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Energy-critical nonlinear wave equations

Energy-critical defocusing nonlinear wave equation:
(NLW) 8fu—Au+|u|ﬁu:O, reRY d=3,45 wu(t,z)eR

@ Hamiltonian evolution corresponding to the conserved energy:

1 d
B(u(t), dru(t)) = / S @) + 51V + R e
Rd
@ Energy space: Recall Sobolev embedding H 1(]Rd) C Lﬂlf{d2 (Rd)

1
R
= H'(RY) x L*(R?) =: #(Rd)
@ Energy-critical equation: NLW is invariant under the scaling symmetry

ux(t,z) = )\%u()\t7 Az),

which leaves the H'(R%)-norm invariant:

[1(ux(0), eur(0)) |32 = [[(w(0), Deu(0)) |32
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On deterministic global well-posedness

Defocusing nonlinear wave equation:

Ot — Au+ |ulPlu=0
Energy-critical: p =1+ d 5 (p=>5 when d = 3; p=3 when d = 4)
Energy-subcritical if p < 1+ ﬁ: GWP in H' via energy conservation

Energy-supercritical if p > 1 + ﬁ: poorly understood

On the defocusing energy-critical NLW:

Small energy data theory: Strauss (1968), Rauch (1981), Pecher (1984)

Global regularity (smooth initial data lead to smooth solutions): Struwe
(1994), Grillakis (1990, 1992), Shatah-Struwe (1993)

GWP in the energy space: Shatah-Struwe (1994), Kapitanski (1994),
Ginibre-Soffer-Velo (1992)

Scattering, global space-time bounds: Bahouri-Shatah (1998),
Bahouri-Gérard (1999), Nakanishi (1999), Tao (2006)

Ill-posedness below the energy space: Christ-Colliander-Tao (2003)



Randomization

GOAL: Prove almost sure global well-posedness of the enery-critical NLW
for rough and random initial data below the energy space

On a compact manifold M:

@ There exists an orthonormal basis {e, }nen of L?(M) consisting of
eigenfunctions of the Laplace-Beltrami operator

o Given uo(z) => o7

o1 tnen(z) € H*(M), one may define its randomization by:

ug (x) = Z gn(w)cnen(z)
where {gn }nen are independent random variables
On R%:
@ There is no countable basis of L?(R?) of eigenfunctions of the Laplacian:

e work with eigenfunctions of the Laplacian with a confining potential
such as harmonic oscillator —A + ||?: Thomann (2009),
Burg-Thomann-Tzvetkov (2010), Deng (2012), Poiret (2012)

o work on S? and transfer results to R%: De Suzzoni (2011, 2013, 2014)



Wiener randomization:

o Naturally associated with the Wiener decomposition:

Rg: U Qn, where Q. :zn—l—[—%,%)d

nezd

o Note that " ;4 X@. (£) =1 and set xq, (D)u = F " (xq.4):

u=3" xo.(D)u= 3" x0,(D —n)u

nezd nezd
@ Given (ug,u1), we define Wiener randomization by:
(W) = (2 gmol)b(D = muo, 3 g ()(D — myus)
nezd nezd

o (£ —n) = smoothed version of xq, (§) = x0,(§ — n)
° {gn,j}neZdJ:OJ = independent mean zero C-valued random varibles

with probability distributions p,,; satisfying:

/e'y'xdun,]-(;t) < ech|2, for all v € R?
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Basic properties of the Wiener randomization

e Naturally associated to function spaces from time-frequency analysis:

Modulation space: H’LLHMwa(Rd) = H(n)s||¢(D — n)uHLg(Rd)

25, (24)

Wiener amalgam space: ||ullyyp.aga) = | (n)*llep(D — n)qug(Zd)HLg(Rd)

No gain of differentiability from the randomization:
ue€ H (RY)\ H°t*(RY) = ¥ € H*(RY)\ H ™ (R?) almost surely

Improved integrability - Paley-Zygmund theorem:
we€ L?(RY) = u* € LP(RY), 2 < p < oo, almost surely

This yields improved probabilistic Strichartz estimates

<= one of the keys of our analysis

Also employed by Liithrman-Mendelson (2014), Zhang-Fang (2012)



Main result

Theorem 1:
For d = 3,4, 5, let s satisfy:

1<s<lwhend=3, 0<s<lwhend=4, 0<s<1whend=>5.

Given (uo,u1) € H*(R?), let (ug,uf) be its Wiener randomization. Then, the

energy-critical defocusing NLW is almost surely globally well-posed (a.s. GWP).

More precisely, there exists Q C Q with P(S~2) = 1 such that, for any w € €0, there

exists a unique global solution of NLW with (u, dyu)|t=0 = (ug, uf’) in the class:

(u, Bpu) € (S(t)(ug, us), DeS(t)(us, u)) + C(R; H' (RY)) € C(R;H*(RY)).

S(t) = propagator for the linear wave equation: S(t)(f,g) := cos(t|V|)f + %

@ This is the first a.s. GWP result for energy-critical hyperbolic/dispersive PDEs

(with initial data below the energy space)



Remarks

e Given (ug,u1) € H*(R?), define the induced probability measure on #*(R%) by
ulA) = P((u5 ) € A)
== Theorem 1 states that there exists ¥ C H*® with p(X) = 1 such that for any
(¢o, ¢1) € ¥, NLW admits a unique global solution with (u,d:u)|t=0 = (¢, ¢1)

@ Question 1: Let ®(t) : (¢o, #1) — u(t) denote the solution map.
Then, is it possible that ®(¢)(X2) has small measure for ¢ # 07
@ Answer 1: No, u(®(t)(X)) =1forallt € R



Remarks

e Given (ug,u1) € H*(R?), define the induced probability measure on #*(R%) by
p(A) = P((ug,ut) € A)
== Theorem 1 states that there exists ¥ C H*® with p(X) = 1 such that for any

(¢o, ¢1) € ¥, NLW admits a unique global solution with (u,d:u)|t=0 = (¢, ¢1)

@ Question 1: Let ®(t) : (¢o, #1) — u(t) denote the solution map.
Then, is it possible that ®(¢)(X2) has small measure for ¢ # 07
@ Answer 1: No, u(®(t)(X)) =1forallt € R

@ Question 2: Is the solution map continuous?

@ Answer 2: Yes, it is continuous in probability (d = 3,4)
<= notion introduced by Burg-Tzvetkov (2014). For fixed T, R > 0:

ﬂ®“(((¢0’¢1)7 (¢67¢11)) € (%8)2 : ||(I)(t)(¢)0:¢1) - é(t)((blo’¢3)HLOO([0,T];HS) >4
’ (¢0,01), (60, #1) € Br and [[(do, ¢1) — (¢4, ¢1)[l2e= < n) < g(8,m),

where lim ¢(d,n) = 0 for each fixed § > 0
n—0



Globalization arguments in the probabilistic setting

@ Invariant measure argument: “use the invariance of Gibbs measures in
the place of conservation laws”:
Bourgain (1994, 1996, 1997), Tzvetkov (2006), Burg-Tzvetkov (2007, 2008),
Oh (2009), Nahmod-Oh-Rey-Bellet-Staffilani (2012), De Suzzoni (2013),
Deng (2012), Richards (2012), Bourgain-Bulut (2013), ...

@ Probabilistic adaptations of deterministic globalization arguments:

o Probabilistic high-low decomposition method (subcritical):
Colliander-Oh (2012), Lithrmann-Mendelson (2014)

o Probabilistic a priori bound on the energy (subcritical):
Burg-Tzvetkov (2014), Lithrmann-Mendelson (2015)

e Probabilistic compactness method: Nahmod-Pavlovié-Staffilani (2013),
Burg-Thomann-Tzvetkov (2012)

@ Theorem 1 considers the energy-critical NLW

=—> We introduce a new globalization method: probabilistic perturbation theory

9/25



Probabilistic perturbation theory

@ Perturbation theory was used in the deterministic setting to obtain GWP:

o energy-critical NLS: Colliander-Keel-Staffillani-Takaoka-Tao (2008),
energy-critical NLW: Kenig-Merle (2008)

o NLS with combined power nonlinearity: Tao-Visan-Zhang (2007),
Killip-Oh-P.-Visan (2012)

o First instance in the probabilistic setting to obtain a.s. GWP
@ Given randomized (ug,uf), we consider:

o linear part z¢ := S(t)(uf, u?): rough but random (better integrability)

w

e nonlinear part v* := u — 2*“: “deterministic” but smoother

@ Nonlinear part v satisfies the perturbed energy-critical NLW:

{6&# —Av¥ + F(v¥+2¥) =0

4
w w F(u) :=|u|d—2u
(’U 7815'0 )|t:0 = (07 0)7

F(v¥ + 2¥) = F(v*”) + error containing z“

improved probabilistic Strichartz estimates =  the error is “small”



Strategy of the proof

Q@ Reduction to Almost a.s. GWP:
Given T and € > 0, there exists Q7 . with P(Q7 .) < € such that for w € Qr,
there exists a unique solution u* to NLW on [T, T]
“Almost a.s. GWP implies a.s. GWP”:
o For fixed £ > 0, let T; = 27 and ¢; = 277¢
= By almost a.s. GWP, construct §2; := Qr;
o Then, let Q. = (2, Q;
= NLW is globally well-posed on . with P(Qf) < ¢
e Now, let Q= Ueso Qe
= Then, NLW is globally well-posed on Q and P(ﬁc) =infes0e =0

€5

© Improved probabilistic Strichartz estimates:
local-in-time, wide range of exponents



Q “Good” deterministic local well-posedness theory
for the perturbed energy-critical NLW

o In general, the local time of existence at a critical regularity depends on
the profile of initial data

e “good” means that the local time of existence depends only on the Sobolev
norm of the initial data and on the size of the perturbation:

o Ingredient 1: global solutions to the energy-critical defocusing NLW and
their global space-time bounds

o Ingredient 2: perturbation theory

@ Probabilistic a priori energy estimate - difficult in dimension d = 3

@ Closing the argument: energy estimate and probabilistic Strichartz

estimates allow us to apply the “good” local well-posedness iteratively



Step 1: Probabilistic Strichartz estimat

Basic facts:

@ Probabilistic fact: For any p > 2 and any {c,},cza € £2(Z%), we have

| 3 an@en

nezd

< n
Lr(@) = CVplle He%(zd)

@ Bernstein’s inequality: For a smooth projection P onto frequencies {|¢| ~ N},

d_ d

PN fllagsy S NP a[Pnfllpgay, 1<p<g<oo
The same estimate holds if Py is a projection onto a region of volume ~ N¢

=  projecting onto a cube of size one in the Fourier space:
(D — n)¢||Lq(Rd) S (D = ”)(f’HLP(Rd)y 1<p<g<oo

Namely, no loss of regularity to go from the LP-norm to the L%-norm, g > p



PI‘OpOSitiOHI Improved probabilistic Strichartz estimates

Let I = [a,b] C R be a compact time interval. If (uo,u1) € H°(R?), then given
1 < g <ooand?2<r < oo, the following holds for all A > 0:

w w )\2
P( H‘S(t)(“07u1)||L§(I;L;) > \) < Cexp ( - C—)

2
1410, ur)l3,0

@ Let A = K||(uo,u1)||40. Then, Proposition states that a Strichartz estimate:
IS (s )l o7,y < Ko, wn)ll o
holds with a large probability (— 1 as |[I| — 0 or K — c0)
o Let A= K|I|” with 0 < %. Then, Proposition states that
1SS w1, < K17
holds with a large probability (— 1 as |[I| — 0 or K — c0)

@ Local-in-time Strichartz estimates combined with a simple fixed point argument

yield a.s. local well-posedness (LWP)



Proof: We only estimate cos(t|V|)u§. Let p > max(g,r). Then, we have

1
(BN cos(t1V s [y rp, ) < I cos(tIT18 ool
S VB|Ile(D =) cos(tIV uoll 5

LiLy

Mink.
S VB |l =n)costV ol |, ,
I"n

Berns.
S VP |le(D =) cos(tlVDuoll s |, ,
In

1
~ VAl uollzz

Then, by Chebyshev’s inequality we have

PS8 L > ) < (

1 1
Cllap? (luollz + [luallz-1)

p
: )
= Strichartz estimates follow by choosing an appropriate value of p > max(q, r)




Step 2: Deterministic local theory

Proposition: Standard local well-posedness

Let to € R and I 3 tg. Then, there exists § > 0 sufficiently small such that if
Ifllxcy <677 and [|S(t — to) (o, v)lxcr) <,
the following perturbed NLW admits a unique solution (v, dyv) € C(I; H*(R))
atzv—Av—l-F(v—l—f) =0
{(”’6tv)’t=t0 = (vo,v1).
Moreover, if T' < oo is the maximal time of existence of the solution v, then

vl x (tto, 1) = 0

@ Length |I] of time interval depends on the profile of (vg, v1)

o we will design a “good” LWP so that |I| only depends on |[(vo,v1) |31

16 / 25



“Good” deterministic local theory

Proposition: “Good” local well-posedness

There exists sufficiently small 7 = 7([|(vo, v1)||31 (ra), K,7) > 0 such that, if f
satisfies the condition

£l x (0, totra]) < KT

for some 0 < 7, < 7, then the perturbed NLW

{8t2v—Av+F(v+f)=0

(U73tv)|t:t0 = (vo,v1)
admits a unique solution v in C([to, to + 7]; H* (R?)). Moreover,

10, 8:0) | oo (120, t0+rulirety F 10l (10 0 4 mtszr ey < C(Il(v0, 1) 51 ey )

for all wave admissible pairs (g, r), where C(-) is a positive non-decreasing function.

4

@ Time length depends only on the size of initial data (and the perturbation)



Perturbation theory

PI‘OpOSitiOHI Perturbation theory

Let v be a solution of the perturbed equation:

dfv — Av + \v|ﬁv =e,
with initial data (v, atv)’t:to = (vo,v1) € H'(R?), satistying ||v||x ) < M.
Given (wo,w1) € H(R?), let w be the solution of the energy-critical NLW with
initial data (w, dyw)|
that if

iy = (wo,w1). Then, there exists e > 0 sufficiently small such

[(vo — wo,v1 —w1)ll31gay <€ and  |lell L1 g;p2 ey < &
then the following holds for all wave admissible pairs (g, r):

sup [|(v(t) — w(t), Bpo(t) — Bsw(t)) |l < C(M)e

tel

@ This proposition follows from iterative application of local argument via
deterministic Strichartz estimates



Proof of the “good” LWP, d = 4:
e Strichartz space X (1) = L} (I; LS(R")), Nonlinearity F(u) = |u|*u
@ Suffices to find 7 such that HU||L3([t0,t0+7—],L2(]R4)) <C (H(U071)1)H’H1(R4)>

@ key fact: global solution w to the energy-critical defocusing NLW with initial

data (w, Oyw) (¢, = (vo,v1) € H' satisfies

||w||L3(R,Lg(R4)) <C (||(U07 U1)||H1(R4))

<= concentration-compactness: Bahouri-Gérard (1999)

19 /25



Proof of the “good” LWP, d = 4:

Strichartz space X (I) = L{(I; L3(R")), Nonlinearity F(u) = |u|*u

Suffices to find 7 such that HU||L3([t0,t0+7—],L2(]R4)) < C (H(U071)1)H’H1(R4)>

key fact: global solution w to the energy-critical defocusing NLW with initial
data (w, Oyw) (¢, = (vo,v1) € H' satisfies

||w||L3(R,Lg(R4)) <C (||(U07U1)||’H1(]R4))
<= concentration-compactness: Bahouri-Gérard (1999)
Divide [to, to + 7] into J = J(||(vo, v1) |31 (r4y,n) sub-intervals I; = [t;,t;11]
such that ||| 131, L6 @e)) ~n <1
On Iy: Verify the hypotheses of Perturbation theory via Duhamel formula and
deterministic Strichartz estimates
Perturbation theory on Ip = sup,¢, ||(v — w, 80 — 8,5w)HH1 < C(4n)e
= In particular, ||(v(t1) — w(t1), Orv(t1) — Ow(ts)) HHl < C(4n)e
Apply iteratively the perturbation proposition on the intervals I;,
=10 =J((vo,v1)ll31(may,m)

In the end, we obtain a condition on 7 depending only on ||(vo,v1)l31 rdy, K,
and y

19 /25



Step 3: Probabilistic a priori energy estimate

In Step 2, we showed that the time of local existence depends only on the H'-norm
—> we need a long-time energy estimate with large probability

Pl‘OpOSitiODI Probabilistic energy bound

Let d=4o0r5,0<e <1, T >0. Then, there exists a set QT,E C Q with
P(Q5..) < ¢ such that for all ¢ € [0,7] and all w € Qr..:

||(Uw>8tvw)||L?0([0yT];H1(Rd)) < C (T7 & ||(u07u1)H’Hs(Rd))

o (d =4) By taking a time derivative of E(v*(t)) and Gronwall’s inequality:

Cl=“NL1 ([0, 7); .90 (24))

1
(E(Uw(t))) F < CHZWHis([o,T];Lgi(R‘l))e

@ By probabilistic Strichartz estimates, there exists QT,E C Q with P(Q%ﬁa) <e
such that for any w € QT’E:

12 Il 3 0,71, ) (0,73 2.55) < KT |[uolles sy



Step 4: Closing the argument

Goal: Prove “almost” almost sure GWP:

Given € < 1 and T > 1, there exists Q7. C Q with P(Q% ) < e such that for
any w € Qr.. NLW admits a unique solution u“ on [0, 7]

@ Probabilistic energy estimate (Step 3): for any w € QT,E,

S (W™ (), 060" (1)) l301.(ay < C(T e, (w0, 1) |35 za))
€lo,

@ By probabilistic Strichartz estimates, there exists Q7 . with P(] T.e) < & such
that

121 x (o, (ke 1)ryxrey < K775 k=0,1,...

@ Forany w € Qre :=Qr N QT,E, the hypotheses of the “good” LWP are
satisfied on each [k7, (k + 1)7] with 7 = 7(7" =, || (vo, wi) ||y pay. K, 7)

@ Apply iteratively the “good” local well-posedness for the perturbation [ = -*

0
N



The energy-critical defocusing quintic NLW on R? is a.s. GWP with rough

random data below the energy space.

Main difficulty: Probabilistic energy bound for nonlinear part v*

d w
GE6)

< o[l p2 17 (v + 2) = F ()l 2

and 4 _a_
W, W|lF7—5 w w || d—
12101772 || 2 (ray < [12° ]| poo ray 0% (1“2
Ld—2 (Rd)
w d w 2
But E(v*) only controls the LP(R%)-norms of v for 2 < p < 7%
8

2d
= one needs ;5 < 775 <& d>4
New ingredients:

@ Integration by parts in time

@ New probabilistic Strichartz estimate involving Lg°:
P(IS@®)(ug, uf) oo o,17:Lr (R3)) > A) S Texp (* c

max(1; T2)”(u07 ul)”g.[s(RS) )
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The energy-critical defocusing NLW on T¢, d = 3,4,5 is a.s. GWP with
rough random data below the energy space.

@ Suffices to prove almost a.s. GWP

@ Reduce the problem on T¢ to R? by the “finite speed of propagation” of NLW
2. w w w délj w o
{<tu R GO R (X P

uw78ﬂfﬁ|t0 (uOTzulT)

where (uf 7, uy ) = (nyuf, nyuf) with smooth cutoff i, (z) =1 on (T) - T¢
= UZT(S)IWT ] ZnT n)gn.j(W)u;(n), j=0,1
nezd

Two issues:
@ Given & € RY, we see infinitely many g,.’s

= New probabilistic Strichartz estimates are needed

@ Must justify the finite speed of propagation for rough solutions

N
N



On nonlinear Schrodinger equations

Conditional a.s. GWP of the cubic NLS on R, d > 3

The defocusing cubic NLS on R?, d > 3 is a.s. GWP with rough random data below
the scaling critical regularity, provided that

@ probabilistic a priori energy bound for the nonlinear part

@ (d # 4) global space-time bound for solutions to deterministic cubic NLS

@ Space-time bound holds in the energy-critical case d = 4 (Rickman-Visan 2007)
When d # 4, this question is widely open

@ Condition 1 is in the spirit of the conditional GWP in H®erit (R%) of the
energy-supercritical NLW and NLS (Kenig-Merle 2010, Killip-Vigan 2010):

@ For NLS, we need to use more intricate spaces than that for NLW:

Fourier restriction norm method & U2, V2 spaces

Q: Probabilistic a priori energy estimate when d = 47



Open problem: Prove almost sure scattering (linear asymptotic behavior) for
NLW (and NLS) on R? with rough random large data

o Small data: probabilistic global-in-time Strichartz estimates and a
standard fixed point argument (Liihrmann-Mendelson 2014)

e Standard way of proving scattering is via

e Unfortunately, all our estimates are on finite time intervals [0, 7] and
space-time bounds (on the nonlinear part) grow to co as T — o0

o New ideas are needed

N
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