Probabilistic global well-posedness of the energy-critical defocusing nonlinear wave equation below the energy space

Oana Pocovnicu

Heriot-Watt University, Edinburgh, UK

November 19th, 2015

Partially based on joint work with Árpád Bényi and Tadahiro Oh
Analysis of Fluids and Related Topics
Princeton University

Energy-critical nonlinear wave equations

Energy-critical defocusing nonlinear wave equation:

$$
\begin{equation*}
\partial_{t}^{2} u-\Delta u+|u|^{\frac{4}{d-2}} u=0, \quad x \in \mathbb{R}^{d}, \quad d=3,4,5, \quad u(t, x) \in \mathbb{R} \tag{NLW}
\end{equation*}
$$

- Hamiltonian evolution corresponding to the conserved energy:

$$
E\left(u(t), \partial_{t} u(t)\right):=\int_{\mathbb{R}^{d}} \frac{1}{2}\left(\partial_{t} u\right)^{2}+\frac{1}{2}|\nabla u|^{2}+\frac{d-2}{2 d}|u|^{\frac{2 d}{d-2}} d x
$$

- Energy space: Recall Sobolev embedding $\dot{H}^{1}\left(\mathbb{R}^{d}\right) \subset L^{\frac{2 d}{d-2}}\left(\mathbb{R}^{d}\right)$

$$
\begin{aligned}
\mathcal{E}\left(\mathbb{R}^{d}\right) & =\left\{(f, g): E(f, g):=\int_{\mathbb{R}^{d}} \frac{1}{2} g^{2}+\frac{1}{2}|\nabla f|^{2}+\frac{d-2}{2 d}|f|^{\frac{2 d}{d-2}} d x<\infty\right\} \\
& =\dot{H}^{1}\left(\mathbb{R}^{d}\right) \times L^{2}\left(\mathbb{R}^{d}\right)=: \dot{\mathcal{H}}^{1}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

- Energy-critical equation: NLW is invariant under the scaling symmetry

$$
u_{\lambda}(t, x)=\lambda^{\frac{d-2}{2}} u(\lambda t, \lambda x)
$$

which leaves the $\dot{\mathcal{H}}^{1}\left(\mathbb{R}^{d}\right)$-norm invariant:

$$
\left\|\left(u_{\lambda}(0), \partial_{t} u_{\lambda}(0)\right)\right\|_{\dot{\mathcal{H}}^{1}}=\left\|\left(u(0), \partial_{t} u(0)\right)\right\|_{\dot{\mathcal{H}}^{1}}
$$

On deterministic global well-posedness

Defocusing nonlinear wave equation:

$$
\partial_{t}^{2} u-\Delta u+|u|^{p-1} u=0
$$

- Energy-critical: $p=1+\frac{4}{d-2}(p=5$ when $d=3 ; p=3$ when $d=4)$
- Energy-subcritical if $p<1+\frac{4}{d-2}$: GWP in \mathcal{H}^{1} via energy conservation
- Energy-supercritical if $p>1+\frac{4}{d-2}$: poorly understood

On the defocusing energy-critical NLW:

- Small energy data theory: Strauss (1968), Rauch (1981), Pecher (1984)
- Global regularity (smooth initial data lead to smooth solutions): Struwe (1994), Grillakis (1990, 1992), Shatah-Struwe (1993)
- GWP in the energy space: Shatah-Struwe (1994), Kapitanski (1994), Ginibre-Soffer-Velo (1992)
- Scattering, global space-time bounds: Bahouri-Shatah (1998), Bahouri-Gérard (1999), Nakanishi (1999), Tao (2006)
- Ill-posedness below the energy space: Christ-Colliander-Tao (2003)

Randomization

GOAL: Prove almost sure global well-posedness of the enery-critical NLW for rough and random initial data below the energy space
On a compact manifold M :

- There exists an orthonormal basis $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ of $L^{2}(M)$ consisting of eigenfunctions of the Laplace-Beltrami operator
- Given $u_{0}(x)=\sum_{n=1}^{\infty} c_{n} e_{n}(x) \in H^{s}(M)$, one may define its randomization by:

$$
u_{0}^{\omega}(x):=\sum_{n=1}^{\infty} g_{n}(\omega) c_{n} e_{n}(x)
$$

where $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ are independent random variables
On \mathbb{R}^{d} :

- There is no countable basis of $L^{2}\left(\mathbb{R}^{d}\right)$ of eigenfunctions of the Laplacian:
- work with eigenfunctions of the Laplacian with a confining potential such as harmonic oscillator $-\Delta+|x|^{2}$: Thomann (2009), Burq-Thomann-Tzvetkov (2010), Deng (2012), Poiret (2012)
- work on \mathbb{S}^{d} and transfer results to \mathbb{R}^{d} : De Suzzoni (2011, 2013, 2014)

Wiener randomization:

- Naturally associated with the Wiener decomposition:

$$
\mathbb{R}_{\xi}^{d}=\bigcup_{n \in \mathbb{Z}^{d}} Q_{n}, \quad \text { where } \quad Q_{n}:=n+\left[-\frac{1}{2}, \frac{1}{2}\right)^{d}
$$

- Note that $\sum_{n \in \mathbb{Z}^{d}} \chi_{Q_{n}}(\xi)=1$ and set $\chi_{Q_{n}}(D) u=\mathcal{F}^{-1}\left(\chi_{Q_{n}} \hat{u}\right)$:

$$
u=\sum_{n \in \mathbb{Z}^{d}} \chi_{Q_{n}}(D) u=\sum_{n \in \mathbb{Z}^{d}} \chi_{Q_{0}}(D-n) u
$$

- Given $\left(u_{0}, u_{1}\right)$, we define Wiener randomization by:

$$
\left(u_{0}^{\omega}, u_{1}^{\omega}\right):=\left(\sum_{n \in \mathbb{Z}^{d}} g_{n, 0}(\omega) \psi(D-n) u_{0}, \sum_{n \in \mathbb{Z}^{d}} g_{n, 1}(\omega) \psi(D-n) u_{1}\right)
$$

- $\psi(\xi-n)=$ smoothed version of $\chi_{Q_{n}}(\xi)=\chi_{Q_{0}}(\xi-n)$
- $\left\{g_{n, j}\right\}_{n \in \mathbb{Z}^{d}, j=0,1}=$ independent mean zero \mathbb{C}-valued random varibles with probability distributions $\mu_{n, j}$ satisfying:

$$
\int e^{\gamma \cdot x} d \mu_{n, j}(x) \leq e^{c|\gamma|^{2}}, \quad \text { for all } \gamma \in \mathbb{R}^{2}
$$

Basic properties of the Wiener randomization

- Naturally associated to function spaces from time-frequency analysis:

Modulation space: $\quad\|u\|_{M_{s}^{p, q}\left(\mathbb{R}^{d}\right)}=\left\|\langle n\rangle^{s}\right\| \psi(D-n) u\left\|_{L_{x}^{p}\left(\mathbb{R}^{d}\right)}\right\|_{\ell_{n}^{q}\left(\mathbb{Z}^{d}\right)}$
Wiener amalgam space: $\|u\|_{W_{s}^{p, q}\left(\mathbb{R}^{d}\right)}=\left\|\langle n\rangle^{s}\right\| \psi(D-n) u\left\|_{\ell_{n}^{p}\left(\mathbb{Z}^{d}\right)}\right\|_{L_{x}^{q}\left(\mathbb{R}^{d}\right)}$

- No gain of differentiability from the randomization: $u \in H^{s}\left(\mathbb{R}^{d}\right) \backslash H^{s+\varepsilon}\left(\mathbb{R}^{d}\right) \quad \Longrightarrow \quad u^{\omega} \in H^{s}\left(\mathbb{R}^{d}\right) \backslash H^{s+\varepsilon}\left(\mathbb{R}^{d}\right)$ almost surely
- Improved integrability - Paley-Zygmund theorem:
$u \in L^{2}\left(\mathbb{R}^{d}\right) \quad \Longrightarrow \quad u^{\omega} \in L^{p}\left(\mathbb{R}^{d}\right), 2 \leq p<\infty$, almost surely
- This yields improved probabilistic Strichartz estimates
\Longleftarrow one of the keys of our analysis
- Also employed by Lührman-Mendelson (2014), Zhang-Fang (2012)

Main result

Theorem 1: P. $2014(d=4,5)$, Oh-P. $2015(d=3)$

For $d=3,4,5$, let s satisfy:

$$
\frac{1}{2}<s<1 \text { when } d=3, \quad 0<s<1 \text { when } d=4, \quad 0 \leq s<1 \text { when } d=5
$$

Given $\left(u_{0}, u_{1}\right) \in \mathcal{H}^{s}\left(\mathbb{R}^{d}\right)$, let $\left(u_{0}^{\omega}, u_{1}^{\omega}\right)$ be its Wiener randomization. Then, the energy-critical defocusing NLW is almost surely globally well-posed (a.s. GWP). More precisely, there exists $\widetilde{\Omega} \subset \Omega$ with $P(\widetilde{\Omega})=1$ such that, for any $\omega \in \widetilde{\Omega}$, there exists a unique global solution of NLW with $\left.\left(u, \partial_{t} u\right)\right|_{t=0}=\left(u_{0}^{\omega}, u_{1}^{\omega}\right)$ in the class:

$$
\left(u, \partial_{t} u\right) \in\left(S(t)\left(u_{0}^{\omega}, u_{1}^{\omega}\right), \partial_{t} S(t)\left(u_{0}^{\omega}, u_{1}^{\omega}\right)\right)+C\left(\mathbb{R} ; \mathcal{H}^{1}\left(\mathbb{R}^{d}\right)\right) \subset C\left(\mathbb{R} ; \mathcal{H}^{s}\left(\mathbb{R}^{d}\right)\right)
$$

$S(t)=$ propagator for the linear wave equation: $S(t)(f, g):=\cos (t|\nabla|) f+\frac{\sin (t|\nabla|)}{|\nabla|} g$

- This is the first a.s. GWP result for energy-critical hyperbolic/dispersive PDEs (with initial data below the energy space)

Remarks

- Given $\left(u_{0}, u_{1}\right) \in \mathcal{H}^{s}\left(\mathbb{R}^{d}\right)$, define the induced probability measure on $\mathcal{H}^{s}\left(\mathbb{R}^{d}\right)$ by

$$
\mu(A)=P\left(\left(u_{0}^{\omega}, u_{1}^{\omega}\right) \in A\right)
$$

\Longrightarrow Theorem 1 states that there exists $\Sigma \subset \mathcal{H}^{s}$ with $\mu(\Sigma)=1$ such that for any $\left(\phi_{0}, \phi_{1}\right) \in \Sigma$, NLW admits a unique global solution with $\left.\left(u, \partial_{t} u\right)\right|_{t=0}=\left(\phi_{0}, \phi_{1}\right)$

- Question 1: Let $\Phi(t):\left(\phi_{0}, \phi_{1}\right) \mapsto u(t)$ denote the solution map. Then, is it possible that $\Phi(t)(\Sigma)$ has small measure for $t \neq 0$?
- Answer 1: No, $\mu(\Phi(t)(\Sigma))=1$ for all $t \in \mathbb{R}$

Remarks

- Given $\left(u_{0}, u_{1}\right) \in \mathcal{H}^{s}\left(\mathbb{R}^{d}\right)$, define the induced probability measure on $\mathcal{H}^{s}\left(\mathbb{R}^{d}\right)$ by

$$
\mu(A)=P\left(\left(u_{0}^{\omega}, u_{1}^{\omega}\right) \in A\right)
$$

\Longrightarrow Theorem 1 states that there exists $\Sigma \subset \mathcal{H}^{s}$ with $\mu(\Sigma)=1$ such that for any $\left(\phi_{0}, \phi_{1}\right) \in \Sigma$, NLW admits a unique global solution with $\left.\left(u, \partial_{t} u\right)\right|_{t=0}=\left(\phi_{0}, \phi_{1}\right)$

- Question 1: Let $\Phi(t):\left(\phi_{0}, \phi_{1}\right) \mapsto u(t)$ denote the solution map. Then, is it possible that $\Phi(t)(\Sigma)$ has small measure for $t \neq 0$?
- Answer 1: No, $\mu(\Phi(t)(\Sigma))=1$ for all $t \in \mathbb{R}$
- Question 2: Is the solution map continuous?
- Answer 2: Yes, it is continuous in probability $(d=3,4)$
\Longleftarrow notion introduced by Burq-Tzvetkov (2014). For fixed $T, R>0$:

$$
\begin{gathered}
\mu \otimes \mu\left(\left(\left(\phi_{0}, \phi_{1}\right),\left(\phi_{0}^{\prime}, \phi_{1}^{\prime}\right)\right) \in\left(\mathcal{H}^{s}\right)^{2}:\left\|\Phi(t)\left(\phi_{0}, \phi_{1}\right)-\Phi(t)\left(\phi_{0}^{\prime}, \phi_{1}^{\prime}\right)\right\|_{L^{\infty}\left([0, T] ; \mathcal{H}^{s}\right)}>\delta\right. \\
\left.\mid\left(\phi_{0}, \phi_{1}\right),\left(\phi_{0}^{\prime}, \phi_{1}^{\prime}\right) \in B_{R} \text { and }\left\|\left(\phi_{0}, \phi_{1}\right)-\left(\phi_{0}^{\prime}, \phi_{1}^{\prime}\right)\right\|_{\mathcal{H}^{s}}<\eta\right) \leq g(\delta, \eta),
\end{gathered}
$$

where $\lim _{\eta \rightarrow 0} g(\delta, \eta)=0$ for each fixed $\delta>0$

Globalization arguments in the probabilistic setting

- Invariant measure argument: "use the invariance of Gibbs measures in the place of conservation laws":
Bourgain (1994, 1996, 1997), Tzvetkov (2006), Burq-Tzvetkov (2007, 2008),
Oh (2009), Nahmod-Oh-Rey-Bellet-Staffilani (2012), De Suzzoni (2013),
Deng (2012), Richards (2012), Bourgain-Bulut (2013), ...
- Probabilistic adaptations of deterministic globalization arguments:
- Probabilistic high-low decomposition method (subcritical): Colliander-Oh (2012), Lührmann-Mendelson (2014)
- Probabilistic a priori bound on the energy (subcritical): Burq-Tzvetkov (2014), Lührmann-Mendelson (2015)
- Probabilistic compactness method: Nahmod-Pavlović-Staffilani (2013), Burq-Thomann-Tzvetkov (2012)
- Theorem 1 considers the energy-critical NLW
\Longrightarrow We introduce a new globalization method: probabilistic perturbation theory

Probabilistic perturbation theory

- Perturbation theory was used in the deterministic setting to obtain GWP:
- energy-critical NLS: Colliander-Keel-Staffillani-Takaoka-Tao (2008), energy-critical NLW: Kenig-Merle (2008)
- NLS with combined power nonlinearity: Tao-Vişan-Zhang (2007), Killip-Oh-P.-Vişan (2012)
- First instance in the probabilistic setting to obtain a.s. GWP
- Given randomized $\left(u_{0}^{\omega}, u_{1}^{\omega}\right)$, we consider:
- linear part $z^{\omega}:=S(t)\left(u_{0}^{\omega}, u_{1}^{\omega}\right)$: rough but random (better integrability)
- nonlinear part $v^{\omega}:=u-z^{\omega}$: "deterministic" but smoother
- Nonlinear part v^{ω} satisfies the perturbed energy-critical NLW:

$$
\left\{\begin{array}{l}
\partial_{t}^{2} v^{\omega}-\Delta v^{\omega}+F\left(v^{\omega}+z^{\omega}\right)=0 \\
\left.\left(v^{\omega}, \partial_{t} v^{\omega}\right)\right|_{t=0}=(0,0),
\end{array} \quad F(u):=|u|^{\frac{4}{d-2}} u\right.
$$

- $F\left(v^{\omega}+z^{\omega}\right)=F\left(v^{\omega}\right)+$ error containing z^{ω} improved probabilistic Strichartz estimates $\quad \Longrightarrow$ the error is "small"

Strategy of the proof

- Reduction to Almost a.s. GWP:

Given T and $\varepsilon>0$, there exists $\Omega_{T, \varepsilon}$ with $P\left(\Omega_{T, \varepsilon}^{c}\right)<\varepsilon$ such that for $\omega \in \Omega_{T, \varepsilon}$, there exists a unique solution u^{ω} to NLW on $[-T, T]$
"Almost a.s. GWP implies a.s. GWP":

- For fixed $\varepsilon>0$, let $T_{j}=2^{j}$ and $\varepsilon_{j}=2^{-j} \varepsilon$
\Longrightarrow By almost a.s. GWP, construct $\Omega_{j}:=\Omega_{T_{j}, \varepsilon_{j}}$
- Then, let $\Omega_{\varepsilon}=\bigcap_{j=1}^{\infty} \Omega_{j}$
\Longrightarrow NLW is globally well-posed on Ω_{ε} with $P\left(\Omega_{\varepsilon}^{c}\right)<\varepsilon$
- Now, let $\widetilde{\Omega}=\bigcup_{\varepsilon>0} \Omega_{\varepsilon}$
\Longrightarrow Then, NLW is globally well-posed on $\widetilde{\Omega}$ and $P\left(\widetilde{\Omega}^{c}\right)=\inf _{\varepsilon>0} \varepsilon=0$
(1) Improved probabilistic Strichartz estimates:
local-in-time, wide range of exponents
(2)"Good" deterministic local well-posedness theory for the perturbed energy-critical NLW
- In general, the local time of existence at a critical regularity depends on the profile of initial data
- "good" means that the local time of existence depends only on the Sobolev norm of the initial data and on the size of the perturbation:
- Ingredient 1: global solutions to the energy-critical defocusing NLW and their global space-time bounds
- Ingredient 2: perturbation theory
(3) Probabilistic a priori energy estimate - difficult in dimension $d=3$
(1) Closing the argument: energy estimate and probabilistic Strichartz estimates allow us to apply the "good" local well-posedness iteratively

Step 1: Probabilistic Strichartz estimates

Basic facts:

- Probabilistic fact: For any $p \geq 2$ and any $\left\{c_{n}\right\}_{n \in \mathbb{Z}^{d}} \in \ell^{2}\left(\mathbb{Z}^{d}\right)$, we have

$$
\left\|\sum_{n \in \mathbb{Z}^{d}} g_{n}(\omega) c_{n}\right\|_{L^{p}(\Omega)} \leq C \sqrt{p}\left\|c_{n}\right\|_{\ell_{n}^{2}\left(\mathbb{Z}^{d}\right)}
$$

- Bernstein's inequality: For a smooth projection \mathbf{P}_{N} onto frequencies $\{|\xi| \sim N\}$,

$$
\left\|\mathbf{P}_{N} f\right\|_{L^{q}\left(\mathbb{R}^{d}\right)} \lesssim N^{\frac{d}{p}-\frac{d}{q}}\left\|\mathbf{P}_{N} f\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}, \quad 1 \leq p \leq q \leq \infty
$$

The same estimate holds if \mathbf{P}_{N} is a projection onto a region of volume $\sim N^{d}$
$\Longrightarrow \quad$ projecting onto a cube of size one in the Fourier space:

$$
\|\psi(D-n) \phi\|_{L^{q}\left(\mathbb{R}^{d}\right)} \lesssim\|\psi(D-n) \phi\|_{L^{p}\left(\mathbb{R}^{d}\right)}, \quad 1 \leq p \leq q \leq \infty
$$

Namely, no loss of regularity to go from the L^{p}-norm to the L^{q}-norm, $q \geq p$

Proposition: Improved probabilistic Strichartz estimates

Let $I=[a, b] \subset \mathbb{R}$ be a compact time interval. If $\left(u_{0}, u_{1}\right) \in \dot{\mathcal{H}}^{0}\left(\mathbb{R}^{d}\right)$, then given $1 \leq q<\infty$ and $2 \leq r<\infty$, the following holds for all $\lambda>0$:

$$
P\left(\left\|S(t)\left(u_{0}^{\omega}, u_{1}^{\omega}\right)\right\|_{L_{t}^{q}\left(I ; L_{x}^{r}\right)}>\lambda\right) \leq C \exp \left(-c \frac{\lambda^{2}}{|I|^{\frac{2}{q}}\left\|\left(u_{0}, u_{1}\right)\right\|_{\mathcal{H}^{0}}^{2}}\right)
$$

- Let $\lambda=K\left\|\left(u_{0}, u_{1}\right)\right\|_{\dot{\mathcal{H}}^{0}}$. Then, Proposition states that a Strichartz estimate:

$$
\left\|S(t)\left(u_{0}^{\omega}, u_{1}^{\omega}\right)\right\|_{L_{t}^{q}\left(I ; L_{x}^{r}\right)} \leq K\left\|\left(u_{0}, u_{1}\right)\right\|_{\dot{\mathcal{H}}^{0}}
$$

holds with a large probability $(\rightarrow 1$ as $|I| \rightarrow 0$ or $K \rightarrow \infty)$

- Let $\lambda=K|I|^{\theta}$ with $\theta<\frac{1}{q}$. Then, Proposition states that

$$
\left\|S(t)\left(u_{0}^{\omega}, u_{1}^{\omega}\right)\right\|_{L_{t}^{q}\left(I ; L_{x}^{r}\right)} \leq K|I|^{\theta}
$$

holds with a large probability $(\rightarrow 1$ as $|I| \rightarrow 0$ or $K \rightarrow \infty)$

- Local-in-time Strichartz estimates combined with a simple fixed point argument yield a.s. local well-posedness (LWP)

Proof: We only estimate $\cos (t|\nabla|) u_{0}^{\omega}$. Let $p \geq \max (q, r)$. Then, we have

$$
\begin{aligned}
& \left(\mathbb{E}\left\|\cos (t|\nabla|) u_{0}^{\omega}\right\|_{L_{t}^{q^{q}\left(I ; L_{x}^{r}\right)}}^{p}\right)^{\frac{1}{p}} \leq\| \| \cos (t|\nabla|) u_{0}^{\omega}\left\|_{L^{p}(\Omega)}\right\|_{L_{I}^{q} L_{x}^{r}} \\
& \lesssim \sqrt{p}\left\|\left\|\psi(D-n) \cos (t|\nabla|) u_{0}\right\|_{\ell_{n}^{2}}\right\|_{L_{1}^{q} L_{x}^{r}} \\
& \stackrel{\text { Mink. }}{\lesssim} \sqrt{p}\left\|\left\|\psi(D-n) \cos (t|\nabla|) u_{0}\right\|_{L_{x}^{r}}\right\|_{L_{I}^{q} \ell_{n}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\text { Berns. }}{\lesssim} \sqrt{p}\left\|\left\|\psi(D-n) \cos (t|\nabla|) u_{0}\right\|_{L_{x}^{2}}\right\|_{L_{I}^{q} \ell_{n}^{2}} \\
& \sim \sqrt{p}|I|^{\frac{1}{q}}\left\|u_{0}\right\|_{L_{x}^{2}}
\end{aligned}
$$

Then, by Chebyshev's inequality we have

$$
P\left(\left\|S(t)\left(u_{0}^{\omega}, u_{1}^{\omega}\right)\right\|_{L_{t}^{q}\left(I ; L_{x}^{r}\right)}>\lambda\right)<\left(\frac{C|I|^{\frac{1}{q}} p^{\frac{1}{2}}\left(\left\|u_{0}\right\|_{L^{2}}+\left\|u_{1}\right\|_{\dot{H}^{-1}}\right)}{\lambda}\right)^{p}
$$

\Longrightarrow Strichartz estimates follow by choosing an appropriate value of $p \geq \max (q, r)$

Step 2: Deterministic local theory

- Given $I \subset \mathbb{R}$, let $X(I)=L_{t}^{\frac{d+2}{d-2}}\left(I ; L_{x}^{\frac{2(d+2)}{d-2}}\left(\mathbb{R}^{d}\right)\right)=\mathcal{H}^{1}$-admissible Strichartz space

Proposition: Standard local well-posedness

Let $t_{0} \in \mathbb{R}$ and $I \ni t_{0}$. Then, there exists $\delta>0$ sufficiently small such that if

$$
\|f\|_{X(I)} \leq \delta^{\frac{d-2}{d+2}} \quad \text { and } \quad\left\|S\left(t-t_{0}\right)\left(v_{0}, v_{1}\right)\right\|_{X(I)} \leq \delta
$$

the following perturbed NLW admits a unique solution $\left(v, \partial_{t} v\right) \in C\left(I ; \dot{\mathcal{H}}^{1}\left(\mathbb{R}^{d}\right)\right)$

$$
\left\{\begin{array}{l}
\partial_{t}^{2} v-\Delta v+F(v+f)=0 \\
\left.\left(v, \partial_{t} v\right)\right|_{t=t_{0}}=\left(v_{0}, v_{1}\right)
\end{array}\right.
$$

Moreover, if $T<\infty$ is the maximal time of existence of the solution v, then

$$
\|v\|_{X\left(\left[t_{0}, T\right]\right)}=\infty
$$

- Length $|I|$ of time interval depends on the profile of $\left(v_{0}, v_{1}\right)$
- we will design a "good" LWP so that $|I|$ only depends on $\left\|\left(v_{0}, v_{1}\right)\right\|_{\mathcal{H}^{1}}$

"Good" deterministic local theory

Proposition: "Good" local well-posedness

There exists sufficiently small $\tau=\tau\left(\left\|\left(v_{0}, v_{1}\right)\right\|_{\mathcal{H}^{1}\left(\mathbb{R}^{d}\right)}, K, \gamma\right)>0$ such that, if f satisfies the condition

$$
\|f\|_{X\left(\left[t_{0}, t_{0}+\tau_{*}\right]\right)} \leq K \tau_{*}^{\gamma}
$$

for some $0<\tau_{*} \leq \tau$, then the perturbed NLW

$$
\left\{\begin{array}{l}
\partial_{t}^{2} v-\Delta v+F(v+f)=0 \\
\left.\left(v, \partial_{t} v\right)\right|_{t=t_{0}}=\left(v_{0}, v_{1}\right)
\end{array}\right.
$$

admits a unique solution v in $C\left(\left[t_{0}, t_{0}+\tau_{*}\right] ; \mathcal{H}^{1}\left(\mathbb{R}^{d}\right)\right)$. Moreover,

$$
\left\|\left(v, \partial_{t} v\right)\right\|_{L_{t}^{\infty}\left(\left[t_{0}, t_{0}+\tau_{*}\right] ; \dot{\mathcal{H}}^{1}\right)}+\|v\|_{L_{t}^{q}\left(\left[t_{0}, t_{0}+\tau_{*}\right] ; L_{x}^{r}\left(\mathbb{R}^{d}\right)\right)} \leq C\left(\left\|\left(v_{0}, v_{1}\right)\right\|_{\dot{\mathcal{H}}^{1}\left(\mathbb{R}^{d}\right)}\right)
$$

for all wave admissible pairs (q, r), where $C(\cdot)$ is a positive non-decreasing function.

- Time length depends only on the size of initial data (and the perturbation)

Perturbation theory

Proposition: Perturbation theory

Let v be a solution of the perturbed equation:

$$
\partial_{t}^{2} v-\Delta v+|v|^{\frac{4}{d-2}} v=e
$$

with initial data $\left.\left(v, \partial_{t} v\right)\right|_{t=t_{0}}=\left(v_{0}, v_{1}\right) \in \mathcal{H}^{1}\left(\mathbb{R}^{d}\right)$, satisfying $\|v\|_{X(I)} \leq M$.
Given $\left(w_{0}, w_{1}\right) \in \mathcal{H}^{1}\left(\mathbb{R}^{d}\right)$, let w be the solution of the energy-critical NLW with initial data $\left.\left(w, \partial_{t} w\right)\right|_{t=t_{0}}=\left(w_{0}, w_{1}\right)$. Then, there exists $\varepsilon>0$ sufficiently small such that if

$$
\left\|\left(v_{0}-w_{0}, v_{1}-w_{1}\right)\right\|_{\dot{\mathcal{H}}^{1}\left(\mathbb{R}^{d}\right)} \leq \varepsilon \quad \text { and } \quad\|e\|_{L_{t}^{1}\left(I ; L_{x}^{2}\left(\mathbb{R}^{d}\right)\right)} \leq \varepsilon
$$

then the following holds for all wave admissible pairs (q, r) :

$$
\sup _{t \in I}\left\|\left(v(t)-w(t), \partial_{t} v(t)-\partial_{t} w(t)\right)\right\|_{\mathcal{H}^{1}} \leq C(M) \varepsilon
$$

- This proposition follows from iterative application of local argument via deterministic Strichartz estimates

Proof of the "good" LWP, $d=4$:

- Strichartz space $X(I)=L_{t}^{3}\left(I ; L_{x}^{6}\left(\mathbb{R}^{4}\right)\right), \quad$ Nonlinearity $F(u)=|u|^{2} u$
- Suffices to find τ such that $\|v\|_{L^{3}\left(\left[t_{0}, t_{0}+\tau\right], L_{x}^{6}\left(\mathbb{R}^{4}\right)\right)} \leq C\left(\left\|\left(v_{0}, v_{1}\right)\right\|_{\mathcal{H}^{1}\left(\mathbb{R}^{4}\right)}\right)$
- key fact: global solution w to the energy-critical defocusing NLW with initial data $\left(w, \partial_{t} w\right)_{\mid t=t_{0}}=\left(v_{0}, v_{1}\right) \in \mathcal{H}^{1}$ satisfies

$$
\|w\|_{L^{3}\left(\mathbb{R}, L_{x}^{6}\left(\mathbb{R}^{4}\right)\right)}<C\left(\left\|\left(v_{0}, v_{1}\right)\right\|_{\mathcal{H}^{1}\left(\mathbb{R}^{4}\right)}\right)
$$

\Longleftarrow concentration-compactness: Bahouri-Gérard (1999)

Proof of the "good" LWP, $d=4$:

- Strichartz space $X(I)=L_{t}^{3}\left(I ; L_{x}^{6}\left(\mathbb{R}^{4}\right)\right), \quad$ Nonlinearity $F(u)=|u|^{2} u$
- Suffices to find τ such that $\|v\|_{L^{3}\left(\left[t_{0}, t_{0}+\tau\right], L_{x}^{6}\left(\mathbb{R}^{4}\right)\right)} \leq C\left(\left\|\left(v_{0}, v_{1}\right)\right\|_{\mathcal{H}^{1}\left(\mathbb{R}^{4}\right)}\right)$
- key fact: global solution w to the energy-critical defocusing NLW with initial data $\left(w, \partial_{t} w\right)_{\mid t=t_{0}}=\left(v_{0}, v_{1}\right) \in \mathcal{H}^{1}$ satisfies

$$
\|w\|_{L^{3}\left(\mathbb{R}, L_{x}^{L}\left(\mathbb{R}^{4}\right)\right)}<C\left(\left\|\left(v_{0}, v_{1}\right)\right\|_{\mathcal{H}^{1}\left(\mathbb{R}^{4}\right)}\right)
$$

\Longleftarrow concentration-compactness: Bahouri-Gérard (1999)

- Divide $\left[t_{0}, t_{0}+\tau\right]$ into $J=J\left(\left\|\left(v_{0}, v_{1}\right)\right\|_{\mathcal{H}^{1}\left(\mathbb{R}^{4}\right)}, \eta\right)$ sub-intervals $I_{j}=\left[t_{j}, t_{j+1}\right]$ such that $\|w\|_{L^{3}\left(I_{j}, L_{x}^{6}\left(\mathbb{R}^{4}\right)\right)} \sim \eta \ll 1$
- On I_{0} : Verify the hypotheses of Perturbation theory via Duhamel formula and deterministic Strichartz estimates
- Perturbation theory on $I_{0} \Longrightarrow \sup _{t \in I_{0}}\left\|\left(v-w, \partial_{t} v-\partial_{t} w\right)\right\|_{\mathcal{H}^{1}} \leq C(4 \eta) \varepsilon$ \Longrightarrow In particular, $\left\|\left(v\left(t_{1}\right)-w\left(t_{1}\right), \partial_{t} v\left(t_{1}\right)-\partial_{t} w\left(t_{1}\right)\right)\right\|_{\mathcal{H}^{1}} \leq C(4 \eta) \varepsilon$
- Apply iteratively the perturbation proposition on the intervals I_{j}, $j=1, \ldots, J=J\left(\left\|\left(v_{0}, v_{1}\right)\right\|_{\mathcal{H}^{1}\left(\mathbb{R}^{d}\right)}, \eta\right)$
- In the end, we obtain a condition on τ depending only on $\left\|\left(v_{0}, v_{1}\right)\right\|_{\mathcal{H}^{1}\left(\mathbb{R}^{d}\right)}, K$, and γ

Step 3: Probabilistic a priori energy estimate

In Step 2, we showed that the time of local existence depends only on the \mathcal{H}^{1}-norm \Longrightarrow we need a long-time energy estimate with large probability

Proposition: Probabilistic energy bound

Let $d=4$ or $5,0<\varepsilon \ll 1, T>0$. Then, there exists a set $\tilde{\Omega}_{T, \varepsilon} \subset \Omega$ with $P\left(\tilde{\Omega}_{T, \varepsilon}^{c}\right)<\varepsilon$ such that for all $t \in[0, T]$ and all $\omega \in \tilde{\Omega}_{T, \varepsilon}$:

$$
\left\|\left(v^{\omega}, \partial_{t} v^{\omega}\right)\right\|_{L_{t}^{\infty}\left([0, T] ; \mathcal{H}^{1}\left(\mathbb{R}^{d}\right)\right)} \leq C\left(T, \varepsilon,\left\|\left(u_{0}, u_{1}\right)\right\|_{\mathcal{H}^{s}\left(\mathbb{R}^{d}\right)}\right)
$$

- ($d=4$) By taking a time derivative of $E\left(v^{\omega}(t)\right)$ and Gronwall's inequality:

$$
\left(E\left(v^{\omega}(t)\right)\right)^{\frac{1}{2}} \leq C\left\|z^{\omega}\right\|_{L^{3}\left([0, T] ; L_{x}^{6}\left(\mathbb{R}^{4}\right)\right)}^{3} e^{C\left\|z^{\omega}\right\|_{L_{t}^{1}\left([0, T] ; L_{x}^{\infty}\left(\mathbb{R}^{4}\right)\right)}}
$$

- By probabilistic Strichartz estimates, there exists $\tilde{\Omega}_{T, \varepsilon} \subset \Omega$ with $P\left(\tilde{\Omega}_{T, \varepsilon}^{c}\right)<\varepsilon$ such that for any $\omega \in \tilde{\Omega}_{T, \varepsilon}$:

$$
\left\|z^{\omega}\right\|_{L^{3}\left([0, T], L_{x}^{6}\right) \cap L^{1}\left([0, T] ; L_{x}^{\infty}\right)} \leq K T^{\theta}\left\|u_{0}\right\|_{\mathcal{H}^{s}\left(\mathbb{R}^{4}\right)}
$$

Step 4: Closing the argument

Goal: Prove "almost" almost sure GWP:
Given $\varepsilon \ll 1$ and $T \gg 1$, there exists $\Omega_{T, \varepsilon} \subset \Omega$ with $P\left(\Omega_{T, \varepsilon}^{c}\right)<\varepsilon$ such that for any $\omega \in \Omega_{T, \varepsilon}$ NLW admits a unique solution u^{ω} on $[0, T]$

- Probabilistic energy estimate (Step 3): for any $\omega \in \tilde{\Omega}_{T, \varepsilon}$,

$$
\sup _{t \in[0, T]}\left\|\left(v^{\omega}(t), \partial_{t} v^{\omega}(t)\right)\right\|_{\mathcal{H}^{1}\left(\mathbb{R}^{d}\right)} \leq C\left(T, \varepsilon,\left\|\left(u_{0}, u_{1}\right)\right\|_{\mathcal{H}^{s}\left(\mathbb{R}^{d}\right)}\right)
$$

- By probabilistic Strichartz estimates, there exists $\hat{\Omega}_{T, \varepsilon}$ with $P\left(\hat{\Omega}_{T, \varepsilon}^{c}\right)<\varepsilon$ such that

$$
\left\|z^{\omega}\right\|_{X\left([k \tau,(k+1) \tau] \times \mathbb{R}^{d}\right)} \leq K \tau^{\gamma}, \quad k=0,1, \ldots
$$

- For any $\omega \in \Omega_{T, \varepsilon}:=\tilde{\Omega}_{T, \varepsilon} \cap \hat{\Omega}_{T, \varepsilon}$, the hypotheses of the "good" LWP are satisfied on each $[k \tau,(k+1) \tau]$ with $\tau=\tau\left(T, \varepsilon,\left\|\left(u_{0}, u_{1}\right)\right\|_{\mathcal{H}^{s}\left(\mathbb{R}^{d}\right)}, K, \gamma\right)$
- Apply iteratively the "good" local well-posedness for the perturbation $f=z^{\omega}$

On \mathbb{R}^{3}

Theorem 2: Oh-P. 2015

The energy-critical defocusing quintic NLW on \mathbb{R}^{3} is a.s. GWP with rough random data below the energy space.

Main difficulty: Probabilistic energy bound for nonlinear part v^{ω}

$$
\left|\frac{d}{d t} E\left(v^{\omega}(t)\right)\right| \leq\left\|\partial_{t} v^{\omega}\right\|_{L_{x}^{2}}\left\|F\left(v^{\omega}+z^{\omega}\right)-F\left(v^{\omega}\right)\right\|_{L_{x}^{2}}
$$

and

$$
\left\|z^{\omega}\left|v^{\omega}\right| \frac{4}{d-2}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq\left\|z^{\omega}\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}\left\|v^{\omega}\right\|_{L^{\frac{8}{d-2}}\left(\mathbb{R}^{d}\right)}^{\frac{4}{d-2}}
$$

But $E\left(v^{\omega}\right)$ only controls the $L^{p}\left(\mathbb{R}^{d}\right)$-norms of v^{ω} for $2 \leq p \leq \frac{2 d}{d-2}$
\Longrightarrow one needs $\frac{8}{d-2} \leq \frac{2 d}{d-2} \quad \Longleftrightarrow \quad d \geq 4$
New ingredients:

- Integration by parts in time
- New probabilistic Strichartz estimate involving L_{t}^{∞} :

$$
P\left(\left\|S(t)\left(u_{0}^{\omega}, u_{1}^{\omega}\right)\right\|_{L_{t}^{\infty}\left([0, T] ; L_{x}^{r}\left(\mathbb{R}^{3}\right)\right)}>\lambda\right) \lesssim T \exp \left(-c \frac{\lambda^{2}}{\left.\max \left(1_{;} T^{2}\right)\left\|\left(u_{0}, u_{1}\right)\right\|_{\mathcal{H}^{\varepsilon}\left(\mathbb{R}^{3}\right)}^{2}\right) \rho_{22} / 25}\right.
$$

Periodic NLW

Theorem 3: Oh-P. 2015

The energy-critical defocusing NLW on $\mathbb{T}^{d}, d=3,4,5$ is a.s. GWP with rough random data below the energy space.

- Suffices to prove almost a.s. GWP
- Reduce the problem on \mathbb{T}^{d} to \mathbb{R}^{d} by the "finite speed of propagation" of NLW

$$
\left\{\begin{array}{l}
\partial_{t}^{2} \mathbf{u}^{\omega}-\Delta \mathbf{u}^{\omega}+\left|\mathbf{u}^{\omega}\right|^{\frac{4}{d-2}} \mathbf{u}^{\omega}=0 \\
\left.\left(\mathbf{u}^{\omega}, \partial_{t} \mathbf{u}^{\omega}\right)\right|_{t=0}=\left(\mathbf{u}_{0, T}^{\omega}, \mathbf{u}_{1, T}^{\omega}\right)
\end{array} \quad(t, x) \in[0, T] \times \mathbb{R}^{d}\right.
$$

where $\left(\mathbf{u}_{0, T}^{\omega}, \mathbf{u}_{1, T}^{\omega}\right)=\left(\eta_{T} u_{0}^{\omega}, \eta_{T} u_{1}^{\omega}\right)$ with smooth cutoff $\eta_{T}(x) \equiv 1$ on $\langle T\rangle \cdot \mathbb{T}^{d}$
$\Longrightarrow \widehat{\mathbf{u}_{j, T}^{\omega}}(\xi)=\widehat{\eta_{T} u_{j}^{\omega}}(\xi)=\sum_{n \in \mathbb{Z}^{d}} \widehat{\eta_{T}}(\xi-n) g_{n, j}(\omega) \widehat{u}_{j}(n), \quad j=0,1$
Two issues:

- Given $\xi \in \mathbb{R}^{d}$, we see infinitely many g_{n} 's
\Longrightarrow New probabilistic Strichartz estimates are needed
- Must justify the finite speed of propagation for rough solutions

On nonlinear Schrödinger equations

Conditional a.s. GWP of the cubic NLS on $\mathbb{R}^{d}, d \geq 3$

Theorem 4: Bényi-Oh-P. 2015

The defocusing cubic NLS on $\mathbb{R}^{d}, d \geq 3$ is a.s. GWP with rough random data below the scaling critical regularity, provided that
(1) probabilistic a priori energy bound for the nonlinear part
(2) $(d \neq 4)$ global space-time bound for solutions to deterministic cubic NLS

- Space-time bound holds in the energy-critical case $d=4$ (Rickman-Vişan 2007) When $d \neq 4$, this question is widely open
- Condition 1 is in the spirit of the conditional GWP in $H^{s_{\text {crit }}}\left(\mathbb{R}^{d}\right)$ of the energy-supercritical NLW and NLS (Kenig-Merle 2010, Killip-Vişan 2010):
- For NLS, we need to use more intricate spaces than that for NLW: Fourier restriction norm method \& U^{2}, V^{2} spaces

Q: Probabilistic a priori energy estimate when $d=4$?

Open problem: Prove almost sure scattering (linear asymptotic behavior) for NLW (and NLS) on \mathbb{R}^{d} with rough random large data

- Small data: probabilistic global-in-time Strichartz estimates and a standard fixed point argument (Lührmann-Mendelson 2014)
- Standard way of proving scattering is via global space-time bounds
- Unfortunately, all our estimates are on finite time intervals $[0, T]$ and space-time bounds (on the nonlinear part) grow to ∞ as $T \rightarrow \infty$
- New ideas are needed

