
ADVANCED PDE II - HOMEWORK 1

PIETER BLUE AND OANA POCOVNICU

Please submit your work by e-mail to pblue@ed.ac.uk and o.pocovnicu@hw.ac.uk by the

25th of February. Please let us know as soon as possible if you find any typos or if something

is unclear.

Problem 1 (P.B.). In R1+n, the Fourier transform of a solution to the linear wave equation

can be written as

û(t, ~ξ) = ei|
~ξ|tf+(~ξ) + e−i|

~ξ|tf−(~ξ), for all (t, ~ξ) ∈ R1+n.

Show that if f+ and f− are in L2(dξ), then u(t, ~ξ) is a continuous function of t taking

values in L2(dξ).

Problem 2 (O.P.). Let (u0, u1) ∈ Ḣ1(R3)× L2(R3). We consider the (energy-subcritical)

cubic nonlinear wave equation on R3:
−∂2t u+ ∆u = u3,

u(0) = u0

∂tu(0) = u1.

(NLW)

Let

Γu := S(t)(u0, u1)−
ˆ t

0

sin((t− s)|∇|)
|∇|

u3(s)ds,

where S(t)(u0, u1) denotes the solution of the linear wave equation with initial data (u0, u1)

at t = 0. We have seen in Lecture 4 that there exists T = T (‖(u0, u1)‖Ḣ1×L2) such that Γ

is a contraction on the ball

BR := {f ∈ L∞
(
[0, T ); Ḣ1(R3)) : ‖f‖L∞([0,T );Ḣ1) ≤ R}

with R := 2‖(u0, u1)‖Ḣ1×L2 . By Banach’s fixed point theorem and Duhamel’s formula, this

shows that (NLW) admits a unique solution in BR.

a) Show that this solution belongs to the class

(u, ∂tu) ∈ C([0, T ); Ḣ1(R3))×C([0, T );L2(R3)). (C1 removed from C1([0,T);L2(R3))

[As a first step, show that ∂tu ∈ L∞
(
[0, T );L2(R3)

)
.]

b) Prove the uniqueness of the solution in the class C([0, T ); Ḣ1(R3)) ×C([0, T );L2(R3))

(C1 removed from C1([0, T );L2(R3)).

[From the Banach fixed point theorem, we only obtained the uniqueness in the ball BR.]

c) (Stability with respect to initial data) Show that (u0, u1) 7→ u is locally Lipschitz con-

tinuous as a map from Ḣ1(R3)× L2(R3) to C([0, T ); Ḣ1(R3)).
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[Let (X, ‖ ·‖X) and (Y, ‖ ·‖Y ) be two normed vector spaces. A mapping f : X → Y is called

locally Lipschitz continuous if for every R > 0 there exists K > 0 such that for every x, x′ ∈
X with ‖x‖X ≤ R and ‖x′‖X ≤ R the following holds: ‖f(x)− f(x′)‖Y ≤ K‖x− x′‖X .]

d) (Persistence of regularity) Let s > 1 and assume that (u0, u1) ∈ Hs(R3)×Hs−1(R3)

(dots removed from Hs and Hs−1). Prove that there exist T ′ > 0 and a unique solution

of (NLW) in the class

(u, ∂tu) ∈ C([0, T ′);Hs)×C([0, T ′);Hs−1).

(C1 removed from C1([0, T ′);Hs−1(R3)) and dots also removed from Hs and Hs−1.)

Hint: You might want to use the fractional Leibnitz rule (also known as the Kato-Ponce

inequality), which states the following. Let s > 0, 1 < r < ∞, 1 < p1, p2, q1, q2 ≤ ∞ such

that 1
r = 1

p1
+ 1

q1
= 1

p2
+ 1

q2
. Then, there exists C = C(s, n, r, p1, p2, q1, q2) such that

‖〈∇〉s(fg)‖Lr(Rn) ≤ C
(
‖〈∇〉sf‖Lp1 (Rn)‖g‖Lq1 (Rn) + ‖f‖Lp1 (Rn)‖〈∇〉sg‖Lq1 (Rn)

)
,

for any f and g such that all the norms on the right hand side of the inequality are finite.

Here 〈∇〉 :=
√

1 + |∇|2 is the Fourier multiplier defined by 〈∇〉f := F−1(
√

1 + |ξ|2f̂(ξ)).

e) Recall the definition of the energy of a solution u of (NLW):

E(u(t), ∂tu(t)) :=

ˆ
R3

(∂tu(t, x))2 + |∇u(t, x)|2

2
+
u4(t, x)

4
dx.

Let I be a time interval containing zero. Using similar arguments to those in Theorem 3.1 in

Lecture 2 (Step 1), one can prove rigorously the conservation of the energy E(u(t), ∂tu(t)) =

E(u0, u1) for all t ∈ I, for classical solutions of (NLW) u ∈ C3
t,x(I×R3) such that (u, ∂tu) ∈

C(I;Hs(R3)) × C(I;Hs−1(R3)) (C1 removed from C1(I;Hs−1(R3)) with s sufficiently

large. [You do not need to prove this.]

Use this and some of the above points to prove rigorously the conservation of the energy

for a local-in-time solution of (NLW) with initial data in Ḣ1(R3)× L2(R3).

[Recall that the ‘proof of the energy conservation’ that we saw in Lecture 4 only works for

smooth solutions such that u(t, ·) is compactly supported for all t ∈ I, since we advanta-

geously applied the divergence theorem.]

Problem 3 (P.B.). (1) State the Hahn-Banach theorem.

(2) Let n, s ∈ Z+. Let T > 0. Let F ∈ L1([0, T ];Hs(Rn)) (although this doesn’t matter).

Let L be a linear differential operator and L∗ be the formal adjoint, i.e. such that for all

φ, ψ ∈ C∞0 ((0, T )× Rn),
´ T
0

´
Rn φ(Lψ)dnxdt =

´ T
0

´
Rn(L∗φ)ψdnxdt.

Suppose that for all ψ ∈ C∞0 ((−∞, T )× Rn)

|〈F,ψ〉| ≤ C
ˆ T

0
‖(L∗ψ)(t, x)‖H−s−1

x
dt.

Show that there is W ∈ (L1([0, T ];H−s−1))∗ such that, for all ψ ∈ C∞0 ((−∞, T )× Rn)

W (L∗ψ) =

ˆ T

0
ψFdnxdt.


