ADVANCED PDE II - HOMEWORK 2

PIETER BLUE AND OANA POCOVNICU

For problems 2, 3, 4, you can choose between either solving problems 2 & 3
or solving problem 4.

Please submit your work by e-mail to pblue@ed.ac.uk and o.pocovnicu@hw.ac.uk by the
28th of March. Please let us know as soon as possible if you find any typos or if something

is unclear.

Problem 1 (O.P.). Let (tg, z0) € R x R? and define the backward light cone with vertex at
(to,l’o) to be K(to,l’o) = {(t, .%') € RxR3: ]x—x()] < to—t}. (Ift() > 0, K(to, xo)ﬁ<R+ XRB)
coincides with D (B(xo,t0),0,tp) used in lectures.) Let u be a classical solution of the
energy-critical NLW, —0%2u + Au = u®, on K (tg,zg). The purpose of this problem is to
show the non-concentration of the potential energy of u on K (tg,xq).

For questions 1-7 bellow, we will be assuming that (¢g,x¢) = (0,0)

1) We have seen in Lecture 4 the following identity:

)2 2 6
O (W + u6> — div(0uVu) = 0. (1)
By multiplying NLW by 0,,u and u respectively, show that the following two algebraic

identities also hold:

2 2 6
at(atuaxzu) - axz <(atU)2|vu| - u) - div(a’tiuvu) =0, ©1=1,2,3, (2)

and
Or(udpu) — div(uVu) = (9yu)* — |[Vul? — ub. (3)

2) Multiplying (1), (2), (3) by t, x, and 1 respectively and adding up the results, show the
following scaling identity:

8,(tQ) — div(tP) + R = 0, (4)

where
Q:=W+1§+8tu<f~Vu+?) (0.1)
P:—i(W—f)%—@tuVu—l—Vu(f-VujLz) (0.2)
R:= 1;6 (0.3)
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[This is called the scaling identity because the scaling transformation wu(t, x) — Au(At, A\x)
is generated by toyu + x - Vu + u.]

3) Use some algebraic manipulations to show that

u
6 |z

61 9 T 1 9 z |? T T
Q= — §d1v <u :1;\2> + 3 (Opu)* + ‘Vu +u—s| + 28tu; . (Vu + UW>
Then, prove that the following holds on K (0, 0):

ub 1 T
> — — —div (v®— ).
Q> 69 iv (u |x|2> (5)

4) Use some algebraic manipulations to show that on the boundary 8K (0,0) the following
holds:

tQ+x-P= <t‘8tu+ % : VU‘Z + % <8t - % : v) (u2)> (—|z|, z).

In particular, setting v(y) := u(—|yl|,y), the above can be rewritten as
|z - Vo2 x-V(v?)

Q+x-P=—
] 2|

(6)
on 0K (0,0).

5) Integrate the scaling identity (4) over the truncated cone K' := K(0,0) N [s,t] x R3, for
some s < t < 0, and use the divergence theorem together with (5) and (6) to show that

ub 1 x
0 275/ Qdx — 5/ < — —div <u2>) dx
D) py\6 2 |2

1 ly-Vol* | y-V(?)
- +
V2 JB@s)\BG,) 1Y 2|yl
where D(t) := K(0,0) N {t} x R3, D(s) := K(0,0) N {s} x R®, and B(0,r) := {z € R3 :
|z| <7} for any r > 0.
6) Show that

dy, (7)

V(02 2 2
Y-V _ 4 <vy> v
2|yl 2Jy| [y
Use this identity and apply the divergence theorem twice in the right-hand side of (7) to

0>t/ Qd / A / <| |V ”2>d

> r—s —dr — — y||Voul* — — | dy

D(t) D(s) 6 V2 JB(,s)\B(@,¢]) |y
2442

4 JoB(@,s))

obtain

lv|2do. (8)

7) Using the trace theorem H'(B(0,1)) < L?*(0B(0,1)) and a change of variables, show
that there exists Cyp > 0 such that for any r > 0 and any f € H'(B(0,r)) the following

holds: o
/ |fl2do < =2 |f2dz + Cgr/ IV £ 2d. (9)
dB(0,r) T JB(0,r) B(0,r)
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8) Show that the energy flux across the lateral boundary M of K! is given by

/ |vv‘2+fdy
V2 JB@s)\BGE) 2 6 "

Use this together with (9) to deduce from (8) that there exists C' > 0 such that

Flux(u; M) =

_ u, 0 a0y ?
0 Zt/D(t) Qdx — s (/ i) 6 d:1; CFlux(u; M) — C’(Flux(u7 Ms)) ) (10)

9) Prove that for any S < T < t¢, there exists C' > 0 such that the following holds:

/B ot S)\ u(S) g(EB(xO,tOT>(u(T),atu<T))+ (EB(WOT)(u(T),atu(T)))é
+C (Flux(u; M (to, o)) + (Flux(u; MY (to,:ro))> é) ' (1)

Hint: For (tg,z0) = (0,0) this follows directly from (10). For a general (tg,z9) € R x R3,
you'll need to reduce to the case (to,zo) = (0,0) by using the invariance of NLW under
temporal and spacial translations, namely if u(t, ) is a solution of NLW, s0 is w4, ) (¢, ) =
U(t + 19, + .CU[)).

10) Deduce from (11) that

lim |u(S)[%dz = 0.
S—ty J B(zo,to—S)

Problem 2 (P.B.). Let n > 1. Consider the quasilinear wave equation
(G”&aj + Bjaj + A)u =F

with G, B, A, F satisfying condition 1(o0, ) holds and G is 1/100 close to n. Suppose u is
a solution. Further suppose |F| < C|u|; everywhere. Suppose R > 1.

Show that if there is an R > 0 such that «(0,Z) and d;u(0,Z) both vanish for |Z| > R,
then (¢, ¥) vanishes for all |Z| > R + 2t.

Problem 3 (P.B.). Let L : RI+M+1H+0+n) 5 R If no argument is given, assume
L = L(z,u,0u) = L(z,u(x),0u(z)), where z € R 4 : RI™™ — R and 0 denotes
dlﬂ'erentlatlon in R, Use ‘5—L to denote the derivative of L with respect to its ith argu—
ment, use E to denote its derlvatlve with respect to its ((n+ 1)+ 1)th argument, and 55+
to denote its derivative with respect to its ((n + 1) + 1 4 ¢)th argument. Observe that the
chain rule gives
n
SLLNSLPES Sp
U 00;u
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(Observe also that 6;- still denotes the Kronecker delta.) wu is said to satisfy the Euler-

Lagrange equations’® if

~g 0L oL _
P "00;u du

(1) Let
i oL i

Show that if u satisfies the Euler-Lagrange equations, then

n
; oL
=0
(2) Find T7; if L(x,u,0u) = 5% (9;u)(d;u) for some constant n*.
Problem 4 (P.B.). Consider the inviscid Burgers’ equation in R,
Oy + ulu = 0.
(1) Suppose t > 0 and u is a C? solution of this equation n [0, ] x R and that uniformly
in ¢, for |z| sufficiently, u(t,z) = 0. Show
lult, z)ll Lz = lu(0, )] L2-

(2) Let f: R — R be in the Schwarz class. Consider u_;(¢t,z) = 0 and, for n > 0, u,
defined by

Ottty + Up—10zup, = 0,
un(0,2) = f(x).
(a) Show that there is a T' > 0 such that for all n € N, sup;c(o 7] [[ull gs < 2[| f|| -
(b) Show that the u, converge in H? to a limit u.

(c) Using various convergence properties, show that u is a C'! function on [0, T] x R
and a solution of the inviscid Burgers’ equation.

1 APDE I, you should have seen that u solves the Euler-Lagrange equation, then it is critical point of
S = f Ld**™z. In elliptic problems, one typically looks for minimisers of S. Unfortunately, in hyperbolic
problems, typically critical points of S are always saddle points, since S is unbounded above and below.



