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Energy-critical nonlinear wave equations

Energy-critical defocusing nonlinear wave equation:

(NLW) ∂2
t u−∆u + |u|

4
d−2u = 0, x ∈ Rd, d = 3, 4, 5, u(t, x) ∈ R

Hamiltonian evolution corresponding to the conserved energy:

E(u(t), ∂tu(t)) :=

∫
Rd

1

2
(∂tu)2 +

1

2
|∇u|2 +

d− 2

2d
|u|

2d
d−2 dx

Energy space: Recall Sobolev embedding Ḣ1(Rd) ⊂ L
2d

d−2 (Rd)

E(Rd) =

{
(f, g) : E(f, g) :=

∫
Rd

1

2
g2 +

1

2
|∇f |2 +

d− 2

2d
|f |

2d
d−2 dx <∞

}
= Ḣ1(Rd)× L2(Rd) =: Ḣ1(Rd)

Energy-critical equation: NLW is invariant under the scaling symmetry

uλ(t, x) = λ
d−2
2 u(λt, λx),

which leaves the Ḣ1(Rd)-norm invariant:

‖(uλ(0), ∂tuλ(0))‖Ḣ1 = ‖(u(0), ∂tu(0))‖Ḣ1
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On deterministic global well-posedness

Defocusing nonlinear wave equation:

∂2
t u−∆u+ |u|p−1u = 0

Energy-critical: p = 1 + 4
d−2

(p = 5 when d = 3; p = 3 when d = 4)

Energy-subcritical if p < 1 + 4
d−2

: GWP in H1 via energy conservation

Energy-supercritical if p > 1 + 4
d−2

: poorly understood

On the defocusing energy-critical NLW:

Small energy data theory: Strauss (1968), Rauch (1981), Pecher (1984)

Global regularity (smooth initial data lead to smooth solutions): Struwe
(1994), Grillakis (1990, 1992), Shatah-Struwe (1993)

GWP in the energy space: Shatah-Struwe (1994), Kapitanski (1994),
Ginibre-Soffer-Velo (1992)

Scattering, global space-time bounds: Bahouri-Shatah (1998),
Bahouri-Gérard (1999), Nakanishi (1999), Tao (2006)

Ill-posedness below the energy space: Christ-Colliander-Tao (2003)
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Randomization

GOAL: Prove almost sure global well-posedness of the enery-critical NLW

for rough and random initial data below the energy space

On a compact manifold M:

There exists an orthonormal basis {en}n∈N of L2(M) consisting of
eigenfunctions of the Laplace-Beltrami operator

Given u0(x) =
∑∞
n=1 cnen(x) ∈ Hs(M), one may define its randomization by:

uω0 (x) :=
∞∑
n=1

gn(ω)cnen(x),

where {gn}n∈N are independent random variables

On Rd:

There is no countable basis of L2(Rd) of eigenfunctions of the Laplacian:

work with eigenfunctions of the Laplacian with a confining potential
such as harmonic oscillator −∆ + |x|2: Thomann (2009),
Burq-Thomann-Tzvetkov (2010), Deng (2012), Poiret (2012)

work on Sd and transfer results to Rd: De Suzzoni (2011, 2013, 2014)
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Wiener randomization:

Naturally associated with the Wiener decomposition:

Rdξ =
⋃
n∈Zd

Qn, where Qn := n+ [− 1
2
, 1

2
)d

Note that
∑
n∈Zd χQn(ξ) = 1 and set χQn(D)u = F−1(χQn û):

u =
∑
n∈Zd

χQn(D)u =
∑
n∈Zd

χQ0(D − n)u

Given (u0, u1), we define Wiener randomization by:

(uω0 , u
ω
1 ) :=

( ∑
n∈Zd

gn,0(ω)ψ(D − n)u0,
∑
n∈Zd

gn,1(ω)ψ(D − n)u1

)
ψ(ξ − n) = smoothed version of χQn(ξ) = χQ0(ξ − n)

{gn,j}n∈Zd,j=0,1 = independent mean zero C-valued random varibles

with probability distributions µn,j satisfying:∫
eγ·xdµn,j(x) ≤ ec|γ|

2
, for all γ ∈ R2
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Basic properties of the Wiener randomization

Naturally associated to function spaces from time-frequency analysis:

Modulation space: ‖u‖Mp,q
s (Rd) =

∥∥〈n〉s‖ψ(D − n)u‖Lp
x(Rd)

∥∥
`
q
n(Zd)

Wiener amalgam space: ‖u‖Wp,q
s (Rd) =

∥∥〈n〉s‖ψ(D − n)u‖`pn(Zd)

∥∥
L

q
x(Rd)

No gain of differentiability from the randomization:

u ∈ Hs(Rd) \Hs+ε(Rd) =⇒ uω ∈ Hs(Rd) \Hs+ε(Rd) almost surely

Improved integrability - Paley-Zygmund theorem:

u ∈ L2(Rd) =⇒ uω ∈ Lp(Rd), 2 ≤ p <∞, almost surely

This yields improved probabilistic Strichartz estimates

⇐= one of the keys of our analysis

Also employed by Lührman-Mendelson (2014), Zhang-Fang (2012)
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Main result

Theorem 1: P. 2014 (d = 4, 5), Oh-P. 2015 (d = 3)

For d = 3, 4, 5, let s satisfy:

1
2
< s < 1 when d = 3, 0 < s < 1 when d = 4, 0 ≤ s < 1 when d = 5.

Given (u0, u1) ∈ Hs(Rd), let (uω0 , u
ω
1 ) be its Wiener randomization. Then, the

energy-critical defocusing NLW is almost surely globally well-posed (a.s. GWP).

More precisely, there exists Ω̃ ⊂ Ω with P (Ω̃) = 1 such that, for any ω ∈ Ω̃, there

exists a unique global solution of NLW with (u, ∂tu)|t=0 = (uω0 , u
ω
1 ) in the class:

(u, ∂tu) ∈
(
S(t)(uω0 , u

ω
1 ), ∂tS(t)(uω0 , u

ω
1 )
)

+ C
(
R;H1(Rd)

)
⊂ C

(
R;Hs(Rd)

)
.

S(t) = propagator for the linear wave equation: S(t)(f, g) := cos(t|∇|)f +
sin(t|∇|)
|∇| g

This is the first a.s. GWP result for energy-critical hyperbolic/dispersive PDEs

(with initial data below the energy space)
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Remarks

Given (u0, u1) ∈ Hs(Rd), define the induced probability measure on Hs(Rd) by

µ(A) = P
(
(uω0 , u

ω
1 ) ∈ A

)
=⇒ Theorem 1 states that there exists Σ ⊂ Hs with µ(Σ) = 1 such that for any

(φ0, φ1) ∈ Σ, NLW admits a unique global solution with (u, ∂tu)|t=0 = (φ0, φ1)

Question 1: Let Φ(t) : (φ0, φ1) 7→ u(t) denote the solution map.

Then, is it possible that Φ(t)(Σ) has small measure for t 6= 0?

Answer 1: No, µ
(
Φ(t)(Σ)

)
= 1 for all t ∈ R

Question 2: Is the solution map continuous?

Answer 2: Yes, it is continuous in probability (d = 3, 4)

⇐= notion introduced by Burq-Tzvetkov (2014). For fixed T,R > 0:

µ⊗ µ
((

(φ0,φ1), (φ′0, φ
′
1)
)
∈ (Hs)2 :

∥∥Φ(t)(φ0, φ1)− Φ(t)(φ′0, φ
′
1)
∥∥
L∞([0,T ];Hs)

> δ∣∣∣ (φ0, φ1), (φ′0, φ
′
1) ∈ BR and ‖(φ0, φ1)− (φ′0, φ

′
1)‖Hs < η

)
≤ g(δ, η),

where lim
η→0

g(δ, η) = 0 for each fixed δ > 0
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Globalization arguments in the probabilistic setting

Invariant measure argument: “use the invariance of Gibbs measures in

the place of conservation laws”:

Bourgain (1994, 1996, 1997), Tzvetkov (2006), Burq-Tzvetkov (2007, 2008),

Oh (2009), Nahmod-Oh-Rey-Bellet-Staffilani (2012), De Suzzoni (2013),

Deng (2012), Richards (2012), Bourgain-Bulut (2013), . . .

Probabilistic adaptations of deterministic globalization arguments:

Probabilistic high-low decomposition method (subcritical):

Colliander-Oh (2012), Lührmann-Mendelson (2014)

Probabilistic a priori bound on the energy (subcritical):

Burq-Tzvetkov (2014), Lührmann-Mendelson (2015)

Probabilistic compactness method: Nahmod-Pavlović-Staffilani (2013),

Burq-Thomann-Tzvetkov (2012)

Theorem 1 considers the energy-critical NLW

=⇒ We introduce a new globalization method: probabilistic perturbation theory
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Probabilistic perturbation theory

Perturbation theory was used in the deterministic setting to obtain GWP:

energy-critical NLS: Colliander-Keel-Staffillani-Takaoka-Tao (2008),

energy-critical NLW: Kenig-Merle (2008)

NLS with combined power nonlinearity: Tao-Vişan-Zhang (2007),

Killip-Oh-P.-Vişan (2012)

First instance in the probabilistic setting to obtain a.s. GWP

Given randomized (uω0 , u
ω
1 ), we consider:

linear part zω := S(t)(uω0 , u
ω
1 ): rough but random (better integrability)

nonlinear part vω := u− zω: “deterministic” but smoother

Nonlinear part vω satisfies the perturbed energy-critical NLW:{
∂2
t v
ω −∆vω + F (vω+zω) = 0

(vω , ∂tvω)
∣∣
t=0

= (0, 0),
F (u) := |u|

4
d−2 u

F (vω + zω) = F (vω) + error containing zω

improved probabilistic Strichartz estimates =⇒ the error is “small”
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Strategy of the proof

0 Reduction to Almost a.s.GWP:
Given T and ε > 0, there exists ΩT,ε with P (ΩcT,ε) < ε such that for ω ∈ ΩT,ε,

there exists a unique solution uω to NLW on [−T, T ]

“Almost a.s.GWP implies a.s.GWP”:

For fixed ε > 0, let Tj = 2j and εj = 2−jε

=⇒ By almost a.s. GWP, construct Ωj := ΩTj ,εj

Then, let Ωε =
⋂∞
j=1 Ωj

=⇒ NLW is globally well-posed on Ωε with P (Ωcε) < ε

Now, let Ω̃ =
⋃
ε>0 Ωε

=⇒ Then, NLW is globally well-posed on Ω̃ and P (Ω̃c) = infε>0 ε = 0

1 Improved probabilistic Strichartz estimates:

local-in-time, wide range of exponents
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2 “Good” deterministic local well-posedness theory

for the perturbed energy-critical NLW

In general, the local time of existence at a critical regularity depends on

the profile of initial data

“good” means that the local time of existence depends only on the Sobolev
norm of the initial data and on the size of the perturbation:

Ingredient 1: global solutions to the energy-critical defocusing NLW and

their global space-time bounds

Ingredient 2: perturbation theory

3 Probabilistic a priori energy estimate - difficult in dimension d = 3

4 Closing the argument: energy estimate and probabilistic Strichartz

estimates allow us to apply the “good” local well-posedness iteratively
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Step 1: Probabilistic Strichartz estimates

Basic facts:

Probabilistic fact: For any p ≥ 2 and any {cn}n∈Zd ∈ `2(Zd), we have∥∥∥ ∑
n∈Zd

gn(ω)cn

∥∥∥
Lp(Ω)

≤ C√p‖cn‖`2n(Zd)

Bernstein’s inequality: For a smooth projection PN onto frequencies {|ξ| ∼ N},

‖PNf‖Lq(Rd) . N
d
p
− d

q ‖PNf‖Lp(Rd), 1 ≤ p ≤ q ≤ ∞

The same estimate holds if PN is a projection onto a region of volume ∼ Nd

=⇒ projecting onto a cube of size one in the Fourier space:

‖ψ(D − n)φ‖Lq(Rd) . ‖ψ(D − n)φ‖Lp(Rd), 1 ≤ p ≤ q ≤ ∞

Namely, no loss of regularity to go from the Lp-norm to the Lq-norm, q ≥ p
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Proposition: Improved probabilistic Strichartz estimates

Let I = [a, b] ⊂ R be a compact time interval. If (u0, u1) ∈ Ḣ0(Rd), then given

1 ≤ q <∞ and 2 ≤ r <∞, the following holds for all λ > 0:

P
(
‖S(t)(uω0 , u

ω
1 )‖Lq

t (I;Lr
x) > λ

)
≤ C exp

(
− c λ2

|I|
2
q ‖(u0, u1)‖2Ḣ0

)

Let λ = K‖(u0, u1)‖Ḣ0 . Then, Proposition states that a Strichartz estimate:

‖S(t)(uω0 , u
ω
1 )‖Lq

t (I;Lr
x) ≤ K‖(u0, u1)‖Ḣ0

holds with a large probability (→ 1 as |I| → 0 or K →∞)

Let λ = K|I|θ with θ < 1
q
. Then, Proposition states that

‖S(t)(uω0 , u
ω
1 )‖Lq

t (I;Lr
x) ≤ K|I|

θ

holds with a large probability (→ 1 as |I| → 0 or K →∞)

Local-in-time Strichartz estimates combined with a simple fixed point argument

yield a.s. local well-posedness (LWP)
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Proof: We only estimate cos(t|∇|)uω0 . Let p ≥ max(q, r). Then, we have(
E‖ cos(t|∇|)uω0 ‖pLq

t (I;Lr
x)

) 1
p ≤

∥∥‖ cos(t|∇|)uω0 ‖Lp(Ω)

∥∥
L

q
I
Lr

x

.
√
p
∥∥∥‖ψ(D − n) cos(t|∇|)u0‖`2n

∥∥∥
L

q
I
Lr

x

Mink.

.
√
p
∥∥∥‖ψ(D − n) cos(t|∇|)u0‖Lr

x

∥∥∥
L

q
I
`2n

Berns.

.
√
p
∥∥∥‖ψ(D − n) cos(t|∇|)u0‖L2

x

∥∥∥
L

q
I
`2n

∼ √
p|I|

1
q ‖u0‖L2

x

Then, by Chebyshev’s inequality we have

P
(
‖S(t)(uω0 , u

ω
1 )‖Lq

t (I;Lr
x) > λ

)
<

(
C|I|

1
q p

1
2 (‖u0‖L2 + ‖u1‖Ḣ−1)

λ

)p
=⇒ Strichartz estimates follow by choosing an appropriate value of p ≥ max(q, r)
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Step 2: Deterministic local theory

Given I ⊂ R, let X(I) = L
d+2
d−2
t

(
I;L

2(d+2)
d−2

x (Rd)
)

= H1-admissible Strichartz space

Proposition: Standard local well-posedness

Let t0 ∈ R and I 3 t0. Then, there exists δ > 0 sufficiently small such that if

‖f‖X(I) ≤ δ
d−2
d+2 and ‖S(t− t0)(v0, v1)‖X(I) ≤ δ,

the following perturbed NLW admits a unique solution (v, ∂tv) ∈ C(I; Ḣ1(Rd)){
∂2
t v −∆v + F (v + f) = 0

(v, ∂tv)
∣∣
t=t0

= (v0, v1).

Moreover, if T <∞ is the maximal time of existence of the solution v, then

‖v‖X([t0,T ]) =∞

Length |I| of time interval depends on the profile of (v0, v1)

we will design a “good” LWP so that |I| only depends on ‖(v0, v1)‖H1
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“Good” deterministic local theory

Proposition: “Good” local well-posedness

There exists sufficiently small τ = τ
(
‖(v0, v1)‖H1(Rd),K, γ

)
> 0 such that, if f

satisfies the condition

‖f‖X([t0,t0+τ∗]) ≤ Kτ
γ
∗

for some 0 < τ∗ ≤ τ , then the perturbed NLW{
∂2
t v −∆v + F (v + f) = 0

(v, ∂tv)
∣∣
t=t0

= (v0, v1)

admits a unique solution v in C([t0, t0 + τ∗];H1(Rd)). Moreover,

‖(v, ∂tv)‖L∞t ([t0,t0+τ∗];Ḣ1) + ‖v‖Lq
t ([t0,t0+τ∗];Lr

x(Rd)) ≤ C
(
‖(v0, v1)‖Ḣ1(Rd)

)
,

for all wave admissible pairs (q, r), where C(·) is a positive non-decreasing function.

Time length depends only on the size of initial data (and the perturbation)
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Perturbation theory

Proposition: Perturbation theory

Let v be a solution of the perturbed equation:

∂2
t v −∆v + |v|

4
d−2 v = e,

with initial data (v, ∂tv)
∣∣
t=t0

= (v0, v1) ∈ H1(Rd), satisfying ‖v‖X(I) ≤M .

Given (w0, w1) ∈ H1(Rd), let w be the solution of the energy-critical NLW with

initial data (w, ∂tw)
∣∣
t=t0

= (w0, w1). Then, there exists ε > 0 sufficiently small such

that if

‖(v0 − w0, v1 − w1)‖Ḣ1(Rd)≤ ε and ‖e‖L1
t (I;L2

x(Rd))≤ ε,

then the following holds for all wave admissible pairs (q, r):

sup
t∈I
‖(v(t)− w(t), ∂tv(t)− ∂tw(t))‖Ḣ1 ≤ C(M)ε

This proposition follows from iterative application of local argument via
deterministic Strichartz estimates
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Proof of the “good” LWP, d = 4d = 4d = 4:

Strichartz space X(I) = L3
t

(
I;L6

x(R4)
)
, Nonlinearity F (u) = |u|2u

Suffices to find τ such that ‖v‖L3([t0,t0+τ ],L6
x(R4)) ≤ C

(
‖(v0, v1)‖H1(R4)

)
key fact: global solution w to the energy-critical defocusing NLW with initial

data (w, ∂tw)|t=t0 = (v0, v1) ∈ H1 satisfies

‖w‖L3(R,L6
x(R4)) < C

(
‖(v0, v1)‖H1(R4)

)
⇐= concentration-compactness: Bahouri-Gérard (1999)

Divide [t0, t0 + τ ] into J = J(‖(v0, v1)‖H1(R4), η) sub-intervals Ij = [tj , tj+1]

such that ‖w‖L3(Ij ,L6
x(R4)) ∼ η � 1

On I0: Verify the hypotheses of Perturbation theory via Duhamel formula and

deterministic Strichartz estimates

Perturbation theory on I0 =⇒ supt∈I0
∥∥(v − w, ∂tv − ∂tw)

∥∥
H1 ≤ C(4η)ε

=⇒ In particular,
∥∥(v(t1)− w(t1), ∂tv(t1)− ∂tw(t1)

)∥∥
H1 ≤ C(4η)ε

Apply iteratively the perturbation proposition on the intervals Ij ,

j = 1, . . . , J = J(‖(v0, v1)‖H1(Rd), η)

In the end, we obtain a condition on τ depending only on ‖(v0, v1)‖H1(Rd), K,
and γ
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Step 3: Probabilistic a priori energy estimate

In Step 2, we showed that the time of local existence depends only on the H1-norm

=⇒ we need a long-time energy estimate with large probability

Proposition: Probabilistic energy bound

Let d = 4 or 5, 0 < ε� 1, T > 0. Then, there exists a set Ω̃T,ε ⊂ Ω with

P (Ω̃cT,ε) < ε such that for all t ∈ [0, T ] and all ω ∈ Ω̃T,ε:∥∥(vω, ∂tv
ω)
∥∥
L∞t ([0,T ];H1(Rd))

≤ C
(
T, ε, ‖(u0, u1)‖Hs(Rd)

)

(d = 4) By taking a time derivative of E
(
vω(t)

)
and Gronwall’s inequality:(

E
(
vω(t)

)) 1
2 ≤ C

∥∥zω∥∥3

L3([0,T ];L6
x(R4))

e
C‖zω‖

L1
t ([0,T ];L∞x (R4))

By probabilistic Strichartz estimates, there exists Ω̃T,ε ⊂ Ω with P (Ω̃cT,ε) < ε

such that for any ω ∈ Ω̃T,ε:

‖zω‖L3([0,T ],L6
x)∩L1([0,T ];L∞x ) ≤ KT

θ‖u0‖Hs(R4)
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Step 4: Closing the argument

Goal: Prove “almost” almost sure GWP:

Given ε� 1 and T � 1, there exists ΩT,ε ⊂ Ω with P (ΩcT,ε) < ε such that for

any ω ∈ ΩT,ε NLW admits a unique solution uω on [0, T ]

Probabilistic energy estimate (Step 3): for any ω ∈ Ω̃T,ε,

sup
t∈[0,T ]

‖(vω(t), ∂tv
ω(t))‖H1(Rd) ≤ C

(
T, ε, ‖(u0, u1)‖Hs(Rd)

)
By probabilistic Strichartz estimates, there exists Ω̂T,ε with P (Ω̂cT,ε) < ε such
that

‖zω‖X([kτ,(k+1)τ ]×Rd) ≤ Kτ
γ , k = 0, 1, . . .

For any ω ∈ ΩT,ε := Ω̃T,ε ∩ Ω̂T,ε, the hypotheses of the “good” LWP are

satisfied on each [kτ, (k + 1)τ ] with τ = τ
(
T, ε, ‖(u0, u1)‖Hs(Rd),K, γ

)
Apply iteratively the “good” local well-posedness for the perturbation f = zω
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On R3

Theorem 2: Oh-P. 2015

The energy-critical defocusing quintic NLW on R3 is a.s. GWP with rough

random data below the energy space.

Main difficulty: Probabilistic energy bound for nonlinear part vω∣∣∣∣ ddtE(vω(t)
)∣∣∣∣ ≤ ‖∂tvω‖L2

x
‖F
(
vω + zω)− F

(
vω
)
‖L2

x

and
‖zω|vω|

4
d−2 ‖L2(Rd) ≤ ‖z

ω‖L∞(Rd)‖v
ω‖

4
d−2

L
8

d−2 (Rd)

But E(vω) only controls the Lp(Rd)-norms of vω for 2 ≤ p ≤ 2d
d−2

=⇒ one needs 8
d−2
≤ 2d

d−2
⇐⇒ d ≥ 4

New ingredients:

Integration by parts in time

New probabilistic Strichartz estimate involving L∞t :

P
(
‖S(t)(uω0 , u

ω
1 )‖L∞t ([0,T ];Lr

x(R3)) > λ
)
. T exp

(
− c

λ2

max(1, T 2)‖(u0, u1)‖2Hε(R3)

)
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Periodic NLW

Theorem 3: Oh-P. 2015

The energy-critical defocusing NLW on Td, d = 3, 4, 5 is a.s. GWP with

rough random data below the energy space.

Suffices to prove almost a.s. GWP

Reduce the problem on Td to Rd by the “finite speed of propagation” of NLW{
∂2
t u

ω −∆uω + |uω|
4

d−2 uω = 0

(uω, ∂tu
ω)
∣∣
t=0

= (uω0,T ,u
ω
1,T ),

(t, x) ∈ [0, T ]× Rd,

where (uω0,T ,u
ω
1,T ) = (ηT u

ω
0 , ηT u

ω
1 ) with smooth cutoff ηT (x) ≡ 1 on 〈T 〉 · Td

=⇒ ûωj,T (ξ) = η̂T u
ω
j (ξ) =

∑
n∈Zd

η̂T (ξ − n)gn,j(ω)ûj(n), j = 0, 1

Two issues:

Given ξ ∈ Rd, we see infinitely many gn’s

=⇒ New probabilistic Strichartz estimates are needed

Must justify the finite speed of propagation for rough solutions
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On nonlinear Schrödinger equations

Conditional a.s. GWP of the cubic NLS on Rd, d ≥ 3

Theorem 4: Bényi-Oh-P. 2015

The defocusing cubic NLS on Rd, d ≥ 3 is a.s. GWP with rough random data below

the scaling critical regularity, provided that

1 probabilistic a priori energy bound for the nonlinear part

2 (d 6= 4) global space-time bound for solutions to deterministic cubic NLS

Space-time bound holds in the energy-critical case d = 4 (Rickman-Vişan 2007)

When d 6= 4, this question is widely open

Condition 1 is in the spirit of the conditional GWP in Hscrit(Rd) of the

energy-supercritical NLW and NLS (Kenig-Merle 2010, Killip-Vişan 2010):

For NLS, we need to use more intricate spaces than that for NLW:

Fourier restriction norm method & U2, V 2 spaces

Q: Probabilistic a priori energy estimate when d = 4?
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Open problem: Prove almost sure scattering (linear asymptotic behavior) for

NLW (and NLS) on Rd with rough random large data

Small data: probabilistic global-in-time Strichartz estimates and a
standard fixed point argument (Lührmann-Mendelson 2014)

Standard way of proving scattering is via global space-time bounds

Unfortunately, all our estimates are on finite time intervals [0, T ] and

space-time bounds (on the nonlinear part) grow to ∞ as T →∞

New ideas are needed
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