ADVANCED PDE II - HOMEWORK 1

PIETER BLUE AND OANA POCOVNICU

Problem 1. Let I C R be an interval and let £ : I; x R — R3 and B : I; x R — R3
be vector fields representing the electric and magnetic fields. The Maxwell’s equations are
given by:
oF =V XxB
BtB =-VxFE
V-E=0
V-B=0.
Show that the components of these vector fields, F; and B;, ¢ = 1,2, 3, solve the linear
wave equations:
O}FE; — AE; =0,  0?°B; — AB; =0.
Conversely, let Ey, By : R®> — R? be such that V- Ey = V- By = 0. Show that the
solution of the Cauchy problem
O}E — AE =0
0?B—-AB=0
E{tzo = Eo, B‘tzo = DBy
8tE|t:0=VXB0, 8tB‘t:0:—VXE0
is a solution of Maxwell’s equations.

Here, given a vector field F' = (Fy, Fy, F3), we used the notations V - F = divF =
S8 0nFyand V X F = curl F = (3, F3 — Oy Fo, 0py F1 — 00y Fs, 90, Fy — 95, FY).

Problem 2 (Alinhac’s book on hyperbolic PDEs). Let u € C%(R x [0,T)) be a solution of
the Cauchy problem for the inviscid Burger’s equation

o+ udzu =0
u(x,0) = h(x).

Let x(t) = h(s)t + s be the projected characteristic starting from (s,0). Show that the
function q(t) := (9,u)(z(t),t) satisfies ¢’ + ¢> = 0. Compute ¢ explicitly.

Show that if A'(s) < 0, then ¢(¢) becomes infinite as ¢ approaches the value t(s) =
—h%(s) > 0. Deduce from this that, given h € C?(R), there exists a C? solution u of the
above Cauchy problem exactly in the strip {0 < ¢ < T}, where

T := [max(—h")] L.

The number T is called the lifespan of the smooth solution.
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Problem 3 (Alinhac’s book on hyperbolic PDEs). Consider the Cauchy problem

O + udyu = u?
u(z,0) = uo(z),

where ug € Cg (R) is compactly supported and not identically zero.
(a) Show the inequalities max(ug — uj) > 0, max(ug — u() > maxug. Prove that if there
exists xg such that

ug(wp) = maxug > 0, u(zo) <0,
then max(ug — u() > maxug.
(b) Use the method of characteristics to solve the Cauchy problem. Prove that a C? solution
exists for

0<t<T:=[max(ug — up)] "

(c) Let u € C*(R x [0,T)) be a solution of the above Cauchy problem. Denote by (x(t),t)
the projected characteristic starting from (xo,0). Set ¢(t) := (0zu)(z(t),t). Establish the
ODE satisfied by ¢ and compute ¢ explicitly. Deduce from this that 7' < T and hence T is
the lifespan of the smooth solution.

Problem 4 (Evan’s book). Compute explicitly a shock solution of the inviscid Burger’s
equation
Ou+ ud,u =0, t>0,

with initial condition

1, if r<-1

0, if —1<x<0
w0 =h=) =3, gcpet

0, if z>1.

Problem 5 (Sogge’s book). Let f € C3(R?), g € C?(R?) supported on {z : |z| < R}.
Use Poisson’s formula to deduce that the solution u € C?(R?) of the linear wave equation
0?u — Au = 0 with initial data u(x,0) = f, dyu(z,0) = g, satisfies the decay estimate

C

wx,t)| < ————.
) ()2 (|| —t)2

Problem 6 (Bernstein’s inequalities). Prove the following Bernstein’s inequalities:
(@) [IVFPNF| ey ~ NP S Loy
d_d
(b) ||PNf||Lq(Rd) SNy HPNfHLP(Rd)a
d_d
(c) ”PSNfHLq(Rd) SNr e HPSNfHLP(Rd)v
for1 <p<gq<oo.

Hint: Use Young’s inequality and the scaling property of the Fourier transform:

F(f(5)(€) = N (N¢).
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Problem 7 (Van der Corput lemma and consequences, Stein’s book). (a) Let a,b € R,
a < bandlet ¢ : [a,b] — R be a smooth function such that |0¥¢(z)| > 1 for all = € (a,b).

Then )
/ M@ gl < ATk, YAER
holds when
(i) k=1 and ¢ is monotonic or
(ii) & > 2.

The bound ¢y, is independent of ¢.
Hint: Use integration by parts in (i) and induction on k in (ii). For (ii), it might be
useful to consider ¢ € [a,b] such that [0F¢(c)| = mingeq ) |0k p(x)| and discuss the cases
Okp(c) = 0 and 9%¢(c) # 0.

(b) Under the same assumptions on ¢ as in (a), show that

b
/ ei)“ﬁ(x)w(a:)dx

a

1 b
< oah [|w<b>| +f w'<x>|dx] . VAR

for all smooth functions ¥ : [a, b] — C.
Hint: Set F(z) := [ @) dg for € [a,b] and use integration by parts.

(¢) (Asymptotics of Bessel functions) For m € Z, we define the Bessel function of order m
by

27
Jm(T‘) — /0 eirsineefimede'

Use part (b) to deduce that



