx1, x2)U (x1 — x2)(x1, X211, L)
Q2

= |96k + ko, L + 1) Ui, 1, (32)
where (ki, ka|x1,%2) 1= (ki[x1)(ka|x2) and Uy := fQ dSI‘U(I‘)eik'x.

7 The kinetic equation for Boltzmann statistics

For Boltzmann statistics, the result of substituting (25) into (24) using the
momentum representation is

. dnk 2i6(n] 1, — Nk, k )
ih—2 = ki, ko |Ul;, 1) ]2
o = a2 el I i g




Using (32) the right-hand side can be written

1 2ie(n1 1, — Nk, .k )
— U, 1,]? 102 1,X2 (y ;= ky + ko —1;) (34)
P 4 3 e a0k - B

In the limit Q@ — R3, the sums can be replaced by integrals using the standard
recipe Y, — [©|(27) 73 [zs d°k and the formula becomes

1 2i6(n1 I, — Nk .k )
d3k d3l Us.. 2 1,12 1,K2
(20 /R el g a0 +13 - B B

(12 = k1+k2—11)

(35)
On taking the limit € \, 0 as specified in the formulation of (23) the formula
becomes

1 ([ R?
@y /RG ko d®ly | Uy, -1, [ (01, 1,y ko ) 2786 <%(k§ + k212 - 13)) (13 := ky+ky—1))
(36)
so that
dny 2m
dq-l = W /R6 d3k2d311‘Uk1,11 ‘2(1111’12 —nkl,kz)é (k% =+ k% — l% — 1%) QBE
(37)

A closedc kinetic equation for ny can now be obtained by using the formula (30)
to express ny, 1, and Nk, k, in terms of ny, etc:

To bring out the analogy with the classical Boltzmann equation more clearly,
we consider the case where the range of the interaction potential is small enough
in comparison with the thermal wavelength to justify replacing Uy, 1, by U,
which by (6) is equal to 47h”*/m. We also define u :=1; — 3(k; + ko) so that
11 == %(kl +k2)—u, 12 == %(kl —|—k2)+u, and k%—i—k%—l%—l% == 2112—%(1(1 —k2)2
Then eqn (37) becomes

dny, 2m 4mh?
m

dr (27r)5h3

h
= —87r3m - d3k2 /S2 dgw|k1 — k2|(n11n12 — nklnk2) (38)

where w is defined by u = w%|k1 — ko| and S? denotes the surface of the unit
sphere in R3. Since hilk; — ka|/m is the magnitude of the relative velocity of
two particles with wave numbers ki, ks eqn (38) is analogous to the classical
Boltzmann equation (1) A factor a® appears in (1) but not in (37); this is
because of the a? in the definition of 7. The remaining major discrepancy
between the two kinetic equations is an extra factor 87%p in (1), which arises
from the different normalizations used for f and for my : the integral of f
over momentum space is 1, but the integral of ny over k space is 873p. This
last statement can be checked by considering the infinite-volume limit of the
finite-system sum rule ), nx = N, viz.

1 1 .
p= lim, 5 S me= g [k (39)

2
1
) / d*kod®u(ny, ny, — Ny, Ny )0 <2u2 - §(k1 - k2)2>
R6



8 The kinetic equation for Bose statistics

In the case of Bose statistics, a tedious calculation based on (26) and (24) shows
that formula (33) is now replaced by a similar formula in which the factor

Ny ko — My Ly (40)

is replaced by

Nk ko T My ko, T Ty kol = MU 1e = My Llo kg — MU, Lo ke (41)

If we use the simple product formula (30) for nk, k,1, etc. in the above ex-
pression, the result is equivalent to replacing the quantum Boltzmann equation
arrived at in the previous section by the so-called Boltzmann-Nordheim[9] or
Uehling-Uhlenbeck[12] equation for the hard-sphere gas. Strictly speaking, the
modified product formula (31) should be used rather than the simple product
formula (30); however the modification will make no difference to the final re-
sult, because it only affects terms for which either k; = ky or 1; = ly; but the
momentum and energy conservation conditions require that if k; = ko or1; =15
holds then all four of ki, ko, 11,15 are equal, so that the factor ni, 1, — 1k, k, is
zero and it makes no difference which product formula is used for these terms.

9 Bose-Einstein condensation

The modified product formulas (31), and their analogues for higher-order re-
duced density matrices cannot be used for the condensate. These formulas imply
that the rth factorial moment of the probability distribution of the number of
particles with wave number k is r! times the rth power of the first moment. This
formula for the moments is characteristic of an exponential distribution. That
is to say, the particles with each individual wave number are distributed grand-
canonically, though with (in general) different chemical potentials for different
wave numbers.

If a condensate is present, the exponential distribution cannot apply to it,
because it would imply a finite probability for the number of particles in the
condensate to be larger than the total number of particles in the system. In-
stead, we would expect the distribution of the number of condensate particles
to be concentrated fairly sharply about a single value. Thus, we expect the
diagonal elements of the two and three-body density matrices applying to the
condensate to be given by the product formula (30) rather than by (31), so
that the minor correction to the Boltzmann-Nordheim-Uehling-Uhlenbeck ki-
netic equation mentioned in the last sentence of the preceding section should
not be used for the condensate wave number. However, as explained at the end
of the preceding section, the non-zero terms in the kinetic equation are the same
whichever product formula is used.
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