ADVANCED PDE II - HOMEWORK 1

PIETER BLUE AND OANA POCOVNICU

Please submit your work by e-mail to pblue@ed.ac.uk and o.pocovnicu@hw.ac.uk by the 25 th of February. Please let us know as soon as possible if you find any typos or if something is unclear.

Problem 1 (P.B.). In \mathbb{R}^{1+n}, the Fourier transform of a solution to the linear wave equation can be written as

$$
\hat{u}(t, \vec{\xi})=e^{i|\vec{\xi}| t} f_{+}(\vec{\xi})+e^{-i|\vec{\xi}| t} f_{-}(\vec{\xi}), \quad \text { for all } \quad(t, \vec{\xi}) \in \mathbb{R}^{1+n}
$$

Show that if f_{+}and f_{-}are in $L^{2}(\mathrm{~d} \xi)$, then $u(t, \vec{\xi})$ is a continuous function of t taking values in $L^{2}(\mathrm{~d} \xi)$.

Problem 2 (O.P.). Let $\left(u_{0}, u_{1}\right) \in \dot{H}^{1}\left(\mathbb{R}^{3}\right) \times L^{2}\left(\mathbb{R}^{3}\right)$. We consider the (energy-subcritical) cubic nonlinear wave equation on \mathbb{R}^{3} :

$$
\left\{\begin{array}{l}
-\partial_{t}^{2} u+\Delta u=u^{3} \tag{NLW}\\
u(0)=u_{0} \\
\partial_{t} u(0)=u_{1}
\end{array}\right.
$$

Let

$$
\Gamma u:=S(t)\left(u_{0}, u_{1}\right)-\int_{0}^{t} \frac{\sin ((t-s)|\nabla|)}{|\nabla|} u^{3}(s) d s
$$

where $S(t)\left(u_{0}, u_{1}\right)$ denotes the solution of the linear wave equation with initial data $\left(u_{0}, u_{1}\right)$ at $t=0$. We have seen in Lecture 4 that there exists $T=T\left(\left\|\left(u_{0}, u_{1}\right)\right\|_{\dot{H}^{1} \times L^{2}}\right)$ such that Γ is a contraction on the ball

$$
B_{R}:=\left\{f \in L^{\infty}\left([0, T) ; \dot{H}^{1}\left(\mathbb{R}^{3}\right)\right):\|f\|_{L^{\infty}\left([0, T) ; \dot{H}^{1}\right)} \leq R\right\}
$$

with $R:=2\left\|\left(u_{0}, u_{1}\right)\right\|_{\dot{H}^{1} \times L^{2}}$. By Banach's fixed point theorem and Duhamel's formula, this shows that (NLW) admits a unique solution in B_{R}.
a) Show that this solution belongs to the class $\left(u, \partial_{t} u\right) \in C\left([0, T) ; \dot{H}^{1}\left(\mathbb{R}^{3}\right)\right) \times \mathbf{C}\left([0, T) ; L^{2}\left(\mathbb{R}^{3}\right)\right) . \quad\left(\mathbf{C}^{\mathbf{1}}\right.$ removed from $\mathbf{C}^{\mathbf{1}}\left([\mathbf{0}, \mathbf{T}) ; \mathbf{L}^{\mathbf{2}}\left(\mathbb{R}^{\mathbf{3}}\right)\right)$ [As a first step, show that $\left.\partial_{t} u \in L^{\infty}\left([0, T) ; L^{2}\left(\mathbb{R}^{3}\right)\right).\right]$
b) Prove the uniqueness of the solution in the class $C\left([0, T) ; \dot{H}^{1}\left(\mathbb{R}^{3}\right)\right) \times \mathbf{C}\left([0, T) ; L^{2}\left(\mathbb{R}^{3}\right)\right)$ $\left(C^{1}\right.$ removed from $C^{1}\left([0, T) ; L^{2}\left(\mathbb{R}^{3}\right)\right.$).
[From the Banach fixed point theorem, we only obtained the uniqueness in the ball B_{R}.]
c) (Stability with respect to initial data) Show that $\left(u_{0}, u_{1}\right) \mapsto u$ is locally Lipschitz continuous as a map from $\dot{H}^{1}\left(\mathbb{R}^{3}\right) \times L^{2}\left(\mathbb{R}^{3}\right)$ to $C\left([0, T) ; \dot{H}^{1}\left(\mathbb{R}^{3}\right)\right)$.
[Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be two normed vector spaces. A mapping $f: X \rightarrow Y$ is called locally Lipschitz continuous if for every $R>0$ there exists $K>0$ such that for every $x, x^{\prime} \in$ X with $\|x\|_{X} \leq R$ and $\left\|x^{\prime}\right\|_{X} \leq R$ the following holds: $\left\|f(x)-f\left(x^{\prime}\right)\right\|_{Y} \leq K\left\|x-x^{\prime}\right\|_{X}$.]
d) (Persistence of regularity) Let $s>1$ and assume that $\left(u_{0}, u_{1}\right) \in \mathbf{H}^{\mathbf{s}}\left(\mathbb{R}^{\mathbf{3}}\right) \times \mathbf{H}^{\mathbf{s}-\mathbf{1}}\left(\mathbb{R}^{\mathbf{3}}\right)$ (dots removed from H^{s} and H^{s-1}). Prove that there exist $T^{\prime}>0$ and a unique solution of (NLW) in the class

$$
\left(u, \partial_{t} u\right) \in C\left(\left[0, T^{\prime}\right) ; \mathbf{H}^{\mathbf{s}}\right) \times \mathbf{C}\left(\left[0, T^{\prime}\right) ; \mathbf{H}^{\mathbf{s}-\mathbf{1}}\right) .
$$

(C^{1} removed from $C^{1}\left(\left[0, T^{\prime}\right) ; H^{s-1}\left(\mathbb{R}^{3}\right)\right)$ and dots also removed from H^{s} and H^{s-1}.)
Hint: You might want to use the fractional Leibnitz rule (also known as the Kato-Ponce inequality), which states the following. Let $s>0,1<r<\infty, 1<p_{1}, p_{2}, q_{1}, q_{2} \leq \infty$ such that $\frac{1}{r}=\frac{1}{p_{1}}+\frac{1}{q_{1}}=\frac{1}{p_{2}}+\frac{1}{q_{2}}$. Then, there exists $C=C\left(s, n, r, p_{1}, p_{2}, q_{1}, q_{2}\right)$ such that

$$
\left\|\langle\nabla\rangle^{s}(f g)\right\|_{L^{r}\left(\mathbb{R}^{n}\right)} \leq C\left(\left\|\langle\nabla\rangle^{s} f\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}\|g\|_{L^{q_{1}}\left(\mathbb{R}^{n}\right)}+\|f\|_{L^{p_{1}\left(\mathbb{R}^{n}\right)}}\left\|\langle\nabla\rangle^{s} g\right\|_{L^{q_{1}}\left(\mathbb{R}^{n}\right)}\right),
$$

for any f and g such that all the norms on the right hand side of the inequality are finite. Here $\langle\nabla\rangle:=\sqrt{1+|\nabla|^{2}}$ is the Fourier multiplier defined by $\langle\nabla\rangle f:=\mathcal{F}^{-1}\left(\sqrt{1+|\xi|^{2}} \hat{f}(\xi)\right)$.
e) Recall the definition of the energy of a solution u of (NLW):

$$
E\left(u(t), \partial_{t} u(t)\right):=\int_{\mathbb{R}^{3}} \frac{\left(\partial_{t} u(t, x)\right)^{2}+|\nabla u(t, x)|^{2}}{2}+\frac{u^{4}(t, x)}{4} d x .
$$

Let I be a time interval containing zero. Using similar arguments to those in Theorem 3.1 in Lecture 2 (Step 1), one can prove rigorously the conservation of the energy $E\left(u(t), \partial_{t} u(t)\right)=$ $E\left(u_{0}, u_{1}\right)$ for all $t \in I$, for classical solutions of (NLW) $u \in C_{t, x}^{3}\left(I \times \mathbb{R}^{3}\right)$ such that $\left(u, \partial_{t} u\right) \in$ $C\left(I ; H^{s}\left(\mathbb{R}^{3}\right)\right) \times \mathbf{C}\left(I ; H^{s-1}\left(\mathbb{R}^{3}\right)\right)\left(C^{1}\right.$ removed from $C^{1}\left(I ; H^{s-1}\left(\mathbb{R}^{3}\right)\right)$ with s sufficiently large. [You do not need to prove this.]

Use this and some of the above points to prove rigorously the conservation of the energy for a local-in-time solution of (NLW) with initial data in $\dot{H}^{1}\left(\mathbb{R}^{3}\right) \times L^{2}\left(\mathbb{R}^{3}\right)$.
[Recall that the 'proof of the energy conservation' that we saw in Lecture 4 only works for smooth solutions such that $u(t, \cdot)$ is compactly supported for all $t \in I$, since we advantageously applied the divergence theorem.]

Problem 3 (P.B.). (1) State the Hahn-Banach theorem.
(2) Let $n, s \in \mathbb{Z}^{+}$. Let $T>0$. Let $F \in L^{1}\left([0, T] ; H^{s}\left(\mathbb{R}^{n}\right)\right)$ (although this doesn't matter). Let L be a linear differential operator and L^{*} be the formal adjoint, i.e. such that for all $\phi, \psi \in C_{0}^{\infty}\left((0, T) \times \mathbb{R}^{n}\right), \int_{0}^{T} \int_{\mathbb{R}^{n}} \phi(L \psi) \mathrm{d}^{n} x \mathrm{~d} t=\int_{0}^{T} \int_{\mathbb{R}^{n}}\left(L^{*} \phi\right) \psi \mathrm{d}^{n} x \mathrm{~d} t$.

Suppose that for all $\psi \in C_{0}^{\infty}\left((-\infty, T) \times \mathbb{R}^{n}\right)$

$$
|\langle F, \psi\rangle| \leq C \int_{0}^{T}\left\|\left(L^{*} \psi\right)(t, x)\right\|_{H_{x}^{-s-1}} \mathrm{~d} t .
$$

Show that there is $W \in\left(L^{1}\left([0, T] ; H^{-s-1}\right)\right)^{*}$ such that, for all $\psi \in C_{0}^{\infty}\left((-\infty, T) \times \mathbb{R}^{n}\right)$

$$
W\left(L^{*} \psi\right)=\int_{0}^{T} \psi F \mathrm{~d}^{n} x \mathrm{~d} t .
$$

