ADVANCED PDE II - HOMEWORK 1

PIETER BLUE AND OANA POCOVNICU

Please submit your work by e-mail to pblue@ed.ac.uk and o.pocovnicu@hw.ac.uk by the 25th of February. Please let us know as soon as possible if you find any typos or if something is unclear.

Problem 1 (P.B.). In \mathbb{R}^{1+n} , the Fourier transform of a solution to the linear wave equation can be written as

$$\hat{u}(t,\vec{\xi}) = e^{i|\vec{\xi}|t} f_+(\vec{\xi}) + e^{-i|\vec{\xi}|t} f_-(\vec{\xi}), \text{ for all } (t,\vec{\xi}) \in \mathbb{R}^{1+n}.$$

Show that if f_+ and f_- are in $L^2(d\xi)$, then $u(t, \vec{\xi})$ is a continuous function of t taking values in $L^2(d\xi)$.

Problem 2 (O.P.). Let $(u_0, u_1) \in \dot{H}^1(\mathbb{R}^3) \times L^2(\mathbb{R}^3)$. We consider the (energy-subcritical) cubic nonlinear wave equation on \mathbb{R}^3 :

$$\begin{cases} -\partial_t^2 u + \Delta u = u^3, \\ u(0) = u_0 \\ \partial_t u(0) = u_1. \end{cases}$$
(NLW)

Let

$$\Gamma u := S(t)(u_0, u_1) - \int_0^t \frac{\sin((t-s)|\nabla|)}{|\nabla|} u^3(s) ds$$

where $S(t)(u_0, u_1)$ denotes the solution of the linear wave equation with initial data (u_0, u_1) at t = 0. We have seen in Lecture 4 that there exists $T = T(||(u_0, u_1)||_{\dot{H}^1 \times L^2})$ such that Γ is a contraction on the ball

$$B_R := \{ f \in L^{\infty}([0,T); \dot{H}^1(\mathbb{R}^3)) : \|f\|_{L^{\infty}([0,T); \dot{H}^1)} \le R \}$$

with $R := 2 ||(u_0, u_1)||_{\dot{H}^1 \times L^2}$. By Banach's fixed point theorem and Duhamel's formula, this shows that (NLW) admits a unique solution in B_R .

a) Show that this solution belongs to the class

 $(u, \partial_t u) \in C([0, T); \dot{H}^1(\mathbb{R}^3)) \times \mathbf{C}([0, T); L^2(\mathbb{R}^3)).$ (**C**¹ removed from **C**¹([0, T); **L**²(\mathbb{R}^3))

[As a first step, show that $\partial_t u \in L^{\infty}([0,T); L^2(\mathbb{R}^3)).$]

b) Prove the uniqueness of the solution in the class $C([0,T); \dot{H}^1(\mathbb{R}^3)) \times \mathbf{C}([0,T); L^2(\mathbb{R}^3))$ (C^1 removed from $C^1([0,T); L^2(\mathbb{R}^3)$).

[From the Banach fixed point theorem, we only obtained the uniqueness in the ball B_R .]

c) (Stability with respect to initial data) Show that $(u_0, u_1) \mapsto u$ is locally Lipschitz continuous as a map from $\dot{H}^1(\mathbb{R}^3) \times L^2(\mathbb{R}^3)$ to $C([0,T); \dot{H}^1(\mathbb{R}^3))$. [Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be two normed vector spaces. A mapping $f: X \to Y$ is called locally Lipschitz continuous if for every R > 0 there exists K > 0 such that for every $x, x' \in$ X with $||x||_X \leq R$ and $||x'||_X \leq R$ the following holds: $||f(x) - f(x')||_Y \leq K ||x - x'||_X$.

d) (Persistence of regularity) Let s > 1 and assume that $(u_0, u_1) \in \mathbf{H}^{\mathbf{s}}(\mathbb{R}^3) \times \mathbf{H}^{\mathbf{s}-1}(\mathbb{R}^3)$ (dots removed from H^s and H^{s-1}). Prove that there exist T' > 0 and a unique solution of (NLW) in the class

$$(u, \partial_t u) \in C([0, T'); \mathbf{H^s}) \times \mathbf{C}([0, T'); \mathbf{H^{s-1}})$$

(C^1 removed from $C^1([0,T'); H^{s-1}(\mathbb{R}^3))$) and dots also removed from H^s and H^{s-1} .) Hint: You might want to use the fractional Leibnitz rule (also known as the Kato-Ponce inequality), which states the following. Let $s > 0, 1 < r < \infty, 1 < p_1, p_2, q_1, q_2 \leq \infty$ such that $\frac{1}{r} = \frac{1}{p_1} + \frac{1}{q_1} = \frac{1}{p_2} + \frac{1}{q_2}$. Then, there exists $C = C(s, n, r, p_1, p_2, q_1, q_2)$ such that

$$\|\langle \nabla \rangle^{s}(fg)\|_{L^{r}(\mathbb{R}^{n})} \leq C(\|\langle \nabla \rangle^{s}f\|_{L^{p_{1}}(\mathbb{R}^{n})}\|g\|_{L^{q_{1}}(\mathbb{R}^{n})} + \|f\|_{L^{p_{1}}(\mathbb{R}^{n})}\|\langle \nabla \rangle^{s}g\|_{L^{q_{1}}(\mathbb{R}^{n})}),$$

for any f and q such that all the norms on the right hand side of the inequality are finite. Here $\langle \nabla \rangle := \sqrt{1 + |\nabla|^2}$ is the Fourier multiplier defined by $\langle \nabla \rangle f := \mathcal{F}^{-1}(\sqrt{1 + |\xi|^2}\hat{f}(\xi)).$

e) Recall the definition of the energy of a solution u of (NLW):

$$E(u(t), \partial_t u(t)) := \int_{\mathbb{R}^3} \frac{(\partial_t u(t, x))^2 + |\nabla u(t, x)|^2}{2} + \frac{u^4(t, x)}{4} dx$$

Let I be a time interval containing zero. Using similar arguments to those in Theorem 3.1 in Lecture 2 (Step 1), one can prove rigorously the conservation of the energy $E(u(t), \partial_t u(t)) =$ $E(u_0, u_1)$ for all $t \in I$, for classical solutions of (NLW) $u \in C^3_{t,x}(I \times \mathbb{R}^3)$ such that $(u, \partial_t u) \in$ $C(I; H^s(\mathbb{R}^3)) \times \mathbf{C}(I; H^{s-1}(\mathbb{R}^3))$ (C^1 removed from $C^1(I; H^{s-1}(\mathbb{R}^3))$ with s sufficiently large. [You do not need to prove this.]

Use this and some of the above points to prove rigorously the conservation of the energy for a local-in-time solution of (NLW) with initial data in $\dot{H}^1(\mathbb{R}^3) \times L^2(\mathbb{R}^3)$.

Recall that the 'proof of the energy conservation' that we saw in Lecture 4 only works for smooth solutions such that $u(t, \cdot)$ is compactly supported for all $t \in I$, since we advantageously applied the divergence theorem.]

Problem 3 (P.B.). (1) State the Hahn-Banach theorem.

(2) Let $n, s \in \mathbb{Z}^+$. Let T > 0. Let $F \in L^1([0,T]; H^s(\mathbb{R}^n))$ (although this doesn't matter). Let L be a **linear** differential operator and L^* be the formal adjoint, i.e. such that for all
$$\begin{split} \phi, \psi \in C_0^{\infty}((0,T) \times \mathbb{R}^n), \ \int_0^T \int_{\mathbb{R}^n} \phi(L\psi) \mathrm{d}^n x \mathrm{d}t &= \int_0^T \int_{\mathbb{R}^n} (L^*\phi) \psi \mathrm{d}^n x \mathrm{d}t. \\ \text{Suppose that for all } \psi \in C_0^{\infty}((-\infty,T) \times \mathbb{R}^n) \end{split}$$

$$|\langle F,\psi\rangle| \le C \int_0^T \|(L^*\psi)(t,x)\|_{H^{-s-1}_x} \mathrm{d}t$$

Show that there is $W \in (L^1([0,T]; H^{-s-1}))^*$ such that, for all $\psi \in C_0^{\infty}((-\infty,T) \times \mathbb{R}^n)$

$$W(L^*\psi) = \int_0^T \psi F \mathrm{d}^n x \mathrm{d}t.$$