ADVANCED PDE II - HOMEWORK 2

PIETER BLUE AND OANA POCOVNICU

Please submit solutions to Pieter Blue (pblue@ed.ac.uk, JCMB 4618) by 2017 April 3. **Problem 1.** In \mathbb{R}^{1+n} , the Fourier transform of a solution to the wave equation can be written as

$$\hat{u}(t,\vec{\xi}) = e^{i|\vec{\xi}|t} f_{+}(\vec{\xi}) + e^{-i|\vec{\xi}|t} f_{-}(\vec{\xi}).$$
(1)

Show that if f_+ and f_- are in $L^2(d\xi)$, then $u(t, \vec{\xi})$ is a continuous function of t taking values in $L^2(d\xi)$.

Problem 2.

- (1) State the Hahn-Banach theorem.
- (2) Let $n, s \in \mathbb{Z}^+$. Let T > 0. Let $F \in L^1([0,T]; H^s(\mathbb{R}^n))$ (although this doesn't matter). Let L be a differential operator and L^* be the formal adjoint, i.e. such that for all $\phi, \psi \in C_0^\infty((0,T) \times \mathbb{R}^n), \int_0^T \int_{\mathbb{R}^n} \phi(L\psi) \mathrm{d}^n x \mathrm{d}t = \int_0^T \int_{\mathbb{R}^n} (L^*\phi) \psi \mathrm{d}^n x \mathrm{d}t.$ Suppose that for all $\psi \in C_0^\infty((-\infty,T) \times \mathbb{R}^n)$

$$|\langle F,\psi\rangle| \leq C \int_0^T \|(L^*\psi)(t,x)\|_{H^{-s-1}_x} \mathrm{d}t.$$

Show that there is $W \in (L^1([0,T]; H^{-s-1}))^*$ such that, for all $\psi \in C_0^{\infty}((-\infty,T) \times \mathbb{R}^n)$

$$W(L^*\psi) = \int_0^T \psi F \mathrm{d}^n x \mathrm{d}t.$$

Problem 3. Let $n \ge 1$. Consider the quasilinear wave equation

$$(G^{ij}\partial_i\partial_j + B^j\partial_j + A)u = F$$

with G, B, A, F satisfying condition $1(\infty, \Omega)$ holds and G is 1/100 close to η . Suppose u is a solution. Further suppose $|F| < C|u|_1$ everywhere. Suppose R > 1.

Show that if there is an R > 0 such that $u(0, \vec{x})$ and $\partial_t u(0, \vec{x})$ both vanish for $|\vec{x}| > R$, then $u(t, \vec{x})$ vanishes for all $|\vec{x}| > R + 2t$.

Problem 4. Recall:

Definition 1.1. Let U be a metric space and V be a complete metric space. Let Φ : $U \times V \rightarrow V$. Φ is uniformly continuous in U if

$$\forall x_1 \in U, \epsilon > 0: \exists \delta > 0: \forall x_2 \in U, y \in V: \quad \|x_2 - x_1\|_U < \delta \implies \quad \|\Phi(x_2, y) - \Phi(x_1, y)\|_V < \epsilon$$

 Φ is a uniform contraction mapping in V if

$$\exists r \in [0,1) : \forall x \in U; y_1, y_2 \in V : \qquad \|\Phi(x,y_2) - \Phi(x,y_1)\|_V \le r \|y_2 - y_1\|_V.$$

Theorem 1.2. Let U be a metric space and V be a complete metric space.

If $\Phi: U \times V \to V$ is uniformly continuous in U and a uniform contraction mapping in V, then there is a map $S: U \to V$ such that

- (1) $\forall x \in U : \Phi(x, S(x)) = S(x);$
- (2) If $\Phi(x, y) = y$, then y = S(x); and
- (3) The map $S: U \to V$ is continuous.

Prove this theorem.

Problem 5. For T > 0, functions f, g on \mathbb{R}^3 , and a function v on $[0, T] \times \mathbb{R}$, define $\Phi((f, g), v)$ to be the solution u of the initial value problem

$$-\partial_t^2 u + \sum_{i=1}^3 \partial_i^2 u - u = v^3,$$
$$u(0, x) = f(x),$$
$$\partial_t u(0, x) = g(x).$$

Show that for any $(f,g) \in H^2 \times H^1$, there is a closed ball U in $H^2 \times H^1$, a T > 0, and a closed ball V in $C^0([0,T]; H^2) \cap C^1([0,T]; H^1)$, such that Φ is uniformly continuous in Uand a uniform contraction mapping in V. [Hint: Prove an energy estimate]

State and prove a theorem about the well-posedness of $-\partial_t^2 u + \sum_{i=1}^3 \partial_i^2 u - u = u^3$ in \mathbb{R}^{1+3} .

Problem 7. Let $L : \mathbb{R}^{(1+n)+1+(1+n)} \to \mathbb{R}$. If no argument is given, assume $L = L(x, u, \partial u) = L(x, u(x), \partial u(x))$, where $x \in \mathbb{R}^{1+n}$, $u : \mathbb{R}^{1+n} \to \mathbb{R}$ and ∂ denotes differentiation in \mathbb{R}^{1+n} . Use $\frac{\delta L}{\delta x^i}$ to denote the derivative of L with respect to its *i*th argument, use $\frac{\delta L}{\delta u}$ to denote its derivative with respect to its ((n+1)+1)th argument, and $\frac{\delta L}{\delta \partial_i u}$ to denote its derivative with respect to its ((n+1)+1+i)th argument. Observe that the chain rule gives

$$\partial_i L = \frac{\delta L}{\delta x^i} + \frac{\delta L}{\delta u} \partial_i u + \sum_{j=0}^n \frac{\delta L}{\delta \partial_j u} \partial_j \partial_i u$$

(Observe also that δ^i_j still denotes the Kronecker delta.) u is said to satisfy the Euler-Lagrange equations¹ if

$$\sum_{i=0}^{n} \partial_i \frac{\delta L}{\delta \partial_i u} - \frac{\delta L}{\delta u} = 0.$$

(1) Let

$$\mathcal{T}^{i}{}_{j} = \frac{\delta L}{\delta \partial_{i} u} \partial_{j} u - \delta^{i}_{j} L,$$
$$\mathcal{P}^{i} = \sum_{j=0}^{n} \mathcal{T}^{i}{}_{j} X^{j}.$$

¹In APDE I, you should have seen that u solves the Euler-Lagrange equation, then it is critical point of $S = \int L d^{1+n}x$. In elliptic problems, one typically looks for minimisers of S. Unfortunately, in hyperbolic problems, typically critical points of S are always saddle points, since S is unbounded above and below.

Show that if u satisfies the Euler-Lagrange equations, then

$$\sum_{i=0}^{n} \partial_i \mathcal{T}^i{}_j = -\frac{\delta L}{\delta x^j}$$

(2) Find \mathcal{T}^{i}_{j} if $L(x, u, \partial u) = \eta^{ij}(\partial_{i}u)(\partial_{j}u)$ for some constant η^{ij} .

Problem 7. Consider the inviscid Burgers' equation in \mathbb{R}^{1+1} ,

$$\partial_t u + u \partial_x u = 0.$$

(1) Suppose t > 0 and u is a C^2 solution of this equation $n [0, t] \times \mathbb{R}$ and that uniformly in t, for |x| sufficiently, u(t, x) = 0. Show

$$|u(t,x)||_{L^2_x} = ||u(0,x)||_{L^2_x}.$$

(2) Let $f : \mathbb{R} \to \mathbb{R}$ be in the Schwarz class. Consider $u_{-1}(t, x) = 0$ and, for $n \ge 0$, u_n defined by

$$\partial_t u_n + u_{n-1} \partial_x u_n = 0,$$

 $u_n(0, x) = f(x)$

- (a) Show that there is a T > 0 such that for all $n \in \mathbb{N}$, $\sup_{t \in [0,T]} \|u\|_{H^3} < 2\|f\|_{H^3}$.
- (b) Show that the u_n converge in H^2 to a limit u.
- (c) Using various convergence properties, show that u is a C^1 function on $[0, T] \times \mathbb{R}$ and a solution of the inviscid Burgers' equation.