
ADVANCED PDE II - HOMEWORK 2

PIETER BLUE AND OANA POCOVNICU

For problems 2, 3, 4, you can choose between either solving problems 2 & 3

or solving problem 4.

Please submit your work by e-mail to pblue@ed.ac.uk and o.pocovnicu@hw.ac.uk by the

28th of March. Please let us know as soon as possible if you find any typos or if something

is unclear.

Problem 1 (O.P.). Let (t0, x0) ∈ R×R3 and define the backward light cone with vertex at

(t0, x0) to be K(t0, x0) := {(t, x) ∈ R×R3 : |x−x0| < t0−t}. (If t0 > 0, K(t0, x0)∩(R+×R3)

coincides with D+(B(x0, t0), 0, t0) used in lectures.) Let u be a classical solution of the

energy-critical NLW, −∂2t u + ∆u = u5, on K(t0, x0). The purpose of this problem is to

show the non-concentration of the potential energy of u on K(t0, x0).

For questions 1-7 bellow, we will be assuming that (t0, x0) = (0,~0).

1) We have seen in Lecture 4 the following identity:

∂t

(
(∂tu)2 + |∇u|2

2
+
u6

6

)
− div(∂tu∇u) = 0. (1)

By multiplying NLW by ∂xiu and u respectively, show that the following two algebraic

identities also hold:

∂t(∂tu∂xiu)− ∂xi
(

(∂tu)2 − |∇u|2

2
− u6

6

)
− div(∂xiu∇u) = 0, i = 1, 2, 3, (2)

and

∂t(u∂tu)− div(u∇u) = (∂tu)2 − |∇u|2 − u6. (3)

2) Multiplying (1), (2), (3) by t, x, and 1 respectively and adding up the results, show the

following scaling identity:

∂t(tQ)− div(tP ) +R = 0, (4)

where

Q : =
(∂tu)2 + |∇u|2

2
+
u6

6
+ ∂tu

(x
t
· ∇u+

u

t

)
(0.1)

P : =
x

t

(
(∂tu)2 − |∇u|2

2
− u6

6

)
+ ∂tu∇u+∇u

(x
t
· ∇u+

u

t

)
(0.2)

R : =
u6

3
. (0.3)

1
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[This is called the scaling identity because the scaling transformation u(t, x) 7→ λu(λt, λx)

is generated by t∂tu+ x · ∇u+ u.]

3) Use some algebraic manipulations to show that

Q =
u6

6
− 1

2
div

(
u2

x

|x|2

)
+

1

2

(
(∂tu)2 +

∣∣∣∣∇u+ u
x

|x|2

∣∣∣∣2 + 2∂tu
x

t
·
(
∇u+ u

x

|x|2

))
Then, prove that the following holds on K(0,~0):

Q ≥ u6

6
− 1

2
div

(
u2

x

|x|2

)
. (5)

4) Use some algebraic manipulations to show that on the boundary ∂K(0,~0) the following

holds:

tQ+ x · P =

(
t
∣∣∣∂tu+

x

t
· ∇u

∣∣∣2 +
1

2

(
∂t +

x

t
· ∇
)

(u2)

)
(−|x|, x).

In particular, setting v(y) := u(−|y|, y), the above can be rewritten as

tQ+ x · P = −|x · ∇v|
2

|x|
− x · ∇(v2)

2|x|
(6)

on ∂K(0,~0).

5) Integrate the scaling identity (4) over the truncated cone Kt
s := K(0,~0)∩ [s, t]×R3, for

some s < t < 0, and use the divergence theorem together with (5) and (6) to show that

0 ≥t
ˆ
D(t)

Qdx− s
ˆ
D(s)

(
u6

6
− 1

2
div

(
u2

x

|x|2

))
dx

− 1√
2

ˆ
B(~0,|s|)\B(~0,|t|)

|y · ∇v|2

|y|
+
y · ∇(v2)

2|y|
dy, (7)

where D(t) := K(0,~0) ∩ {t} × R3, D(s) := K(0,~0) ∩ {s} × R3, and B(~0, r) := {x ∈ R3 :

|x| ≤ r} for any r > 0.

6) Show that
y · ∇(v2)

2|y|
= div

(
v2

2|y|
y

)
− v2

|y|
.

Use this identity and apply the divergence theorem twice in the right-hand side of (7) to

obtain

0 ≥t
ˆ
D(t)

Qdx− s
ˆ
D(s)

u6

6
dx− 1√

2

ˆ
B(~0,|s|)\B(~0,|t|)

(
|y||∇v|2 − v2

|y|

)
dy

− 2 +
√

2

4

ˆ
∂B(~0,|s|)

|v|2dσ. (8)

7) Using the trace theorem H1(B(~0, 1)) ↪→ L2(∂B(~0, 1)) and a change of variables, show

that there exists C0 > 0 such that for any r > 0 and any f ∈ H1(B(~0, r)) the following

holds: ˆ
∂B(~0,r)

|f |2dσ ≤ C0

r

ˆ
B(~0,r)

|f |2dx+ C0r

ˆ
B(~0,r)

|∇f |2dx. (9)
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8) Show that the energy flux across the lateral boundary M t
s of Kt

s is given by

Flux(u;M t
s) =

1√
2

ˆ
B(~0,|s|)\B(~0,|t|)

|∇v|2

2
+
v6

6
dy.

Use this together with (9) to deduce from (8) that there exists C > 0 such that

0 ≥t
ˆ
D(t)

Qdx− s

(ˆ
D(s)

u6

6
dx− CFlux(u;M0

s )− C
(

Flux(u;M0
s )
) 1

3

)
. (10)

9) Prove that for any S < T < t0, there exists C > 0 such that the following holds:

ˆ
B(x0,t0−S)

|u(S)|6dx ≤C t0 − T
t0 − S

(
EB(x0,t0−T )(u(T ), ∂tu(T )) +

(
EB(x0,t0−T )(u(T ), ∂tu(T ))

) 1
3

)
+ C

(
Flux(u;M t0

S (t0, x0)) +
(

Flux(u;M t0
S (t0, x0))

) 1
3

)
. (11)

Hint: For (t0, x0) = (0,~0) this follows directly from (10). For a general (t0, x0) ∈ R × R3,

you’ll need to reduce to the case (t0, x0) = (0,~0) by using the invariance of NLW under

temporal and spacial translations, namely if u(t, x) is a solution of NLW, so is u(t0,x0)(t, x) :=

u(t+ t0, x+ x0).

10) Deduce from (11) that

lim
S→t−0

ˆ
B(x0,t0−S)

|u(S)|6dx = 0.

Problem 2 (P.B.). Let n ≥ 1. Consider the quasilinear wave equation

(Gij∂i∂j +Bj∂j +A)u = F

with G,B,A, F satisfying condition 1(∞,Ω) holds and G is 1/100 close to η. Suppose u is

a solution. Further suppose |F | < C|u|1 everywhere. Suppose R > 1.

Show that if there is an R > 0 such that u(0, ~x) and ∂tu(0, ~x) both vanish for |~x| > R,

then u(t, ~x) vanishes for all |~x| > R+ 2t.

Problem 3 (P.B.). Let L : R(1+n)+1+(1+n) → R. If no argument is given, assume

L = L(x, u, ∂u) = L(x, u(x), ∂u(x)), where x ∈ R1+n, u : R1+n → R and ∂ denotes

differentiation in R1+n. Use δL
δxi

to denote the derivative of L with respect to its ith argu-

ment, use δL
δu to denote its derivative with respect to its ((n+ 1) + 1)th argument, and δL

δ∂iu

to denote its derivative with respect to its ((n+ 1) + 1 + i)th argument. Observe that the

chain rule gives

∂iL =
δL

δxi
+
δL

δu
∂iu+

n∑
j=0

δL

δ∂ju
∂j∂iu.
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(Observe also that δij still denotes the Kronecker delta.) u is said to satisfy the Euler-

Lagrange equations1 if
n∑
i=0

∂i
δL

δ∂iu
− δL

δu
= 0.

(1) Let

T ij =
δL

δ∂iu
∂ju− δijL,

P i =

n∑
j=0

T ijXj .

Show that if u satisfies the Euler-Lagrange equations, then
n∑
i=0

∂iT ij = − δL
δxj

.

(2) Find T ij if L(x, u, ∂u) = ηij(∂iu)(∂ju) for some constant ηij .

Problem 4 (P.B.). Consider the inviscid Burgers’ equation in R1+1,

∂tu+ u∂xu = 0.

(1) Suppose t > 0 and u is a C2 solution of this equation n [0, t]×R and that uniformly

in t, for |x| sufficiently, u(t, x) = 0. Show

‖u(t, x)‖L2
x

= ‖u(0, x)‖L2
x
.

(2) Let f : R → R be in the Schwarz class. Consider u−1(t, x) = 0 and, for n ≥ 0, un
defined by

∂tun + un−1∂xun = 0,

un(0, x) = f(x).

(a) Show that there is a T > 0 such that for all n ∈ N , supt∈[0,T ] ‖u‖H3 < 2‖f‖H3 .

(b) Show that the un converge in H2 to a limit u.

(c) Using various convergence properties, show that u is a C1 function on [0, T ]×R
and a solution of the inviscid Burgers’ equation.

1In APDE I, you should have seen that u solves the Euler-Lagrange equation, then it is critical point of
S =

´
Ld1+nx. In elliptic problems, one typically looks for minimisers of S. Unfortunately, in hyperbolic

problems, typically critical points of S are always saddle points, since S is unbounded above and below.


