ADVANCED PDE II - HOMEWORK 2

PIETER BLUE AND OANA POCOVNICU

Please submit solutions to Pieter Blue (pblue@ed.ac.uk, JCMB 4618) by 2017 April 3.
Problem 1. In \mathbb{R}^{1+n}, the Fourier transform of a solution to the wave equation can be written as

$$
\begin{equation*}
\hat{u}(t, \vec{\xi})=e^{i|\vec{\xi}| t} f_{+}(\vec{\xi})+e^{-i|\vec{\xi}| t} f_{-}(\vec{\xi}) . \tag{1}
\end{equation*}
$$

Show that if f_{+}and f_{-}are in $L^{2}(\mathrm{~d} \xi)$, then $u(t, \vec{\xi})$ is a continuous function of t taking values in $L^{2}(\mathrm{~d} \xi)$.

Problem 2.

(1) State the Hahn-Banach theorem.
(2) Let $n, s \in \mathbb{Z}^{+}$. Let $T>0$. Let $F \in L^{1}\left([0, T] ; H^{s}\left(\mathbb{R}^{n}\right)\right)$ (although this doesn't matter). Let L be a differential operator and L^{*} be the formal adjoint, i.e. such that for all $\phi, \psi \in C_{0}^{\infty}\left((0, T) \times \mathbb{R}^{n}\right), \int_{0}^{T} \int_{\mathbb{R}^{n}} \phi(L \psi) \mathrm{d}^{n} x \mathrm{~d} t=\int_{0}^{T} \int_{\mathbb{R}^{n}}\left(L^{*} \phi\right) \psi \mathrm{d}^{n} x \mathrm{~d} t$.

Suppose that for all $\psi \in C_{0}^{\infty}\left((-\infty, T) \times \mathbb{R}^{n}\right)$

$$
|\langle F, \psi\rangle| \leq C \int_{0}^{T}\left\|\left(L^{*} \psi\right)(t, x)\right\|_{H_{x}^{-s-1}} \mathrm{~d} t .
$$

Show that there is $W \in\left(L^{1}\left([0, T] ; H^{-s-1}\right)\right)^{*}$ such that, for all $\psi \in C_{0}^{\infty}((-\infty, T) \times$ \mathbb{R}^{n})

$$
W\left(L^{*} \psi\right)=\int_{0}^{T} \psi F \mathrm{~d}^{n} x \mathrm{~d} t
$$

Problem 3. Let $n \geq 1$. Consider the quasilinear wave equation

$$
\left(G^{i j} \partial_{i} \partial_{j}+B^{j} \partial_{j}+A\right) u=F
$$

with G, B, A, F satisfying condition $1(\infty, \Omega)$ holds and G is $1 / 100$ close to η. Suppose u is a solution. Further suppose $|F|<C|u|_{1}$ everywhere. Suppose $R>1$.

Show that if there is an $R>0$ such that $u(0, \vec{x})$ and $\partial_{t} u(0, \vec{x})$ both vanish for $|\vec{x}|>R$, then $u(t, \vec{x})$ vanishes for all $|\vec{x}|>R+2 t$.
Problem 4. Recall:
Definition 1.1. Let U be a metric space and V be a complete metric space. Let Φ : $U \times V \rightarrow V$. Φ is uniformly continuous in U if
$\forall x_{1} \in U, \epsilon>0: \exists \delta>0: \forall x_{2} \in U, y \in V: \quad\left\|x_{2}-x_{1}\right\|_{U}<\delta \Longrightarrow \quad\left\|\Phi\left(x_{2}, y\right)-\Phi\left(x_{1}, y\right)\right\|_{V}<\epsilon$. Φ is a uniform contraction mapping in V if

$$
\exists r \in[0,1): \forall x \in U ; y_{1}, y_{2} \in V: \quad\left\|\Phi\left(x, y_{2}\right)-\Phi\left(x, y_{1}\right)\right\|_{V} \leq r\left\|y_{2}-y_{1}\right\|_{V}
$$

Theorem 1.2. Let U be a metric space and V be a complete metric space.
If $\Phi: U \times V \rightarrow V$ is uniformly continuous in U and a uniform contraction mapping in V, then there is a map $S: U \rightarrow V$ such that
(1) $\forall x \in U: \Phi(x, S(x))=S(x)$;
(2) If $\Phi(x, y)=y$, then $y=S(x)$; and
(3) The map $S: U \rightarrow V$ is continuous.

Prove this theorem.
Problem 5. For $T>0$, functions f, g on \mathbb{R}^{3}, and a function v on $[0, T] \times \mathbb{R}$, define $\Phi((f, g), v)$ to be the solution u of the initial value problem

$$
\begin{aligned}
-\partial_{t}^{2} u+\sum_{i=1}^{3} \partial_{i}^{2} u-u & =v^{3}, \\
u(0, x) & =f(x), \\
\partial_{t} u(0, x) & =g(x)
\end{aligned}
$$

Show that for any $(f, g) \in H^{2} \times H^{1}$, there is a closed ball U in $H^{2} \times H^{1}$, a $T>0$, and a closed ball V in $C^{0}\left([0, T] ; H^{2}\right) \cap C^{1}\left([0, T] ; H^{1}\right)$, such that Φ is uniformly continuous in U and a uniform contraction mapping in V. [Hint: Prove an energy estimate]

State and prove a theorem about the well-posedness of $-\partial_{t}^{2} u+\sum_{i=1}^{3} \partial_{i}^{2} u-u=u^{3}$ in \mathbb{R}^{1+3}.
Problem 7. Let $L: \mathbb{R}^{(1+n)+1+(1+n)} \rightarrow \mathbb{R}$. If no argument is given, assume $L=$ $L(x, u, \partial u)=L(x, u(x), \partial u(x))$, where $x \in \mathbb{R}^{1+n}, u: \mathbb{R}^{1+n} \rightarrow \mathbb{R}$ and ∂ denotes differentiation in \mathbb{R}^{1+n}. Use $\frac{\delta L}{\delta x^{i}}$ to denote the derivative of L with respect to its i th argument, use $\frac{\delta L}{\delta u}$ to denote its derivative with respect to its $((n+1)+1)$ th argument, and $\frac{\delta L}{\delta \partial_{i} u}$ to denote its derivative with respect to its $((n+1)+1+i)$ th argument. Observe that the chain rule gives

$$
\partial_{i} L=\frac{\delta L}{\delta x^{i}}+\frac{\delta L}{\delta u} \partial_{i} u+\sum_{j=0}^{n} \frac{\delta L}{\delta \partial_{j} u} \partial_{j} \partial_{i} u .
$$

(Observe also that δ_{j}^{i} still denotes the Kronecker delta.) u is said to satisfy the EulerLagrange equations ${ }^{1}$ if

$$
\sum_{i=0}^{n} \partial_{i} \frac{\delta L}{\delta \partial_{i} u}-\frac{\delta L}{\delta u}=0
$$

(1) Let

$$
\begin{aligned}
\mathcal{T}^{i}{ }_{j} & =\frac{\delta L}{\delta \partial_{i} u} \partial_{j} u-\delta_{j}^{i} L, \\
\mathcal{P}^{i} & =\sum_{j=0}^{n} \mathcal{T}^{i}{ }_{j} X^{j} .
\end{aligned}
$$

[^0]Show that if u satisfies the Euler-Lagrange equations, then

$$
\sum_{i=0}^{n} \partial_{i} \mathcal{T}^{i}{ }_{j}=-\frac{\delta L}{\delta x^{j}} .
$$

(2) Find $\mathcal{T}^{i}{ }_{j}$ if $L(x, u, \partial u)=\eta^{i j}\left(\partial_{i} u\right)\left(\partial_{j} u\right)$ for some constant $\eta^{i j}$.

Problem 7. Consider the inviscid Burgers' equation in \mathbb{R}^{1+1},

$$
\partial_{t} u+u \partial_{x} u=0
$$

(1) Suppose $t>0$ and u is a C^{2} solution of this equation $\mathrm{n}[0, t] \times \mathbb{R}$ and that uniformly in t, for $|x|$ sufficiently, $u(t, x)=0$. Show

$$
\|u(t, x)\|_{L_{x}^{2}}=\|u(0, x)\|_{L_{x}^{2}} .
$$

(2) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be in the Schwarz class. Consider $u_{-1}(t, x)=0$ and, for $n \geq 0, u_{n}$ defined by

$$
\begin{aligned}
\partial_{t} u_{n}+u_{n-1} \partial_{x} u_{n} & =0, \\
u_{n}(0, x) & =f(x) .
\end{aligned}
$$

(a) Show that there is a $T>0$ such that for all $n \in \mathbb{N}$, $\sup _{t \in[0, T]}\|u\|_{H^{3}}<2\|f\|_{H^{3}}$.
(b) Show that the u_{n} converge in H^{2} to a limit u.
(c) Using various convergence properties, show that u is a C^{1} function on $[0, T] \times \mathbb{R}$ and a solution of the inviscid Burgers' equation.

[^0]: ${ }^{1}$ In APDE I, you should have seen that u solves the Euler-Lagrange equation, then it is critical point of $S=\int L \mathrm{~d}^{1+n} x$. In elliptic problems, one typically looks for minimisers of S. Unfortunately, in hyperbolic problems, typically critical points of S are always saddle points, since S is unbounded above and below.

