ADVANCED PDE II - HOMEWORK 1

PIETER BLUE AND OANA POCOVNICU

Problem 1. Let $I \subset \mathbb{R}$ be an interval and let $E: I_{t} \times \mathbb{R}_{x}^{3} \rightarrow \mathbb{R}^{3}$ and $B: I_{t} \times \mathbb{R}_{x}^{3} \rightarrow \mathbb{R}^{3}$ be vector fields representing the electric and magnetic fields. The Maxwell's equations are given by:

$$
\begin{array}{r}
\partial_{t} E=\nabla \times B \\
\partial_{t} B=-\nabla \times E \\
\nabla \cdot E=0 \\
\nabla \cdot B=0 .
\end{array}
$$

Show that the components of these vector fields, E_{i} and $B_{i}, i=1,2,3$, solve the linear wave equations:

$$
\partial_{t}^{2} E_{i}-\Delta E_{i}=0, \quad \partial_{t}^{2} B_{i}-\Delta B_{i}=0
$$

Conversely, let $E_{0}, B_{0}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be such that $\nabla \cdot E_{0}=\nabla \cdot B_{0}=0$. Show that the solution of the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{t}^{2} E-\Delta E=0 \\
\partial_{t}^{2} B-\Delta B=0 \\
\left.E\right|_{t=0}=E_{0},\left.\quad B\right|_{t=0}=B_{0} \\
\left.\partial_{t} E\right|_{t=0}=\nabla \times B_{0},\left.\quad \partial_{t} B\right|_{t=0}=-\nabla \times E_{0}
\end{array}\right.
$$

is a solution of Maxwell's equations.
Here, given a vector field $F=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$, we used the notations $\nabla \cdot F=\operatorname{div} F=$ $\sum_{i=1}^{3} \partial_{x_{i}} F_{i}$ and $\nabla \times F=\operatorname{curl} F=\left\langle\partial_{x_{2}} F_{3}-\partial_{x_{3}} F_{2}, \partial_{x_{3}} F_{1}-\partial_{x_{1}} F_{3}, \partial_{x_{1}} F_{2}-\partial_{x_{2}} F_{1}\right\rangle$.

Problem 2 (Alinhac's book on hyperbolic PDEs). Let $u \in C^{2}(\mathbb{R} \times[0, T))$ be a solution of the Cauchy problem for the inviscid Burger's equation

$$
\left\{\begin{array}{l}
\partial_{t} u+u \partial_{x} u=0 \\
u(x, 0)=h(x)
\end{array}\right.
$$

Let $x(t)=h(s) t+s$ be the projected characteristic starting from $(s, 0)$. Show that the function $q(t):=\left(\partial_{x} u\right)(x(t), t)$ satisfies $q^{\prime}+q^{2}=0$. Compute q explicitly.

Show that if $h^{\prime}(s)<0$, then $q(t)$ becomes infinite as t approaches the value $t(s)=$ $-\frac{1}{h^{\prime}(s)}>0$. Deduce from this that, given $h \in C^{2}(\mathbb{R})$, there exists a C^{2} solution u of the above Cauchy problem exactly in the strip $\{0 \leq t<\bar{T}\}$, where

$$
\bar{T}:=\left[\max \left(-h^{\prime}\right)\right]^{-1} .
$$

The number \bar{T} is called the lifespan of the smooth solution.

Problem 3 (Alinhac's book on hyperbolic PDEs). Consider the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{t} u+u \partial_{x} u=u^{2} \\
u(x, 0)=u_{0}(x),
\end{array}\right.
$$

where $u_{0} \in C_{0}^{2}(\mathbb{R})$ is compactly supported and not identically zero.
(a) Show the inequalities $\max \left(u_{0}-u_{0}^{\prime}\right)>0, \max \left(u_{0}-u_{0}^{\prime}\right) \geq \max u_{0}$. Prove that if there exists x_{0} such that

$$
u_{0}\left(x_{0}\right)=\max u_{0}>0, \quad u_{0}^{\prime \prime}\left(x_{0}\right)<0
$$

then $\max \left(u_{0}-u_{0}^{\prime}\right)>\max u_{0}$.
(b) Use the method of characteristics to solve the Cauchy problem. Prove that a C^{2} solution exists for

$$
0 \leq t<\bar{T}:=\left[\max \left(u_{0}-u_{0}^{\prime}\right)\right]^{-1} .
$$

(c) Let $u \in C^{2}(\mathbb{R} \times[0, T))$ be a solution of the above Cauchy problem. Denote by $(x(t), t)$ the projected characteristic starting from $\left(x_{0}, 0\right)$. Set $q(t):=\left(\partial_{x} u\right)(x(t), t)$. Establish the ODE satisfied by q and compute q explicitly. Deduce from this that $T \leq \bar{T}$ and hence \bar{T} is the lifespan of the smooth solution.

Problem 4 (Evan's book). Compute explicitly a shock solution of the inviscid Burger's equation

$$
\partial_{t} u+u \partial_{x} u=0, \quad t \geq 0,
$$

with initial condition

$$
u(x, 0)=h(x)=\left\{\begin{array}{lll}
1, & \text { if } \quad x<-1 \\
0, & \text { if } \quad-1<x<0 \\
2, & \text { if } \quad 0<x<1 \\
0, & \text { if } \quad x>1
\end{array}\right.
$$

Problem 5 (Sogge's book). Let $f \in C^{3}\left(\mathbb{R}^{2}\right), g \in C^{2}\left(\mathbb{R}^{2}\right)$ supported on $\{x:|x|<R\}$. Use Poisson's formula to deduce that the solution $u \in C^{2}\left(\mathbb{R}^{2}\right)$ of the linear wave equation $\partial_{t}^{2} u-\Delta u=0$ with initial data $u(x, 0)=f, \partial_{t} u(x, 0)=g$, satisfies the decay estimate

$$
|u(x, t)| \leq \frac{C}{\langle t\rangle^{\frac{1}{2}}\langle | x|-t\rangle^{\frac{1}{2}}} .
$$

Problem 6 (Bernstein's inequalities). Prove the following Bernstein's inequalities:
(a) $\left\||\nabla|^{s} \mathbf{P}_{N} f\right\|_{L^{p}\left(\mathbb{R}^{d}\right)} \sim N^{s}\left\|\mathbf{P}_{N} f\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}$,
(b) $\left\|\mathbf{P}_{N} f\right\|_{L^{q}\left(\mathbb{R}^{d}\right)} \lesssim N^{\frac{d}{p}-\frac{d}{q}}\left\|\mathbf{P}_{N} f\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}$,
(c) $\left\|\mathbf{P}_{\leq N} f\right\|_{L^{q}\left(\mathbb{R}^{d}\right)} \lesssim N^{\frac{d}{p}-\frac{d}{q}}\left\|\mathbf{P}_{\leq N} f\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}$,
for $1 \leq p \leq q \leq \infty$.
Hint: Use Young's inequality and the scaling property of the Fourier transform: $\mathcal{F}(f(\dot{\bar{N}}))(\xi)=N^{d} \hat{f}(N \xi)$.

Problem 7 (Van der Corput lemma and consequences, Stein's book). (a) Let $a, b \in \mathbb{R}$, $a<b$ and let $\phi:[a, b] \rightarrow \mathbb{R}$ be a smooth function such that $\left|\partial_{x}^{k} \phi(x)\right| \geq 1$ for all $x \in(a, b)$. Then

$$
\left|\int_{a}^{b} e^{i \lambda \phi(x)} d x\right| \leq c_{k} \lambda^{-\frac{1}{k}}, \quad \forall \lambda \in \mathbb{R}
$$

holds when
(i) $k=1$ and ϕ^{\prime} is monotonic or
(ii) $k \geq 2$.

The bound c_{k} is independent of ϕ.
Hint: Use integration by parts in (i) and induction on k in (ii). For (ii), it might be useful to consider $c \in[a, b]$ such that $\left|\partial_{x}^{k} \phi(c)\right|=\min _{x \in[a, b]}\left|\partial_{x}^{k} \phi(x)\right|$ and discuss the cases $\partial_{x}^{k} \phi(c)=0$ and $\partial_{x}^{k} \phi(c) \neq 0$.
(b) Under the same assumptions on ϕ as in (a), show that

$$
\left|\int_{a}^{b} e^{i \lambda \phi(x)} \psi(x) d x\right| \leq c_{k} \lambda^{-\frac{1}{k}}\left[|\psi(b)|+\int_{a}^{b}\left|\psi^{\prime}(x)\right| d x\right], \quad \forall \lambda \in \mathbb{R}
$$

for all smooth functions $\psi:[a, b] \rightarrow \mathbb{C}$.
Hint: Set $F(x):=\int_{a}^{x} e^{i \lambda \phi(x)} d x$ for $x \in[a, b]$ and use integration by parts.
(c) (Asymptotics of Bessel functions) For $m \in \mathbb{Z}$, we define the Bessel function of order m by

$$
J_{m}(r):=\int_{0}^{2 \pi} e^{i r \sin \theta} e^{-i m \theta} d \theta
$$

Use part (b) to deduce that

$$
J_{m}(r)=O\left(r^{-\frac{1}{2}}\right) \quad \text { as } \quad r \rightarrow \infty
$$

