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Abstract

In this report, we detail some of the results obtained by Nakanishi, Schlag in their theory of
the global behaviour of solutions to the radial cubic non-linear Klein-Gordon equation in three
dimensions in the energy space H1 ⇥ L2. We describe the proof of scattering for certain global
solutions with energies less than that of the ground state, Q. For solutions with energy only
slightly above the ground state energy, we describe the complete classification of the global in
time behaviour. This is a combination of trapping by Q, scattering to 0 or finite time blow-up.
The tools used involve constructing center-stable manifolds and analysing the unstable modes of
the solution culminating in a crucial One-Pass Theorem.
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Chapter 1

Introduction

Our goal here is to study the long time behaviour of solutions to the focusing1 non-linear
Klein-Gordon equation (NLKG)

@2t u��u+ u� u3 = 0,

(u, @tu)|t=0

= (u(0), @tu(0)) 2 H := H1(R3)⇥ L2(R3).
(1.0.1)

The NLKG is a Hamiltonian PDE with Hamiltonian (or energy)

E(u(t), @tu(t)) :=

Z

R3

1

2
u2 +

1

2
|ru|2 + 1

2
(@tu)

2 � 1

4
u4 dx, (1.0.2)

As the energy is autonomous in time, we have the conservation

E(u(t), @tu(t)) = E(u(0), @tu(0)),

for all t in the lifespan of u. In the field of dispersive PDEs, we say that (1.0.1) is sub-critical
with respect to this energy in the sense that the non-linear contribution, the u4 term, can be
controlled by the other terms by Sobolev embedding.

Amongst all solutions of (1.0.1), there is a distinguished one known as the ground state, denoted
by Q. It is the unique time-independent, radial, positive weak solution in H1(R3) of

��Q+Q�Q3 = 0.

It exhibits exponential decay as |x| ! 1 and by elliptic regularity, it is smooth and hence a
classical solution. Furthermore, it is the positive solution of the time-independent NLKG that
minimizes the stationary energy

J(') :=

Z

R3

1

2
'2 +

1

2
|r'|2 � 1

4
'4 dx. (1.0.3)

The ground state plays a pivotal role in the long-time dynamics of (1.0.1).

The seminal work of Payne, Sattinger [1] described the dichotomy in behaviour of solutions of
(1.0.1) with energy below the ground state energy, that is, those u such that

E(u, @tu) < J(Q).

1
The corresponding theory for the defocusing case is far simpler and is classical. We will thus only consider the

focusing case here.
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Chapter 1

The distinction here is dependent upon the sign of the functional

K
0

:=

Z

R3
'2 + |r'|2 � '4 dx, (1.0.4)

which gives rise to two disjoint regions of H, labelled as PS±, and defined by

PS
+

:= {(u
0

, u
1

) 2 H |E(u
0

, u
1

) < J(Q), K
0

(u
0

) � 0} (1.0.5)

PS� := {(u
0

, u
1

) 2 H |E(u
0

, u
1

) < J(Q), K
0

(u
0

) < 0} (1.0.6)

The following theorem is the key result of the theory of Payne, Sattinger.

Theorem 1.1. The regions PS± are invariant under the flow of NLKG in the following sense:
if (u(0), u̇(0)) 2 PS±, then the solution to NLKG with this initial data (u(t), u̇(t)) 2 PS± for as
long as the solution exists.
Furthermore, solutions to NLKG which lie in PS

+

exist for all times, whereas those in PS�
blow up in finite time in both temporal directions.

That solutions in PS
+

lead to global evolutions is an easy consequence of the control on the L4

norm that (1.0.4) provides and energy conservation. The blow-up result follows from a convexity
argument. We devote Chapter 2 of this manuscript to detailing the improvement that Ibrahim,
Masmoudi and Nakanishi [2] made to the Payne–Sattinger theory, namely the proof of scattering
for data in PS

+

.

It is natrual to ask what about the behaviour of solutions having energies E(~u) � J(Q)? For the
case of the wave equation, Duyckaerts, Merle [3] obtained a surprising result for the case when
E(~u) = J(Q). They showed that the only solutions, modulo symmetries, are the trivial ground
state itself and two others: both scattering to Q in forward time, while one scatters to zero and
the other blows-up in backward time. Understanding of the dynamics above the ground state
was completely unknown. In the radial setting, Nakanishi and Schlag [4] tackled the problem of
solutions with energy at most slightly above the ground state; that is solutions in the space

H✏ := {~u 2 H : E(~u) < J(Q) + ✏2}, (1.0.7)

for some ✏ ⌧ 1. In this perturbative regime about Q, the phase space H
rad

splits into nine
distinct regions with combinations of them corresponding to the center and center-stable/unstable
manifolds.

Theorem 1.2. (Nakanishi, Schlag [4]) The set of solutions to (1.0.1) with radial initial data
~u(0) 2 Hrad splits into nine non-empty sets characterised as follows:

1. Scattering to 0 for both t ! ±1
2. Finite time blow-up on both sides of ±t > 0
3. Scattering to 0 as t ! 1 and finite time blow-up in t < 0
4. Finite time blow-up in t > 0 and scattering to 0 as t ! �1
5. Trapped by ±Q for t ! 1 and scattering to 0 as t ! �1
6. Scattering to 0 as t ! 1 and trapped by ±Q as t ! �1
7. Trapped by ±Q for t ! 1 and finite time blow-up in t < 0
8. Finite time blow-up in t > 0 and trapped by ±Q as t ! �1
9. Trapped by ±Q as t ! ±1,

Here “trapped by Q” means that the solution is contained within an O(✏) neighbourhood of (±Q, 0)
forever after some time (or before some time). The sets (5) [ (7) [ (9) and (6) [ (8) [ (9) are
codimension one Lipschitz manifolds in Hrad corresponding to the center-stable manifold W cs

and center-unstable manifold W cu, respectively, around (±Q, 0). Their intersection, (9), defines
the center manifold W c.
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Chapter 1

The classification given by Theorem 1.2 is the goal of Chapters 3 and 4. The former focuses
on the stable behaviour about the ground states, namely the construction of the center-stable
manifold and the properties of solutions which reside on it. The arguments here are a melding
of dispersive theory and dynamical systems, with a dash of spectral theory. The latter chapter
however discusses the behaviour away from the ground states which is dominated by the unstable
modes of the solution. The analysis is heavily based on ideas from the theory of ODEs and the
results are given more in the context of the language of orbital stability. The crucial result is the
One-Pass Theorem which constrains the dynamics near the ground states.

Here we will only have space to discuss the scattering result [2] in the Payne-Sattinger theory
and the results slightly above the ground state for the radial NLKG [4], both of which are
detailed in [5] which we follow. However, the theory initiated by Nakanishi and Schlag is robust
enough to be applicable to other dispersive equations of interest. The first generalisation was
extending the results we describe here for NLKG to the non-radial setting [6], which involves a
subtle redefinition of (1.0.7) due to the presence of Lorentz transformations. Kreiger and the
previous two authors [7] considered the 1D NLKG which presents a di�culty due to weaker
dispersion. Nakanishi and Schlag [8] provided a similar theory for the 3D radial cubic NLS. More
recently, Nakanishi and Roy have described the radial dynamics in the critical cases for NLKG
in three and five dimensions [9] and NLS in three dimensions [10]. Similar results have also been
obtained for the critical 3D wave equation [11,12]. The philosophies of the previous works have
also been usful for studying to dispersive PDE with potentials [13–15] and to generalised NLS
equations [16].

3



Chapter 2

Scattering below the ground state

Our goal in this chapter will be to present in detail the proof of scattering below the ground state
for radial solutions in PS

+

. This requires a fair amount of machinery. The simplest ingredient is
the small data scattering result which is a consequence of the small data global existence theory.
This result guarantees the existence of at least some nontrivial scattering solutions. We state it
here without proof.

Proposition 2.1. For any (u(0), @tu(0)) 2 H, there exists a unique strong solution u 2 C([0, T )⇥
H1) \ C1([0, T );L2) to the non-linear Klein-Gordon equation (NLKG)

@2t u��u+ u� u3 = 0, (u, @tu)|t=0

= (u(0), @tu(0)) 2 H, (2.0.1)

for some T = T (k~u(0)kH) > 0. If k~u(0)kH ⌧ 1, then the solution exists globally in time and
satisfies

kukL3
t

([0,1); L6
(R3

))

. k~u(0)kH.

If T ⇤ > 0 is the maximal forward time of existence, then T ⇤ < 1 implies that

kukL3
t

([0,T ⇤
); L6

(R3
))

= 1.

If T ⇤ = 1 and kukL3
t

([0,T ⇤
); L6

(R3
))

< 1, then u scatters in the following sense: there exists
(v

0

, v
1

) 2 H such that with v(t) = S
0

(t)(v
0

, v
1

), one has

ku(t)� v(t)kH ! 0, as t ! 1,

where S
0

(t) is the linear (free) Klein-Gordon evolution. If u scatters, then kukL3
t

([0,1); L6
(R3

))

<
1.

The next key ingredient is the profile decomposition of Bahouri-Gerard [17]. The development of
this technology is largely the reason for the 36 year gap between the works of Payne-Sattinger [1]
and Ibrahim-Masmoudi-Nakanishi [2]. Essentially, any sequence of solutions to NLKG in H has
a subsequence which asymptotically splits into individually localised pieces while also conserving
the energy. This phenomenon is responsible for the lack of compactness of such sequences. The
final two ingredients are a perturbation lemma and a finer variational characterisation of the
ground state which is given by Lemma 2.2. We will then combine these results to give the
scattering proof for radial data. Scattering also occurs for non-radial initial data however some
modifications are required. For details, see Section 2.4.4 in Nakanishi, Schlag [5].
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Chapter 2 2.1. PROFILE DECOMPOSITION

Lemma 2.2. One has

J(Q) = inf{J(') : K
0

(') = 0, ' 2 H1\{0}} = inf{G
0

(') : K
0

(')  0, ' 2 H1\{0}}
= inf{J(') : K

2

(') = 0, ' 2 H1\{0}} = inf{G
2

(') : K
2

(')  0, ' 2 H1\{0}}
(2.0.2)

where G
0

(') := (J � 1

4

K
0

)(') = 1

4

k'k2H1 and G
2

(') = (J � 1

3

K
2

)(') = 1

6

kr'k2
2

+ 1

2

k'k2
2

. The
minimizers are exactly ±Q(·+ x

0

) where x
0

2 R3 is arbitrary. The sets

{' 2 H1 : J(') < J(Q), Kj(') � 0},
{' 2 H1 : J(') < J(Q), Kj(') < 0}

(2.0.3)

do not depend on the choice of j = 0 or j = 2. Moreover, if J(') < J(Q) and K
2

(') < 0, then

�K
2

(') � 2 (J(Q)� J(')) (2.0.4)

and if J(') < J(Q) and K
2

(') � 0, then

K
2

(') � c
0

min
�
J(Q)� J('), kr'k2

2

�
(2.0.5)

for some absolute constant c
0

> 0.

2.1 Profile decomposition

The profile decomposition is intimately connected to the symmetries of the underlying equation.
For radial NLKG, the notable1 symmetries are time translations, spatial rotations and Lorentz
transformations, which form a subgroup of the full Poincare group. As we seek to represent a
general bounded sequence of free KG solutions by a number of fixed profiles, we have to take into
account these symmetries. Fortunately, we can forget about the symmetries forming compact
subgroups which in our case would be the spatial rotations. This is because we can pass to a
limit and thus incorporate these into the fixed profiles anyway. We may also forget about the
Lorentz transformations, L(ṽ), with boost velocity ṽ. Composing any free KG solution with L(ṽ)
will increase the kinetic energy as we send ṽ ! 1.

Theorem 2.3 (Radial, linear profile decomposition). Let un(t) = S
0

(t)~un(0) be a sequence of
free radial Klein-Gordon solutions bounded in H := H1 ⇥ L2. Then, possibly after replacing it
with a subsequence, there exist a sequence of free solutions vj bounded in H, and a sequence of
times tjn 2 R such that

1. For every j < k,
lim
n!1 |tjn � tkn| = 1. (2.1.1)

2. For every k � 1,

un(t) =
kX

j=1

vj(t+ tjn) + �kn(t). (2.1.2)

where for every j < k, the errors �kn satisfy ~�kn(�tjn)* 0 in H as n ! 1 and asymptotically
vanish in the sense that

lim
k!1

lim sup
n!1

k�knk
(L1

t

Lp

x

\L3
t

L6
x

)(R⇥R3
)

= 0, for all 2 < p < 6. (2.1.3)

1
We do not need to consider reflections u ! �u.
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Chapter 2 2.1. PROFILE DECOMPOSITION

Moreover, we have orthogonality of the free energy

k~unk2H =
kX

j=1

k~vjk2H + k~�knk2H + on(1) (2.1.4)

as n ! 1.

Remark 1. As the energy is conserved globally under the free KG-flow, we are free to evaluate
(2.1.4) at any time t. Usually the most convenient is t = 0.

2. The vj are known as limiting profiles, asymptotic profiles or free concentrating waves and
we say that two sequences {tjn} and {tkn} are orthogonal if (2.1.1) holds.

3. Notice that the errors �kn are free KG solutions which are uniformly “small” in n in the
Strichartz norm, but not in the energy norm.

Proof. The proof follows in a few steps which we outline for clarity.
Step 1: Reduction for (2.1.3)
We claim that it is su�cient to estimate the error �kn in L1

t Lp
x for any fixed 2 < p < 6. Fix

such a p and suppose that �kn 2 L1
t Lp

x. As �kn is bounded in H1

x uniformly in time2 then by
the Sobolev embedding H1(R3) ,! L6(R3), �kn 2 L1

t L6

x. Now as each �kn is a free solution, the

Strichartz estimate of Lemma 2.46 in [5], �kn 2 L2

tB
1
6
6,2. Using the definition of the Besov spaces

and the Littlewood-Payley square function estimate we have

k�knkL6
x

' kkPN�
k
nkl2

N

kL6
x

 kkPN�
k
nkL6

x

kl2
N

 k2N/6kPN�
k
nkL6

x

kl2
N

= k�knk
B

1
6
6,2

,

which implies that �kn 2 L2

tL
6

x. Using interpolation of space-time Lebesgue spaces (see Lemma
A.1), we see that for any 2 < p < 6, �kn 2 L3

tL
6

x.
Step 2: Construction of the profiles and verification of orthogonality

Set �0n := un and define
⌫1 := lim sup

n!1
kunkL1

t

Lp

x

.

Suppose that ⌫1 > 0. Then we can find a sequence t1n 2 R such that

k�0n(�t1n)kLp

x

� 1

2
⌫1.

Passing to a subsequence, we may assume that t1n ! t11 2 [�1,1] as n ! 1. Now since
~�0n(�t1n) 2 H 3 is bounded, there exists a weakly converging subsequence, which we still label
~�0n(�t1n), in H. Furthermore, since un is radial and the embedding H1

rad

(R3) ,! Lp(R3) is
compact, there exists a further subsequence that converges strongly in Lp

x. We define

~v1(0) := lim
n!1~�

0

n(�t1n),

as the strong Lp
x limit. Notice that a priori we do not know if the weak H1 limit �0n(�t1n) is equal

to the strong Lp limit v1(0). This potential issue in fact does not occur due to Lemma A.2.

Applying this result we see that �0n(�t1n)* v1(0) in H1 and hence ~v1(0) 2 H, and thus can be
used as initial data for the free KG equation. We define

v1(t) := S
0

(t)~v1(0) (2.1.5)

2
This will be apparent from Step 2 as a consequence of u

n

being bounded as we define the errors iteratively

�k

n

(t) := �k�1
n

� vk(t+ tk
n

), with �0
n

= u
n

.

3
Remember this is just u

n

, a free solution, that is uniformly bounded in H1
by assumption.

6



Chapter 2 2.1. PROFILE DECOMPOSITION

as the global in-time solution forming the first profile. That ~v1(0) is in fact radial follows from
Lemma A.3.

Furthermore, one can show that radial initial data for the free KG equation launches radial
solutions. This is obvious from the explicit solution formula

u(x, t) =

Z

R3
cos(t h⇠i)û

0

(⇠)eix·⇠ d⇠ +
Z

R3

sin(t h⇠i)
h⇠i û

1

(⇠)eix·⇠ d⇠.

Therefore v1(t) is a radial free KG solution. By Sobolev embedding,

1

2
⌫1  lim inf

n!1 k�0n(�t1n)kLp

x

= kv1(0)kLp

x

. kv1(0)kH1 . (2.1.6)

On the other hand, if ⌫1 = 0, then un already converges and we do not need to proceed, as this
would imply that ~v1(0) = 0 and by uniqueness of solutions to the free KG (following from finite
speed of propagation), v1(t) ⌘ 0. Hence we would take vj(t) ⌘ 0 for all j, and set �ln = �0n for all
l > 0.
Set

�1n(t) := �0n(t)� v1(t+ t1n), (2.1.7)

and note that
~�1n(�t1n) = ~�0n(�t1n)� ~v1(0)* 0, in H.

Also this implies that �1n(t) is a radial free KG solution. At this stage we have the decomposition

un(t) = v1(t+ t1n) + �1n(t).

We now move onto the k-th step in the iteration. Set

⌫k := lim sup
n!1

k�k�1

n kL1
t

Lp

x

.

If ⌫k = 0, then by the same arguments as before, we get vk ⌘ 0 and take vj ⌘ 0 and �jn = �k�1

n for
all j � k. So suppose that ⌫k > 0. Then there exists a sequence tkn 2 R, with tkn ! tk1 2 [�1,1]
and such that

k�k�1

n (�tkn)kLp

x

� 1

2
⌫k.

Now since ~�k�1

n (�tkn) 2 H is bounded, there exists a weakly converging subsequence, in H.
Furthermore, since �kn is radial and the embedding H1

rad

(R3) ,! Lp(R3) is compact, there exists
a further subsequence that converges strongly in Lp

x. We define

~vk(0) := lim
n!1~�

k�1

n (�tkn),

as the strong Lp
x limit which is bounded in H. Then we obtain the k-th profile vk by the free

KG flow of ~vk(0), i.e.
vk(t) := S

0

(t)~vk(0). (2.1.8)

Again by the Sobolev embedding,
1

2
⌫k . kvk(0)kH1 .

We set
�kn(t) := �k�1

n (t)� vk(t+ tkn), (2.1.9)

and notice that
~�kn(�tkn) = ~�k�1

n (�tkn)� ~vk(0)* 0, in H.

7



Chapter 2 2.1. PROFILE DECOMPOSITION

At this stage we have the decomposition

un(t) =
kX

j=1

vj(t+ tjn) + �kn(t).

We verify the orthogonality condition. Suppose otherwise that for some j < k, tjn � tkn ! c 2 R
as n ! 14 . Repeating (2.1.9) a finite number of times, we obtain

~�jn(t) = ~�kn(t) +
kX

l=j+1

~vl(t+ tln), (2.1.10)

and hence

~�jn(�tkn) = ~�kn(�tkn) + ~vk(0) +
k�1X

l=j+1

~vl(tln � tkn). (2.1.11)

We first claim that ~�jn(�tkn)* 0 in H. By density, it su�ces to show that for all ~� = (�
1

,�
2

) 2
S(R3)⇥ S(R3), D

~�1n(�t2n) | ~�
E
! 0, as n ! 1.

By unitarity of the free propagator, we have
D
~�jn(�tkn) | ~�

E
=
D
~�1n(�tjn + (tjn � tkn)) | ~�

E

=
D
S
0

(tjn � tkn)~�
1

n(�tjn) | ~�
E

=
D
~�1n(�tjn) |S0

(tkn � tjn)~�
E
.

Now S
0

(tkn � tjn)~� ! S
0

(�c)~� strongly in L2 by Plancherel’s identity as n ! 1, and by
construction, ~�kn(�tjn)* 0 in H. Using Lemma A.4 we verify that �kn(�tkn)* 0 in H as n ! 1.
We also have for all l 2 {j + 1, . . . , k � 1}, ~vl(tln � tkn) * 0 in H as n ! 1. This follows by a
similar argument except we make use of the pointwise decay estimate for free KG solutions as in
Section 2.5 of [5]. By density, we can find {~ l

m}m = {( l
m,1, 

l
m,2)} such that ~ l

m ! ~vl(0) in H.

We compute, with ~� 2 S2(R3),
����
D
~vl(tln � tkn) | ~�

E ���� =
����
D
S
0

(tln � tkn)~v
1(0) | ~�

E ����

=

����
D
~v1(0)� ~ l

m |S
0

(tkn � tln)~�
E ����+

����
D
~ l
m |S

0

(tkn � tln)~�
E ����

 kS
0

(tkn � tln)~�kHk~v1(0)� ~ l
mkH + kS

0

(tkn � tln)~�kW 1,1⇥L1k~ l
mkW 1,1⇥L1

. k~�kHk~v1(0)� ~ l
mkH +

1

|tkn � tln|3/2
k~ l

mkW 1,1⇥L1 .

Taking n ! 1 and then m ! 1 implies ~vl(tln � tkn)* 0 in H. Thus taking the weak limit in
H of (2.1.11) as n ! 1, we find ~vk(0) = 0 which is a contradiction. Proceeding onwards, if we
only have a finite number of profiles then we restrict the sequence indexing to that of the final
subsequence. If we have an infinite number of profiles, we extract the diagonal subsequence.
Step 3: Energy splitting (2.1.4)
As the free energy is conserved by the free KG flow, it su�ces to verify (2.1.4) for t = 0. We have

k~un(0)k2H =

����
kX

j=1

~vj(tjn) + ~�kn(0)

����
2

H
.

4
If there were in fact more than one j for which we had convergence in R, for example, if we had j1 < j2, then

we need only apply the argument to the largest of the two, j2. All other times diverge against tk
n

.
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Chapter 2 2.2. NONLINEAR PROFILE DECOMPOSITION

Expanding the scalar product in H, we find that the cross terms are of two forms (j 6= l):

D
~vj(tjn) |~vl(tln)

E
=
D
~vj(0) |S

0

(tln � tjn)~v
l(0)
E
, (2.1.12)

D
~vj(tjn) |~�k(0)

E
=
D
~vj(0) |~�k(�tjn)

E
. (2.1.13)

The first of these vanishes by using the pointwise decay estimate as we did above, while the
second one vanishes by putting t = �tkn into (2.1.10) and using the pointwise decay estimate to
show the vanishing of the ~vl terms. We also have replaced ~vj(0) by a Schwartz approximation.
Therefore these cross terms behave like ok(1) as n ! 1.
Step 4: Asymptotic vanishing of errors (2.1.3) We denote by akn the sequence of all the
cross-terms that were obtained by expanding out k~un(0)k2H. This sequence satisfies, for fixed k,
limn!1 akn = 0. Using (2.1.4), we have

lim sup
n!1

k~unk2H = lim sup
n!1

0

@
kX

j=1

k~vjk2H + k~�knk2H + akn

1

A

=
kX

j=1

k~vjk2H + lim sup
n!1

⇣
k~�knk2H + akn

⌘

�
kX

j=1

k~vjk2H1

Now by construction, for each j  k, k~vj(0)kH1 . ⌫k, and hence

lim sup
n!1

k~unk2H �
kX

j=1

k~vjk2H1 &
kX

j=1

(⌫j)2,

with the bound above being uniform in k. Therefore the series above converges implying ⌫j ! 0
as j ! 1 and thus

lim
k!1

lim sup
n!1

k�knkL1
t

Lp

x

(R⇥R3
)

= 0. (2.1.14)

2.2 Nonlinear profile decomposition

Suppose {~un(t)}n are a sequence of non-linear radial KG solutions. We want to associate to this
sequence a non-linear profile decomposition similar to what we established for sequences of linear
radial solutions in the previous section. This is indeed possible.

Theorem 2.4. Let {~un(t)}n be a sequence of radial NLKG solutions bounded in H. Then,
possibly after replacing by a subsequence, there exists a sequence of NLKG solutions {~U j}j,
bounded in H and a sequence of times tjn 2 R such that (2.1.1) holds and we may write

un(t) =
kX

j=1

U j(t+ tjn) + �kn(t) + ⌘kn(t), (2.2.1)

where the errors {�kn(t)}n are as in Theorem 2.3 and

k~⌘kn(0)kH ! 1 as n ! 1. (2.2.2)

9



Chapter 2 2.2. NONLINEAR PROFILE DECOMPOSITION

Proof. We let {~wn(t)}n be a sequence of linear solutions which are launched from the initial data
{~un(0)}n, that is, the same initial data as for the non-linear evolution. We can apply the linear
profile decomposition to {~wn(t)}n to obtain

~wn(t) =
nX

j=1

vj(t+ tjn) + ~�kn(t), (2.2.3)

where the {~vj}j are the linear profiles and ~�kn are the errors. Putting t = 0, we get a decomposition
for the initial data

~un(0) =
nX

j=1

vj(tjn) + ~�kn(0). (2.2.4)

We would like to use the sequence {~vj(tj1)} as initial data for the non-linear evolution, namely
we solve

(⇤+ 1)U j = (U j)3, (2.2.5)

~U j(tj1) = ~vj(tj1). (2.2.6)

We must be careful here since we cannot directly appeal to the local well-posedness theory to
claim existence to the above problem. This is because at most one tj1 will actually be finite,
all others will be ±1. We split the analysis into two cases: when tjn ! tj1 2 R and when
tjn ! tj1 = ±1.

tjn ! tj1 2 R: In this case we can appeal to the local well-posedness theory to obtain an
interval I about tj1 such that U j exists locally. We now verify the important approximation
property

k~U j(tjn)� ~vj(tjn)kH ! 0 (2.2.7)

as n ! 1. By the triangle inequality,

k~U j(tjn)� ~vj(tjn)kH k~U j(tjn)� ~U j(tj1)kH + k~U j(tj1)� ~vj(tj1)kH
+ k~vj(tj1)� ~vj(tjn)kH ! 0.

The first term tends to zero as ~U j is continuous in time, the second vanishes identically being
the initial data for U j and the third term vanishes by continuity of ~vj in time.

tjn ! tj1 = ±1: We construct the U j by using a fixed point argument about time t = ±1.
By the same argument, we only need consider the case when tj1 = 1. We define the solution
operator

(�U j)(t) := S
0

(t)vj +

Z 1

t

sin((t� t0) hri)
hri (U j(t0))3 dt0.

Fix t 2 [T,1) where T will be chosen so large so that

kS
0

(t)vjkL3
t

([T,1);L6
x

)

< ✏
0

where ✏
0

is a su�ciently small constant so that the fixed point argument can be applied. Such
an ✏

0

and T exist as the well-posedness theory guarantees that the vj are free solutions which
scatter so their L3

TL
6

x := L3

t ([T,1);L6

x) norms can be made arbitrarily small on [T,1) by using
the Monotone Convergence theorem. We will run the fixed point argument within a ball

B⌘ := {f 2 L3

t ([T,1);L6

x) : kfkL3
t

([T,1);L6
x

)

 ⌘} ⇢ L3

t ([T,1);L6

x).
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Chapter 2 2.3. THE PERTURBATION LEMMA

We show first that � : B⌘ ! B⌘. From the definition of �, we have

k�U jkL3
T

L6
x

 ✏
0

+ C
strich

kU jk2L3
T

L6
x

kU jkL3
T

L6
x

 ✏
0

+ C
strich

⌘2⌘.

Choosing ⌘ such that C
strich

⌘2 < 1/2 we get

k�U jkL3
T

L6
x

 ✏
0

+
1

2
⌘ < ⌘,

for small enough ✏
0

. We also have the di↵erence estimate

k�U j � �V jkL3
T

L6
x

 C(kU jk2L3
T

L6
x

+ kV jk2L3
T

L6
x

)kU j � V jkL3
T

L6
x

 2C⌘2kU j � V jkL3
T

L6
x

 1

2
kU j � V jkL3

T

L6
x

,

by choosing ⌘ potentially smaller than before, ⌘2 < min(1/4C, 1/2C
stric

). Thus by the contraction
mapping theorem, each U j exists locally around t = 1. For the approximation property, we have

k~U(tjn)� ~V j(tjn)kH =

����
Z 1

tj
n

sin((tjn � t0) hri)
hri (U j(t0))3 dt0

����
H


Z 1

tj
n

kU j(t0)k3L6
x

dt0

= kU jk3
L3
t

([tj
n

,1);L6
x

! 0,

as n ! 1 by the Monotone Convergence Theorem.

2.3 The Perturbation Lemma

Suppose we have a sequence {un}n of local NLKG solutions and consider its nonlinear profile
decomposition

un(t) =
kX

j=1

U j
n(t) + �kn(t) + ⌘kn(t).

Suppose that each nonlinear profile U j
n is a global solutions with finite L3

tL
6

x norm. By the
orthogonality (2.1.1), we can show that, for large n,

0

@
X

j

U j
n

1

A
3

=
X

j

�
U j
n

�
3

+ on(1),

where the error vanishes in L1

tL
2

x as n ! 1 and arises precisely because NLKG does not respect
superposition of solutions. So un is composed of a global, scattering ‘almost NLKG solution’P

j U
j
n and a sum of error terms �kn, ⌘

k
n. The Perturbation Lemma then implies that for large n,

un will be global in time and is uniformly bounded, in n, in L3

tL
6

x, implying scattering. This is
where the Perturbation Lemma comes into play for the scattering proof.

Lemma 2.5. There are continous functions ✏
0

, C
0

: (0,1) ! (0,1) such that the following
holds: Let I ⇢ R be an open interval (possibly unbounded), u, v 2 C(I;H1) \C1(I;L2) satisfying
for some B > 0,

kvkL3
t

(I;L6
x

)

 B, (2.3.1)

keq(u)kL1
t

(I;L2
x

)

+ keq(v)kL1
t

(I;L2
x

)

+ kw
0

kL3
t

(I;L6
x

)

 ✏  ✏
0

(B), (2.3.2)

11



Chapter 2 2.3. THE PERTURBATION LEMMA

where eq(u) := ⇤u+ u� u3, with ⇤ := @2t ��, is to be understood in the Duhamel sense, and
~w
0

(t) := S
0

(t� t
0

)(~u� ~v)(t
0

) for some arbitrary but fixed t
0

2 I. Then

k~u� ~v � ~w
0

kL1
t

(I;H)

+ ku� vkL3
t

(I;L6
x

)

 C
0

(B)✏, (2.3.3)

and in particular
kukL3

t

(I;L6
x

)

< 1. (2.3.4)

Proof. We cannot conclude boundedness by a single bootstrap argument as the Strichartz norm
of v is not necessarily small. This issue motivates us to partition the interval I so that, on each
segment, v will have a small enough Strichartz norm so that the argument will close. Using the
fixed t

0

2 I as an anchor and with some absolute and small �
0

> 0, we partition the right half of
I as follows:

t
0

< t
1

< · · · < tn  1, Ij = (tj , tj+1

), I \ (t
0

,1) = (t
0

, tn) (2.3.5)

kvkZ(I
j

)

 �
0

, (j = 0, . . . , n� 1) n  C(B, �
0

), (2.3.6)

where for convenience we have set Z(I) := L3(I;L6) for any interval I. Estimates on I \ (�1, t
0

)
are the same by time reversal symmetry and are thus omitted. To be more concrete, we choose
the times tj recursively by setting

tj = sup

⇢
t > tj�1

: kvkZ((t
j�1,t) 

1

2
�
0

�
.

Then, putting T as the right endpoint of I, we have

Z T

0

kv(t)k3L6 dt =
n�1X

j=0

Z t
j

t
j�1

kv(t)k3L6 dt 
n�1X

j=0

✓
�
0

2

◆
3

= n

✓
�
0

2

◆
3

.

Hence

kvkZ(I)  n1/3

✓
�
0

2

◆
.

We can now choose n = n(�
0

, B) such that, say,

n1/3

✓
�
0

2

◆
= 2B,

which implies that

n(�
0

, B) =

&✓
4B

�
0

◆
3

'
.

The important point here is that if we need to reduce �
0

in order to get the bootstrap machine
started, then we pay the price by increasing the number of sets in our partition. Likewise, if the
Strichartz bound on v given by B is large, then again the number of partitions must be large.
This little heuristic computation makes the dependencies of n explicit.
We set

w := u� v, e := (⇤+ 1)(u� v)� u3 + v3 = eq(u)� eq(v),

and ~wj(t) := S
0

(t � tj)~w(tj) for each 0  j < n. We construct iteratively, on each Ij , w such
that it is the unique fixed point of the operator

�jw := wj(t) +

Z t

t
j

sin((t� s) hri)
hri (e+ (v + w)3 � v3)(s)ds.

Fixed points w will then solve, in the strong sense, (⇤+ 1)w = e+ (w + v)3 � v3.

12



Chapter 2 2.3. THE PERTURBATION LEMMA

Step 1) We construct the first such w living on the interval I
0

. By Strichartz and Hölder
inequalities,

k�
0

wkZ0  kw
0

kZR +

����
Z t

t
j

sin((t� s) hri)
hri (e+ (v + w)3 � v3)(s)ds

����
Z0

 C
1

✏+ C
1

ke+ (w + v)3 � v3kL1
t

(I0;L2
x

)

 C
1

✏+ C
1

kekL1
t

L2
x

+ C
1

kwk3L3
t

L6
x

+ C
1

kkvk2L6
x

kwkL6
x

kL1
t

 C✏+ C
�
kvk2Z0

+ kwk2Z0

�
kwkZ0 .

Using bound (2.3.6), we get

k�
0

wkZ0  C✏+

✓
1

8
+ Ckwk2Z0

◆
kwkZ0 ,

where we have chosen �
0

so small so that C�2
0

< 1

8

. We now choose ✏ so small so that

22(3)C3✏2 <
1

2
, (2.3.7)

and hence

k�
0

wkZ0  C✏+
C✏

2
+

C✏

2
 2C✏.

Thus �
0

maps the ball B
2C✏ ⇢ H to itself. Similarly we obtain the di↵erence estimate

k�
0

w
1

� �
0

w
2

kZ0 
✓
1

8
+ Ckw

1

k2Z0
+ Ckw

2

k2Z0

◆
kw

1

� w
2

kZ0 
✓
1

8
+

1

2

◆
kw

1

� w
2

kZ0 .

This verifies that �
0

is a contraction on B
2C✏ and hence w(t) = (�

0

w)(t) for all t 2 I
0

. As we
now know that w exists on I

0

we would like to obtain some uniform control on it over I
0

. Notice
that in the construction above, we essentially obtained the bound

kwkZ0  kw � w
0

kZ0 + kw
0

kZ(R)  C✏+

✓
1

8
+ Ckwk2Z0

◆
kwkZ0 .

To recap, at Step 1 we obtain estimates on the following quantities

kwkZ0 , kw
1

kZ(R)

using the following previously known quantity

kw
0

kZ(I)( ✏).

The estimates we get at each step for the quantities above will be the same. We show by a
continuity argument that in fact

kwkZ0  2C✏, kwkZ(R)  2C✏.

Continuity argument: Since X(t) := kwkL3
((t0,t),L6

)

is continuous5 with limt!t0 X(t) = 0, there
exists �t > 0 small such that

X(t
0

+ �t)  4C✏.

5
By the dominated convergence theorem (using insertion), the function X(t) := k · k

L

3((t̃,t),L6) is continuous

and lim

t!t̃

X(t) = 0.
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Chapter 2 2.3. THE PERTURBATION LEMMA

By choosing ✏ su�ciently small, our estimate above will imply that we have the strictly better
bound

X(t
0

+ �t)  2C✏.

By a process of continuation, we therefore conclude that

X(t)  2C✏, for all t 2 I
0

.

Our estimate says

X(t)  C✏+

✓
1

8
+ CX(t)2

◆
X(t).

Plugging in our bootstrap hypothesis X(t
0

+ �t)  4C✏ (writing t = t
0

+ �t), we get

X(t)  C✏+
4C✏

8
+ C(4C✏)(4C✏)2  C✏+

1

2
C✏+ C✏(22(3)C3✏2).

Here we choose ✏ small enough so that

22(3)C3✏2 <
1

2
,

which is consistent with (2.3.7). Then we get

X(t)  C✏+
1

2
C✏+

1

2
C✏ = 2C✏,

and hence
kwkZ0  2C✏.

Noting that the same estimate for w
1

on Z(R) holds, we also obtain kw
1

kZ(R)  2C✏.
Step j) At step j, we obtain estimates on the following quantities

kwkZ
j

, kwj+1

kZ(R)

using the following previously known quantity

kwjkZ(I)  2jC✏.

Using that w exists so far up to time tj , we easily solve the fixed point problem (2.3) using
essentially the same estimates as in Step 1 and noting that the same choice of ✏

0

of (2.3.7) will be
able to deal with the exponential growth coming from kwjkZ(R). This growth is of no real concern
as our time slicing has only a finite number of partitions and we only require boundedness at the
end of the day. As before then derive the estimate

kwkZ
j

 kw � wjkZ
j

+ kwjkZ(R)  2jC✏+

✓
1

8
+ Ckwk2Z

j

◆
kwkZ

j

.

Continuity argument: We make the bootstrap hypothesis

X(t) := kwkZ[t
j

,t)
 2j+2C✏,

and we will obtain the better bound

X(t)  2j+1C✏.

From our basic estimate, we have

X(t)  2jC✏+
2j+2C✏

8
+ C(2j+2C✏)(2j+2C✏)2

 2jC✏+ 2j�1C✏+ 2jC✏(22(j+3)C3✏2).
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Chapter 2 2.4. SCATTERING IN THE RADIAL CASE

Choosing ✏ so that

22(j+3)C3✏2 <
1

2
,

we get X(t)  2j+1C✏ and thus by continuity, X(tj+1

)  2j+1C✏.
In order to ensure we can proceed through to the n-th step and all previous ones, we choose
✏
0

(n) so small so that

22(n+3)C3✏2
0

(n) <
1

2
.

Then for all ✏  ✏
0

(n) the preceeding arguments follow through and we can therefore bound w
on I by

kwkZ(I) =
n�1X

j=0

kwkZ
j


n�1X

j=0

2j+1C✏ ' 2n+1C✏ < 1. (2.3.8)

This allows us to conclude the uniform bound

kukZ(I)  ku� vkZ(I) + kvkZ(I)  kwkZ(I) +B < 1. (2.3.9)

Using essentially the same arguments of partitioning the time domain and bootstrapping on each
time interval we also obtain the L1

t (I;H) uniform bound (2.3.3).

2.4 Scattering in the radial case

With all the pieces in play, we are now prepared to describe the proof of scattering for solutions
in PS

+

.

Theorem 2.6. [2] All solutions u(t) 2 PS
+

scatter as t ! ±1 and kukL3
t

L6
x

< 1. Moreover,
there exists a function N : (0, J(Q)) ! (0,1) such that for all solutions in PS

+

,

kukL3
t

L6
x

< N(E(~u)). (2.4.1)

The proof follows the Kenig-Merle method and is indirect. We give an outline of it here.
For small energies, the local well-posedness theory implies that there is small ball in PS

+

about zero for which solutions exists globally in time, scatter and have small Strichartz norm
k · kL3

t

L6
x

. If the conclusion of Theorem 2.6 failed to hold, then there must exist a minimal

energy 0 < E⇤ < J(Q), for which we can find a sequence of data {(u0n, u̇0n)}n2N ⇢ PS
+

with
corresponding global solutions un(t) for which

E(~un) " E⇤, (2.4.2)

and for which the Strichartz norm becomes unbounded for large n so that

kunkL3
t

L6
x

! 1. (2.4.3)

We would then like to pass to the limit to deduce the existence of a critical element u⇤ 2 PS
+

which satisfies
E(~u⇤) = E⇤, ku⇤kL3

t

L6
x

= 1. (2.4.4)

A lack of compactness prevents us from doing so. This arises from the occurrence of two
possibilities: Either the waves un wander o↵ to infinity (that is, are arbitrarily translated) in
space-time or they split into individual waves which become separated in space-time as n ! 1
and for which the energy decouples. The former can be handled by careful translations. The
latter suggests applying a nonlinear profile decomposition to our sequence un which represents
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it is a sum of weakly interacting ‘profiles’ U j which asymptotically diverge. If we assume that
there exists at least two non-vanishing profiles, say U1, U2, we can show that

E(~U j) < E⇤,

and hence by the minimality of the energy, each profile is a global solution which scatters. At
this point we have a decomposition of the sequence un into a sum of profiles U j which are global,
scattering NLKG solutions and an error term �kn. The perturbation lemma then applies giving

lim sup
n!1

kunkL3
t

L6
x

< 1,

which is a contradiction, from which we conclude that there is only one profile which is in fact
our critical element.
This critical element has the further property that at least one of its trajectories

K± = {(u⇤(·+ x(t), t), u̇⇤(·+ x(t), t)) |0 < ±t < 1}, (2.4.5)

is precompact in H, for some path x(t) in R3. A rigidity argument, relying on virial identities,
then shows that any critical element with a precompact trajectory must necessarily vanish and
hence have zero energy. This is a contradiction from which we obtain Theorem 2.6.
As we have developed the radial theory, we will first prove Theorem 2.6 under the additional
assumption of radial symmetry.

Proof of Theorem 2.6 in the radial case.
Step 1: Extracting a critical element

We suppose, in order to obtain a contradiction, that the theorem fails. This implies the existence
of a sequence of global solutions {un}, bounded in H, and a minimal energy E⇤ satisfying (2.4.2)
and (2.4.3). We apply the radial linear profile decomposition of Theorem 2.3 to ~un(0) to obtain
free profiles vj and times tjn as in (2.1.2). We associate to each pair {(vj , tjn)}, a nonlinear profile
U j , as in Theorem 2.4, which solves NKLG locally around t = tj1, and satisfies

lim
n!1 k~vj(tjn)� ~U j(tjn)kH = 0. (2.4.6)

This gives rise to the useful heuristic of “swapping U j ’s for vj ’s” because we have, for large
enough n,

kU j(tjn)kH = kvj(tjn)kH + on(1). (2.4.7)

Combining this with the Sobolev embedding H1(R3) ,! L4(R3), we see we can also swap in the
L4 norm, that is

kU j(tjn)kL4 = kvj(tjn)kL4 + on(1). (2.4.8)

Locally around t = 0 we have the nonlinear profile decomposition

un(t) =
kX

j=1

U j(t+ tjn) + �kn(t) + ⌘kn(t), (2.4.9)

where we recall the free wave errors �kn and the energy error ⌘kn satisfy

lim
k!1

lim sup
n!1

k�knk
(L1

t

Lp

x

\L3
t

L6
x

)(R⇥R3
)

= 0, for all 2 < p < 6, (2.4.10)

and
lim
n!1 k⌘kn(0)kH = 0. (2.4.11)
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As the energy contains an L4 norm, we seek to expand the L4 norm of un(0) in terms of the
profiles vj . We get

kun(0)k4L4 =
��

kX

j=1

vj(tjn) + �kn(0)
��4
L4 =

kX

j=1

kvj(tjn)k4L4 + k�kn(0)k4L4 + (cross-terms).

The cross-terms are of two types: products of four profiles or products of profiles with �kn(0)
terms. Using Hölder, we can bound each cross-term as a product of their individual L4 norms.
For the latter case, we can take k so large so that by (2.4.10), k�kn(0)kL4 can be taken arbitrarily
small while for the former ones, we take n so large and using the dispersive decay estimate and
the fact that all, except for possibly one j, |tjn| ! 1, to show they can be taken arbitrarily small.
Using (2.4.8), we have

kun(0)k4L4 =
kX

j=1

kU j(tjn)k4L4 + o(1), as k, n ! 1. (2.4.12)

Now by (2.4.2), (2.4.12), (2.4.11) and energy conservation, we have

E⇤ + o(1) > E(~un(t)) = E(~un(0)) =
kX

j=1

E(~U j(tjn) + E(~�kn(0)) + E(~⌘kn(0))

=
kX

j=1

E(~U j(t)) + E(~�kn(0)) + o(1). (2.4.13)

Also

K
0

(un(0)) =

����
kX

j=1

vj(tjn) + �kn(0)

����
2

H1

�
kX

j=1

kvj(tjn)k4L4 � k�kn(0)k4L4 + o(1)

=
kX

j=1

�
kU j(tjn)k2H1 � kU j(tjn)k4L4

�
+
⇣
k�kn(0)k2H1 � k�kn(0)k4L4

⌘
+ o(1) (2.4.14)

=
kX

j=1

K(U j(tjn)) +K(�kn(0)) + o(1), (2.4.15)

as k, n ! 1. Similarly, we obtain

J(Q) > E⇤ + o(1) > E(~un(0)) > E(~un(0))�
1

4
K

0

(un(0))

� G
0

(un(0)) +
1

4
ku̇n(0)k2L2 =

1

2
E

0

(~un(0))

=
kX

j=1

1

2
E

0

(~U j(tjn)) +
1

2
E

0

(~�kn(0)) + o(1)

�
kX

j=1

G
0

(~U j(tjn)) +G
0

(~�kn(0)) + o(1).

Here E
0

is the free energy and we have used that ~un(0) 2 PS
+

implies that K
0

(un(0)) � 0.
Since G

0

(') � 0, it follows from Proposition 2.2 that K
0

(U j(tjn)) � 0 and K
0

(�kn(0)) � 0. Now
by energy conservation,

E(u(t)) = E(u(0)) = K
0

(u(0)) +
1

4
ku(0)k2H1 +

1

2
ku̇(0)k2L2 � K

0

(u(0)),

17



Chapter 2 2.4. SCATTERING IN THE RADIAL CASE

and hence E(~U j(t)) � 0 and E(~�kn(t)) � 0.
We define statements (A) and (B) by

(A) There exists at least two non-vanishing profiles vj , say v1, v2. (2.4.16)

(B) lim sup
k!1

lim sup
n!1

k~�knkH > 0. (2.4.17)

We have four possibilities: (A,B), (A0, B), (A,B0), (A0, B0) with the prime denoting the negation
of the statement. We will now show that assuming the truth of at least one of the statements A
or B leads to a contradiction.
Suppose that (A) is true. Then, as n ! 1,

E(~U j(tjn)) � G
0

(U j(tjn) +
1

4
kU̇ j(tjn)k2L2 =

1

4
kU j(tjn)k2H1 +

1

4
kU̇ j(tjn)k2L2

=
1

4
kvj(tjn)k2H1 +

1

4
kv̇j(tjn)k2L2 + o(1)

=
1

2
E

0

(~vj(tjn)) + o(1) =
1

2
E

0

(~vj(0)) + o(1) > 0.

As each nonlinear profile solves NLKG, this implies E(~U1) = E(~U j(tjn)) > 0, E(~U2) > 0. By
(2.4.13) we also have E(~U1), E(~U2) < E⇤. Now if we assume (B) is true, then by definition of the
energy and by (2.4.10), there exists a �

0

> 0 such that for large n and large k, E(~�kn(0)) > �
0

> 0.
Now (2.4.13) implies that 0 < E(~U j) < E⇤. Therefore assuming either (A) or (B) leads to
the same conclusion. By the minimality of E⇤, each U j must be a global in time solution that
scatters with

kU jkL3
t

L6
x

< 1. (2.4.18)

We now seek to apply the perturbation lemma on I = R, with u = un and

v(t) :=
kX

j=1

U j(t+ tjn). (2.4.19)

By definition, eq(u) = 0. As for eq(v), we have

keq(v)kL1
t

L2
x

! 0, (2.4.20)

as n ! 1. For convenience, we define f : x 7! x3. We write

eq(v) = (⇤+ 1)v � f(v)

=
kX

j=1

f(U j(t+ tjn))� f

0

@
kX

j=1

U j(t+ tjn)

1

A .

The key here is that the di↵erence on the right hand side consists of terms which are products of
at least two di↵erent profiles, say j 6= j0. We then expect from the orthogonality of the times
{tjn}j that each term should become arbitrarily small for large n. In order to prove this is the
case, we introduce a cut-o↵ function � 2 C1

0

(R) such that �(t) = 1 for |t|  1 and �(t) = 0 for
all |t| � 2, and set, for R > 0,

vR(t) :=
kX

j=1

�

 
t+ tjn
R

!
U j(t+ tjn) =:

kX

j=1

U j
R(t+ tjn). (2.4.21)

The point of using a cut-o↵ is so that we can uniformly control the supports of all the terms; this
would not be possible using a separate smooth approximation for each U j . For n su�ciently large,
each cut-o↵ profile U j

R(t+ tjn) is at most a distance 2R from any other such profile. Therefore

U j
R(t+ tjn)U

l
R(t+ tln) = 0, (2.4.22)

18



Chapter 2 2.4. SCATTERING IN THE RADIAL CASE

for n su�ciently large and j 6= l. A further important property is that

kU j � U j
RkL3

t

L6
x

= k(1� �R)U
jkL3

t

L6
x

! 0 (2.4.23)

as R ! 0+. Writing

eq(v) =
kX

j=1

h
f(U j)� f(U j

R)
i
+ f(vR)� f(v) +

kX

j=1

f(U j
R)� f(vR),

we get

keq(v)kL1
t

L2
x


kX

j=1

kf(U j)� f(U j
R)kL1

t

L2
x

+ kf(vR)� f(v)kL1
t

L2
x

+

����
kX

j=1

f(U j
R)� f(vR)

����
L1
t

L2
x

.

For the first term on the right hand side, we get

kf(U j)� f(U j
R)kL2

x

.
⇣
kU jk2L6

x

+ kU j
Rk2L6

x

⌘
kU j � U j

RkL6
x

.

Integrating over time, using Hölder, (2.4.18) and (2.4.23) this term vanishes as n ! 1. The
second term can be estimated similarly with the same result. Finally, by taking n su�ciently
large, the third term is identically zero by (2.4.22). This verifies (2.4.20).

We also need to verify that v(t) can be uniformly bounded in k in the Strichartz norm, that is,

lim sup
n!1

����
kX

j=1

U j(t+ tjn)

����
L3
t

L6
x

(2.4.24)

By (2.1.4), we can find a j
0

such that for all k > j
0

,

lim sup
n!1

����
kX

j=j0

U j(tjn)

����
2

H
 ✏2

0

, (2.4.25)

for some fixed ✏
0

. Viewing ~U j(tjn) as initial data for the NLKG with ✏
0

chosen su�ciently small
so that the small data result of the local well-posedness theory applies, we obtain

kU j(·)kL3
t

L6
x

. k~U j(tjn)kH, for all j � j
0

.

Hence

lim sup
n!1

����
kX

j=j0

U j(t+ tjn)

����
3

L3
t

L6
x

=
kX

j=j0

kU j(·)k3L3
t

L6
x

 C lim sup
n!1

kX

j=j0

kU j(·)k3H

 C lim sup
n!1

0

@
kX

j=j0

kU j(·)k2H

1

A
3/2

 C lim sup
n!1

k~un(0)k3H.

This now implies (2.4.24) as the term over 1  j < j
0

is easily bounded by the finiteness of
the interval. We verify the final assumption for applying the perturbation lemma which is the
smallness, for large enough n, of

kS
0

(t)(~un � ~v)(0)kL3
t

L6
x

.

19
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This follows easily by the properties of ~�kn and ⌘kn(0) and a Strichartz inequality since

kS
0

(t)(~un � ~v)(0)kL3
t

L6
x

= kS
0

(t)(~�kn + ⌘kn)(0)kL3
t

L6
x

 k�knkL3
t

L6
x

+ kS
0

(t)~⌘kn(0)kL3
t

L6
x

 k�knkL3
t

L6
x

+ Ck~⌘kn(0)kH ! 0, as n ! 1.

Taking k and n su�ciently large we apply the perturbation lemma to (2.4.9) to conclude

lim sup
n!1

kunkL3
t

L6
x

< 1,

which contradicts (2.4.3). This leaves us with only the case (A0, B0) and hence there exists only
one non-vanishing profile, say v1 and

lim
n!1 k~�2nkH = 0. (2.4.26)

This now implies that E(~U1) = E⇤ and K(U1) � 0 so U1 2 PS
+

. Now by definition of E⇤,

kU1kL3
t

L6
x

= 1. (2.4.27)

Therefore U1 is the critical element we have been searching for and we write u⇤ := U1.
Step 2: Precompactness of K±
Without loss of generality, we show that K

+

is precompact in H with x(t) ⌘ 0 (c.f. (2.4.5)) and
suppose that

ku⇤kL3
t

([0,1);L6
x

)

= 1. (2.4.28)

In order to obtain a contradiction, we suppose otherwise so that there exists � > 0 so that for
some sequence tn ! 1 we have

k~u⇤(tn)� ~u⇤(tm)kH > �, for all n > m. (2.4.29)

We now apply the arguments from Step 1 to U1(tn), using (2.4.27) and the minimality of E⇤ to
obtain

~u⇤(tn) = ~V (⌧n) + ~�n(0) (2.4.30)

where ~V,~�n are free KG solutions, ⌧n is a sequence in R and k~�nkH ! 0 as n ! 1. Suppose
that ⌧n ! ⌧1 2 R. Using (2.4.30), we have

k~u⇤(tn)� ~u⇤(tm)kH  k~V (⌧n)� ~V (⌧m)kH + k~�n(0)kH + k~�m(0)kH ! 0

as m,n ! 1 which contradicts (2.4.29). Suppose that ⌧n ! 1. As

kV (·+ ⌧n)kL3
t

([0,1);L6
x

)

! 0,

as n ! 1 by a change of variables t0 = t+ ⌧n. Then using (2.4.30) as initial data for the NLKG,
uniqueness of solutions and the small data scattering we get ku⇤(· + tn)kL3

t

([0,1);L6
x

)

< 1 for
large n which contradicts (2.4.28). Finally, suppose that ⌧n ! �1. Then

kV (·+ ⌧n)kL3
t

((�1,0];L6
x

)

! 0,

as n ! 1. This gives that for all large n, there exists some fixed constant B such that
ku⇤(·+ tn)kL3

t

((�1,0];L6
x

)

< B < 1. As tn ! 1, we get a contradiction to (2.4.28) by taking the
limit in n. Therefore K

+

is precompact in H.
Step 3: Rigidity argument: The key part of the rigidity argument is the following virial
identity:

d

dt
h�Ru̇⇤ |Au⇤iL2 = �K

2

(u⇤) +O
 Z

|x|>R
|u̇⇤|2 + |ru⇤|2 + |u⇤|2 dx

!
. (2.4.31)
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Chapter 2 2.4. SCATTERING IN THE RADIAL CASE

Here A = 1

2

(x.r + r.x) and �R(x) := �(x/R) is a smooth, radial cut-o↵ function satisfying
� = 1 on |x|  1 and � = 0 on |x| � 2. By the compactness of K

+

, the O(·) term in (2.4.31) is
uniformly small (tightness).
We use (2.4.31) to show that the compactness of K

+

leads to a contradiction unless u⇤ ⌘ 0.
However this itself is a contradiction as 0 < E(~u⇤) = E⇤, whence Theorem 2.6 follows. If we
integrate both sides of (2.4.31) from 0 to a time t

0

, the left hand side can be bounded by O(R)
by energy conservation and since K � 0 implies that the free energy is uniformly bounded for all
time. If the right hand side before integration is bounded by ��

0

< 0 for some fixed �
0

, then by
taking t

0

large, we can be obtain a contradiction to the inequality.

A potential snag we may encounter in this procedure as that there is no reason a priori why
K

2

(u⇤(t)) must be uniformly bounded above by ��
0

. From (2.0.5), we have

�K
2

(u⇤)  c
0

min(J(Q)� J(u⇤), kru⇤k2
2

)  ��
1

kru⇤k2
2

,

for some �
1

> 0. The above inequality will be useless if there was a time t
1

such that u⇤(t1) = 0,
as it cannot be concluded from this that u⇤ ⌘ 0 as u̇(t

1

) may be large. A way around this
problem uses the following estimate: for every ✏ > 0, there exists C(✏) > 0 such that

ku⇤(t)k2
2

 C(✏)kru⇤(t)k2
2

+ ✏ku̇⇤(t)k2
2

, 8 t � 0. (2.4.32)

To prove this, assume that (2.4.32) did not hold. Then there exists an ✏ > 0 and a sequence tn
such that

ku⇤(tn)k2
2

> nkru⇤(tn)k2
2

+ ✏ku̇⇤(tn)k2
2

, 8n � 1. (2.4.33)

As u⇤ is uniformly bounded in L2, the above implies that ru⇤(tn) ! 0 in L2. By precompactness
of K

+

, there exists a subsequence, which we label u⇤(tn), that converges strongly in H1

x. This
implies that u⇤(tn) ! 0 in H1

x. This can be obtained by identifying limits in larger spaces.
Hence ku̇⇤(tn)k2

2

! 0 which implies that E
0

(u⇤) ! 0. However, E(~u⇤(tn))  E
0

(u⇤(tn)) so
E(~u⇤(tn)) ! 0 as n ! 1. This says that eventually E(~u⇤(tn)) decreases but since u⇤ solves
the NLKG, its energy is conserved and hence E(~u⇤) = 0, which implies that u⇤ ⌘ 0 which is a
contradiction as E(~u⇤) = E⇤ > 0.
Using (2.4.32) with ✏ = 1

2

, we find

d

dt
hu⇤|u̇⇤i = ku̇⇤k2

2

+
⌦
u⇤|�u⇤ � u⇤ + u3⇤

↵

= ku̇⇤k2
2

� kru⇤k2
2

� ku⇤k2
2

+ ku⇤k4
4

� 1

2
ku̇⇤k2

2

� C(1/2)kru⇤k2
2

,

and using this and (2.4.32) with ✏ = 1

4

we also get

1

4
ku̇⇤k2

2

+ ku⇤k2H1  Ckru⇤k2
2

+
d

dt
hu⇤|u̇⇤i ,

where C := 1 +C(1/2) +C(1/4). As K(u⇤) � 0, then the left hand side of the above is ' E(~u⇤).
Integrating both sides of the above from 0 to t

0

> 0 gives

t
0

E(~u⇤) .
Z t0

0

kru⇤(t)k2
2

dt. (2.4.34)

Now we choose R so large so that the integral term on the right-hand side of (2.4.31) can be
bounded by �

2

E(~u⇤) for some �
2

⌧ �
1

. Integrating (2.4.31) over 0 to t
0

yields

h�Ru̇⇤ |Au⇤iL2 |t0
0

 ��
1

Z t0

0

kru⇤(t)k2
2

dt+ Ct
0

�
2

E(~u⇤).

Not that the left-hand side is uniformly bounded in time by O(RE(~u⇤)). Using (2.4.34) we
obtain a contradiction by taking t

0

! 1.
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Chapter 3

Invariant manifolds by The
Lyapunov-Perron Method

In this chapter, we begin the analysis of NLKG solutions with energies

E(~u) < J(Q) + ✏2, (3.0.1)

where ✏ ⌧ 1 and to be determined. In the regime where E(~u) < J(Q) there where only two
possible dynamics: scattering to zero or finite time blow-up. Slightly above the ground state,
there is an additional behaviour: trapping by the ground state, that is the solution eventually
remains entirely within a small ball about one of the ground states (±Q, 0). In fact, more is
known in this case as one can construct center-stable manifolds locally about the ground states
which can be used to derive further properties of trapped solutions. The construction is given in
Theorem 3.4 and is the key result of this chapter.

We follow the arguments of [5] where the construction is via the Lyapunov-Perron method. An
additional construction is provided in [5] known as the Bates-Jones approach [18]. We do not
consider this construction here. The methods are quite independent and each has its advantages
and disadvantages. The Lyapunov-Perron method requires a full knowledge of the spectral
properties of a certain operator in order to derive Strichartz estimates for the perturbed evolution
about Q. The Bates-Jones approach does not require such heavy spectral information however
it does not obtain as much as information as the Lyapunov-Perron approach does; such as a
scattering statement, and is also inflexible with respect to other powers of the non-linearity in
the Klein-Gordon equation.

3.1 Linearisation and spectral properties

Writing u = Q+ v, we have

@2t v + L
+

v = 3Qv2 + v3 =: N(v), (3.1.1)

where
L
+

:= ��+ 1� 3Q2 (3.1.2)

is the linearised operator about Q. Such a decomposition leads to expansions of the energy and
K

0

, namely

E(Q+ v, @tv) = J(Q) +
1

2
hL

+

v|vi+ 1

2
k@tvk2L2 +O(kvk3H1), (3.1.3)

K
0

(Q+ v) = �2
⌦
Q3|v

↵
+O(kvk2H1). (3.1.4)
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Note that h·|·i is the L2 inner product. With ⇢ > 0, the L2-normalised eigenfunction of L
+

whose
existence is stated later in Lemma 3.2, we write

v(t, x) = �(t)⇢(x) + �(t, x), (3.1.5)

where � 2 P?
⇢ (H1) in the sense that � 2 H1 and is orthogonal to ⇢ in the L2 inner product. We

define the projection operators P⇢ := ⇢h⇢| and P?
⇢ := 1� P⇢, which are projections using the L2

inner product. Inserting this further decomposition into (3.1.1) and projecting onto and o↵ ⇢,
we obtain the system

(
�̈� k2� = N⇢(v) =: hN(v)|⇢i ,
@2t � + L

+

� = P?
⇢ N(v) =: Nc(v), � 2 P?

⇢ (H1).
(3.1.6)

Generally the second equation (3.1.6) should have the operator L
+

replaced with !2 := P?
⇢ L

+

,

however a short calculation shows that on P?
⇢ (H1), !2 = L

+

so the additional orthogonal
projection here is unnecessary.

Using (3.1.3) and (3.1.4), we obtain the further decompositions in terms of (�, �)

E(Q+ v, @tv) = J(Q) +
1

2
(�̇2 � k2�2) +

1

2
hL

+

�|�i+ 1

2
k@t�k2L2 +O(kvk3H1), (3.1.7)

K
0

(Q+ v) = �2
⌦
Q3|�⇢+ �

↵
+O(kvk2H1). (3.1.8)

We now state a useful result that says that for � 2 P?
⇢ (H1), the perturbation by �3Q2 in L

+

is
largely unimportant.

Lemma 3.1. For any � 2 P?
⇢ (H1), we have

hL
+

�|�i ' k�k2H1 . (3.1.9)

Proof. Notice that the upper bound hL
+

�|�i . k�k2H1 is trivial upon writing out L
+

and
integrating by parts. For the other direction, we first show that if f ? Q3, then there exists a
constant c

0

> 0 such that
hL

+

f |fi � c
0

kfk2L2 . (3.1.10)

To show this suppose otherwise, so that there exists f ? Q3 and hL
+

f |fi < c
0

kfk2L2 . Setting
v = ✏Q+ �f for small ✏, � 2 R, we find using (3.1.4) and G

0

(u) = (1/4)kuk2H1 that

K
0

(Q+ v)  �2✏kQk4
4

+ c
0

�2, G
0

(Q+ v) < J(Q)� 1

2
✏kQk4L4 +

3

4
�2c

0

.

Choosing ✏ ⇠ �3, we get K
0

(Q+ v)  0 and G
0

(Q+ v) < J(Q) which contradicts (2.0.2). Now
from the Min-Max Principle (see [19]),

µ
2

(L
+

) := sup
�

inf
 ?�

hL
+

 | i
k k2

L2

� inf
 ?Q3

hL
+

 | i
k k2

L2

� c
0

> 0.

As the supremum is attained for ⇢, we find

hL
+

�|�i � c
0

k�k2L2 (3.1.11)

for all � 2 P?
⇢ (H1). Explicitly,

hL
+

�|�i = k�k2H1 � 3
⌦
Q2�|�

↵
.

Combining this and (3.1.11), implies that for any ✓ 2 [0, 1],

hL
+

�|�i � (1� ✓)c
0

k�k2L2 + ✓k�k2H1 � 3✓
⌦
Q2�|�

↵

� (c
0

� c
0

✓ � 3kQk2L1✓)k�k2L2 + ✓k�k2H1 .

Choosing ✓ 2 (0, 1) such that the first term vanishes, we obtain the desired lower bound.
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Figure 3.1: Plots of the spectrum of L+ and A.

For constructing the center manifold for NLKG solutions satisfying (3.0.1), it is convenient to
rewrite (3.1.1) as a first order system of PDEs. We easily verify that (3.1.1) can be written
equivalently as the system

@t

✓
v
v̇

◆
=


0 1

�L
+

0

�

| {z }
=:A

✓
v
@tv

◆
+

✓
0

N(v)

◆
. (3.1.12)

As in the theory of finite dimensional ODE, it is crucial to examine the spectral properties of the
operator A which also requires those of L

+

.

Lemma 3.2. (Spectral properties of L
+

and A) Consider the unbounded operators L
+

: D(L
+

) =
H2

rad

(R3) ⇢ L2

rad

(R3) ! L2

rad

(R3) and A : D(A) = H2

rad

(R3)⇥ L2

rad

(R3) ! L2

rad

(R3)⇥ L2

rad(R3).
We have:

(i) L
+

is self-adjoint and bounded from below,
(ii) L

+

has only one negative eigenvalue �k2, with k > 0, which is non-degenerate and has no
eigenvalue at 0 or in the continuous spectrum [1,1),

(iii) L
+

satisfies the ‘Gap Property’: L
+

has no eigenvalues in (0, 1] and has no resonance at
the threshold 1,

(iv) �(A) = {z 2 C : z2 2 ��(L
+

)} = {±k} [ i[1,1) [ i(�1,�1].

Proof. The proofs of these statements can be found in [5] and have been omitted here in order to
focus on the the latter sections in this chapter. Properties (i), (ii) and (iv) are standard arguments.
However (iii) is not. For this property, Demanet and Schlag [20] obtained a numerical proof
and later an analytical proof was given by the second author and collaborators [21]. The gap
property will be used to derive Strichartz estimates for L

+

which will be used in the construction
of the center-stable manifold.

The motivation for the existence of a center-stable manifold about (±Q, 0) is now clear from
Lemma 3.2. The portion of the spectrum of L

+

along the imaginary axis (see Figure 3.1)
is responsible for the non-hyperbolic nature of the equilibrium Q. We then attribute the
stable/unstable behaviours of solutions to NLKG just above the ground state to the single
negative/positive eigenvalues of A.

3.2 The center-stable manifold

In this section, we will detail the construction of the center-stable manifold for NLKG by using
the Lyapunov-Perron method. The manifold exists locally around the ground state (Q, 0) in H
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and is ‘tangent’ to the linear stable subspace

T := {(v
0

, v
1

) 2 H | hkv
0

+ v
1

|⇢i = 0 } (3.2.1)

at (Q, 0). The motivation for this subspace arises from considering the linear version of (3.1.12)
(setting N(v) ⌘ 0). The linearised operator A has eigenfunctions e± := (⇢,±k⇢) with corre-
sponding eigenvalues ±k respectively. As we expect the direction e

+

to be responsible for the
exponentially growing modes, then in order to have stable solutions, we must have initial data
(v

0

, v
1

) 2 H satisfying

P
+

✓
v
0

v
1

◆
= 0, (3.2.2)

where P± are the Riesz projections onto �(A) \ {±k} defined by

P±
✓
v
0

v
1

◆
:=

1

2k

⌧✓
v
0

v
1

◆ ����


0 �1
1 0

�✓
⇢

±k⇢

◆�
e± =

1

2k

⌧✓
v
0

v
1

◆ ����

✓
±k⇢
⇢

◆�
e±. (3.2.3)

The condition (3.2.2) is thus exactly the condition as stated in (3.2.1) and we also see that
T = kerP

+

. We construct the center-stable manifold M as a graph over T \ B⌫(Q, 0) where
B⌫(Q, 0) is a ball of su�ciently small radius ⌫ centred about (Q, 0) in H.

To isolate the exponentially growing modes, it is more convenient to work with the variables
(�, �) rather than with v. We thus uniquely associate to each (v

0

, v
1

) 2 H, the quantities
(�

0

,�
1

, �
0

, �
1

) 2 R2 ⇥ P?
⇢ (H1)⇥ P?

⇢ (L2) through

v
0

= �
0

⇢+ �
0

, v
1

= �
1

⇢+ �
1

,

where �
0

, �
1

? ⇢ in L2. The linear stability condition (3.2.2) becomes k�
0

+ �
1

= 0 and the
linear stable subspace (3.2.1) is

T = {(�
0

,�
1

, �
0

, �
1

) 2 R2 ⇥ P?
⇢ (H1)⇥ P?

⇢ (L2) | k�
0

+ �
1

= 0 }. (3.2.4)

We now seek to determine a suitable stability condition as above but for the nonlinear case. By
considering the linear versions of (3.1.6), we see that the unstable behaviour will be entirely due
to the � component. Writing the Duhamel formula for the � equation in (3.1.6) and collecting
the exponetial powers we obtain

�(t) =
ekt

2k


k�(0) + �̇(0) +

Z 1

0

e�ksN⇢(v) ds

�
+

e�kt

2k

h
k�(0)� �̇(0)

i
� 1

2k

Z 1

0

e�k|t�s|N⇢(v) ds.

Provided that N⇢(v) 2 L1

t (0,1), then � 2 L1
t (0,1) if and only if

k�(0) + �̇(0) = �
Z 1

0

e�ksN⇢(v)(s) ds. (3.2.5)

The condition (3.2.5) is, as expected, a higher order correction to (3.2.2). Inserting this into the
Duhamel formula implies that such � and � must satisfy

�(t) = e�kt


�(0) +

1

2k

Z 1

0

e�ksN⇢(v)(s) ds

�
� 1

2k

Z 1

0

e�k|t�s|N⇢(v)(s) ds, (3.2.6)

�(t) = cos(!t)�(0) +
sin(!t)

!
�̇(0) +

Z t

0

sin(!(t� s))

!
Nc(v)(s) ds, (3.2.7)

where we recall that ! :=
p
L
+

on P?
⇢ (H1). Obtaining solutions to (3.1.1) that do not grow

exponentially is thus equivalent to obtaining solutions to the system (3.2.6)-(3.2.7). That (3.2.5) is
still satisfied, in fact at any time t

0

2 [0,1), by solutions to (3.2.6)-(3.2.7) is a direct computation
but we state it as a lemma for ease of reference.

25



Chapter 3 3.2. THE CENTER-STABLE MANIFOLD

Lemma 3.3. Let (�(t), �(t)) be global in time solution to (3.2.6)-(3.2.7). Then, for any t
0

2
[0,1), we have

k�(t
0

) + �̇(t
0

) = �ekt0
Z 1

t0

e�ksN⇢(v)(s) ds. (3.2.8)

Before giving the statement of the Centre-Stable Manifold Theorem, it is instructive to describe
the construction of points on M and give meaning to the statement made earlier that M is
obtained ‘as a graph over T \B⌫(Q, 0).’ We begin with any point (�

0

,�
1

, �
0

, �
1

) 2 T \B⌫(Q, 0).
Notice that T is really only parameterized by the triple (�

0

, �
0

, �
1

) as �
1

is obtained from
the linear stability condition �

1

= �k�
0

. We use (�
0

, �
0

, �
1

) as an initial data set for (3.2.6)-
(3.2.7) and construct a global in time solution v(t) = �(t)⇢ + �(t). Evaluating at t = 0 gives
(�(0), �̇(0), �(0), �̇(0)), with the point being that �(0) = �

0

, �(0) = �
0

, �̇(0) = �
1

but �
1

will not
necessarily equal �̇(0) as the latter will satify (3.2.5). The quadruple (�(0), �̇(0), �(0), �̇(0)) is
then said to be a corresponding point on M. In order to go back from M to T \B⌫(Q, 0), we
let (v(0), @tv(0)) 2 M which gives rise to a global solution to (3.2.6)-(3.2.7). By Lemma (3.3),
(3.2.5) is satisfied. We have that indeed

✓
ṽ(0)
@tṽ(0)

◆
:= (Id� P

+

)

✓
v(0)
@tv(0)

◆
2 T .

This follows as

P
+

✓
ṽ(0)
@tṽ(0)

◆
= P

+

(Id� P
+

)

✓
v(0)
@tv(0)

◆
= (P

+

� P 2

+

)

✓
v(0)
@tv(0)

◆
= 0.

We therefore have a well-defined map � : T \B⌫(Q, 0) ! H such that

�(�
0

,�
1

, �
0

, �
1

) = (�(0), ˙�(0), �(0), �̇(0)), (3.2.9)

which fosters the following definition for the center-stable manifold

M := {�(�
0

,�
1

, �
0

, �
1

) |(�
0

,�
1

, �
0

, �
1

) 2 T \B⌫(Q, 0) and �̇(0) satisfies (3.2.5)}. (3.2.10)

The Center-Stable Manifold Theorem says that indeed such a manifold exists and it has some
useful properties.

Theorem 3.4 (Center-Stable Manifold). Assume L
+

satisfies the gap property (see Lemma 3.2,
(iii)). Then there exists a ⌫ > 0 small and a smooth graph M ⇢ B⌫(Q, 0) ⇢ H, as defined by
(3.2.10), such that the following hold.

(i) (Q, 0) 2 M and M is tangent to T at (Q, 0) in the following sense,

sup
(Q+v0,v⇤1)=�(Q+v0,v1)2@B

�

(Q,0)\M
|hkv

0

+ v⇤
1

|⇢i| . �2, 8 0 < � < ⌫. (3.2.11)

(ii) For all (u
0

, u
1

) := (Q+ v
0

, v
1

) 2 M there exists a unique global solution to NLKG of the
form u(t) = Q+ �(t)⇢+ �(t) with the following properties:
(a) k(v, @tv)kL1

t

((0,1);H)

+ kvkL3
t

((0,1);L6
x

(R3
))

. ⌫.

(b) v scatters to a linear solution vlin which satisfies (@2t +L
+

)vlin = 0, that is, there exists
a unique free KG solution �1 such that

|�(t)|+ |�̇(t)|+ k~�(t)� ~�1(t)kH ! 0, as t ! 1. (3.2.12)

(c) (Energy splitting) E(~u) = J(Q) + 1

2

k~�1k2H.
(iii) Any solution u(t) to NLKG that remains in B⌫(Q, 0) for all t � 0 necessarily lies entirely

on M.
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(iv) M is invariant under the flow of NLKG.

Proof. We begin with constructing solutions (�, �).
Construction of (�, �)
We will construct the pair (�, �) as a fixed point in space X = {(0,1) 3 t 7! (�(t), �(t)) 2
R⇥ P?

⇢ (H1)} with norm

k(�, �)kX := k�kL1\L1
(0,1)

+ k�kS(0,1)

,

where S denotes the Strichartz space S := L2

tL
6

x \ L1
t H1

x. Let ⇤(�, �) denote the R-valued right
hand side of (3.2.6) and �(�, �) denote the H1

x(R3) right hand side of (3.2.7). We obtain (�, �)
as a fixed point of the operator ⇤⇥ � on X. By Fubini, we find

k⇤(�, �)kL1
t

\L1
t

(0,1)


✓
1 +

1

k

◆
|�(0)|+ 1

k

✓
1 +

3

2k

◆
kN⇢(v)kL1

t

(0,1)

. (3.2.13)

By Cauchy-Schwarz, kN⇢(v)kL1
t

(0,1)

 kN(v)kL1
t

L2
x

(0,1)

which implies

k⇤(�, �)kL1
t

\L1
t

(0,1)

. |�(0)|+ kN(v)kL1
t

((0,1);L2
x

)

.

As for �(�, �) we make use of the Strichartz estimate for ! given by (3.9). Using that
kNc(v)kL1

t

((0,1);L2
x

)

 kN(v)kL1
t

((0,1);L2
x

)

we obtain

k(⇤⇥ �)(�, �)kX . |�(0)|+ k~�(0)kH + kN(v)kL1
t

((0,1);L2
x

)

. (3.2.14)

We recall that N(v) := 3Qv2 + v3, and hence by Hölder,

kN(v)kL1
t

((0,1);L2
x

)

 3kQkL6
x

kvk2L2
t

L6
x

+ kvk3L3
t

L6
x

.

Now the Sobolev embedding H1(R3) ,! L6(R3) implies that S ,! L2

tL
6

x \ L1
t L6

x ,! Lq
tL

6

x for all
2  q  1. Using this we easily obtain, for the same range of q,

kvkLq

t

L6
x

. k(�, �)kX , (3.2.15)

and hence
kN(v)kL1

t

((0,1);L2
x

)

. k(�, �)k2X + k(�, �)k3X . (3.2.16)

With this we finally get

k(⇤⇥ �)(�, �)kX  C
�
|�(0)|+ k~�(0)kH + k(�, �)k2X + k(�, �)k3X

�
. (3.2.17)

Choosing ⌫ so small so that ⌫ + ⌫2  1/C and such that if

|�(0)|+ k~�(0)kH  ⌫/(2C), (3.2.18)

then ⇤⇥ � maps the ball {(�, �) 2 X | k(�, �)kX  ⌫} into itself. We also obtain the contraction
estimate

k(⇤⇥ �)(�
1

, �
1

)� (⇤⇥ �)(�
2

, �
2

)kX  1

2
k(�

1

, �
1

)� (�
2

, �
2

)kX ,

by decreasing ⌫ if necessary. The ⌫ in the statement of theorem is really ⌫ := ⌫/(2C), so that
we have for any initial data (�(0),~�(0)) satifying |�(0)|+ k~�(0)kH  ⌫, a unique global in time
fixed point (�, �) such that k(�, �)kX  2C⌫. We then see that u(t) = Q+ �(t)⇢+ �(t) satisfies
NLKG and by Lemma 3.3, (3.2.5) is satisfied. Furthermore, we deduce that ku(t) � QkH1

x


k(�, �)kX  2C⌫ and k@tu(t)kL2

x

 |�̇(t)|+ k@t�(t)kL2
x

. We can obtain a better bound for @tu by
di↵erentiating in time (3.2.6) and (3.2.7). In fact, using (3.2.17), we find

|�̇(t)| . |�(0)|+ k(�, �)k2Xk(�, �)k3X . ⌫,
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and using Lemma 3.1, we find similarly

k@t�(t)kL2
x

. k~�(0)kH1
x

+ k(�, �)k2Xk(�, �)k3X . ⌫. (3.2.19)

Therefore
k~u(t)� (Q, 0)kH = k~vkH . |�(0)|+ k~�(0)kH, 8 t � 0. (3.2.20)

As the dependency of (�(t), �(t)) on (�(0),~�(0)) is real analytic,

�⇤
1

= �⇤
1

(�(0),~�(0)) = �k�(0)�
Z 1

0

e�ksN⇢(�(s)⇢+ �(s)) ds

is a smooth function in terms of (�(0),~�(0)) and hence the mapping � defined by (3.2.9) is
smooth and so M is a smooth graph over T \B⌫(Q, 0) as claimed.
(i) Tangency

Let (Q+ v
0

, v⇤
1

) 2 @B�(Q, 0) \M. Using (3.2.5) and (3.2.16), we have

|hkv
0

+ v⇤
1

|⇢i| = |k�
0

+ �⇤
1

|  kN⇢(v)kL1
t

((0,1);L2
x

)

. (|�
0

|+ k(�
0

, �
1

)kH)2,

with an absolute constant. Now from (3.2.20), we get |�
0

|+ k�
0

kH1
x

& �. For the upper bound,
we use

|�
0

| = k�
0

⇢kL2
x

= kP⇢v0kL2
x

 kv
0

kL2
x

 kv
0

kH1
x

,

k�
0

kH1
x

 kv
0

kH1
x

+ k�
0

⇢kH1
x

. kv
0

kH1
x

.

In a similar manner, we obtain kv⇤
1

kL2
x

' k�
1

kL2
x

and hence

|�
0

|+ k(�
0

, �
1

)kH ' �,

completing the proof of tangency.
(ii) (a) Let (u

0

, u
1

) 2 M. As before, we construct a global solution u(t) = Q + �(t)⇢ + �(t).
Then v(t) := u(t)�Q = �(t)⇢+ �(t) satisfies

k(v, @tv)kL1
t

((0,1);H)

. k�kL1
t

(0,1)

+ k�kL1
t

((0,1);H1
)

+ k@t�kL1
t

((0,1);L2
x

)

. k(�, �)kX + ⌫ . ⌫,

kvkLq

t

((0,1);L6
x

)

. k(�, �)kX . ⌫, 8 q 2 [2,1),

where we have used (3.2.19) and (3.2.15), thus verifying (a).
(ii) (b) We first verify that |�(t)|+ |�̇(t)| ! 0 as t ! 1. By (3.2.8) and that N⇢(v) 2 L1

t ((0,1)),
it su�ces to obtain the decay for |�(t)|. Using (3.2.6), we may further reduce to showing that

Z t

0

e�k(t�s)|N⇢(v)(s)| ds+
Z 1

t
e�k(s�t)|N⇢(v)(s)| ds =

Z 1

0

e�k|t�s||N⇢(v)(s)| ds ! 0, (3.2.21)

as t ! 1. For the second integral on the left we have
Z 1

t
e�k(s�t)|N⇢(v)(s)| ds 

Z 1

t
e�k(t�t)|N⇢(v)(s)| ds = kN⇢(v)kL1

t

(t,1)

! 0, t ! 1,

as N⇢(v) 2 L1

t ((0,1)). For the first integral, we split the integration domain and estimate each
piece separately, that is,

Z t

0

e�k(t�s)|N⇢(v)(s)| ds =
Z t/2

0

e�k(t�s)|N⇢(v)(s)| ds+
Z t

t/2
e�k(t�s)|N⇢(v)(s)| ds

 e�kt/2kN⇢(v)kL1
t

(0,1)

+ kN⇢(v)kL1
t

(t/2,1)

! 0, t ! 1,
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which verifies (3.2.21).
We now construct the unique scattering element �1, which solves the free equation (@2t +!

2)�1 = 0
and satisfies

k~� � ~�1kH ! 0, as t ! 1.

From the definition of a free solution,

�1(t) = cos(!t)�1(0) +
sin(!t)

!
@t�1(0).

Rewriting (3.2.7) in the form

�(t) = cos(!t)


�(0)�

Z 1

0

sin(!s)

!
Nc(v)ds

�

+
sin(!t)

!


@t�(0) +

Z 1

0

cos(!s)Nc(v)ds

�
+

Z 1

t

sin(!(t� s))

!
Nc(v) ds, (3.2.22)

motivates us to define the scattering initial data by

�1(0) := �(0)�
Z 1

0

sin(!s)

!
Nc(v)ds,

@t�1(0) := @t�(0) +

Z 1

0

cos(!s)Nc(v)ds,

and hence

�(t)� �1(t) =

Z 1

t

sin(!(t� s))

!
Nc(v) ds.

Therefore

k�(t)� �1(t)kH1 
Z 1

t
kNc(v)(s)kL2

x

ds  kN(v)kL1
t

((t,1);L2
x

)

! 0,

as t ! 1. Similarly, we also have

k@t�(t)� @t�1(t)kL2
x

! 0 as t ! 1.

It is easy to see that v1(t) := 0 · ⇢+ �1(t) is a free solution for (@2t + L
+

) and that u1(t) =
Q+ v1(t).
We now consider the uniqueness of the radiation �1. Fix initial data in T and suppose we have
two scattering solutions v1(t) and ṽ1(t) emanating from the same initial data, and such that
they are free solutions for the operator (@2t + L

+

) and satisfy

k~v(t)� ~v1(t)kH, k~v(t)� ~̃v1(t)kH ! 0, as t ! 1.

It is clear that
k~v1(t)� ~̃v1(t)kH ! 0, as t ! 1.

The projections �1(t) := P?
⇢ v1(t) and �̃1(t) := P?

⇢ ṽ1(t) are seen to solve (@2t + !2)� = 0,
which implies that the corresponding energy

E
lin

(�) :=
1

2

Z

R3
(@t�)

2 + (!�)2 dx

is conserved for �1 and �̃1. The di↵erence �d(t) := �1(t)� �̃1(t) is also a free solution with
constant energy E

lin

(�d). Now (3.1.7) and Lemma 3.1 imply

E
lin(t)(�d) '

1

2
k@�d(t)k2L2

x

+
1

2
k�d(t)k2H1 ,
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and hence E
lin

(�d(t)) ! 0 as t ! 1, which implies E
lin

(�d) = 0. Therefore �1(t) = �̃1(t) for
all t � 0. As for the projections onto ⇢, they satisfy the linear ODE (@2t � k2)� = 0 and hence
�d(t) = c

1

ekt + c
2

e�kt for some constants c
1

, c
2

. Using that |�d(t)|, |�̇d(t)| ! 0 as t ! 1, implies
c
1

= c
2

= 0 and hence �1 ⌘ �̃1. This shows the scattering element v1 is unique.
Energy splitting: We show that

E(u)� J(Q)� 1

2
k~�1k2H ! 0,

as t ! 1 because the energy splitting (c) will then follow by energy conservation. We have

�(t), �̇(t), k~�(t)� ~�1(t)kH ! 0,

as t ! 1. Furthermore, by the dispersive estimate and interpolation k�1kLp

x

! 0 as t ! 1 for
any 2 < p  1. The energy splitting is now straightforward upon taking the limit as t ! 1 of
(3.1.7) and using all the decay and convergence properties as listed above.
(iv) Invariance property: Let (Q+ v

0

, v⇤
1

) 2 M ⇢ B⌫(Q, 0). Projecting onto T we obtain an
initial data set (�

0

, �
0

, �
1

) satisfying

|�
0

|+ k�
0

kH1
x

+ k�
1

kL2
x

' k(v
0

, v⇤
1

)kH  ⌫.

As in the first part of this proof, we construct from this data global solutions (�(t), �(t)) satisfying
(3.2.6) and (3.2.7) with corresponding global NLKG solution u(t) = Q+ �(t)⇢+ �(t). Now we
fix a t

0

2 (0,1) and taking (�(t
0

), �(t
0

), @t�(t0)), which automatically satisfies

|�(t
0

) + k�(t
0

)kH1
x

+ k@t�(t0)kL2
x

 k(�, �)kX  ⌫,

we construct global solutions (�̃t0(t), �̃t0(t)) which begin at t = 0. Now we notice that if (�(t), �(t))
solves the pair (3.2.6) and (3.2.7), then so does the translate (�(t + t

0

), �(t + t
0

)). From this
we conclude �̃t0(t) = �(t+ t

0

) and �̃t0(t) = �(t+ t
0

) for all t � 0. To show that the translate
(u(t

0

), @tu(t0)) remains on M, we need to verify (3.2.5). We have

�̇(t
0

) = ˙̃�t0(0) = �⇤
1

(�(t
0

), �(t
0

), @t�(t0)) =: �⇤
1

(t
0

),

and

�⇤
1

(t
0

) + k�(t
0

) = �
Z 1

0

e�ksN⇢(�̃
t0(s)⇢+ �̃t0(s))ds = �e�kt0

Z 1

t0

e�ksN⇢(�(s)⇢+ �(s))ds.

This would conclude the invariance proof, however we have made a crucial assumption here
that any global NLKG solution living in B⌫(Q, 0) in fact has projections (�, �) 2 X. In
order to verify this claim, we seek to show that � 2 L1(0,1) and � 2 L2

t ((0,1);L6

x). As
k~u� (Q, 0)kL1

t

([0,1);H)

< ⌫, we have

k�kL1
t

([0,1))

+ k�̇kL1
t

([0,1))

+ k~�kL1
t

([0,1);H)

. ⌫. (3.2.23)

For any T > 0, we have

k�kL1
t

([0,T ))

 Tk�kL1
t

([0,1))

, k�kL2
t

([0,T );L6
x

)

 T 1/2k�kL1
t

([0,1);H1
x

)

.

Of course these will not su�ce; we must obtain uniform in T bounds. Consider the norm

k(�, �)kX
T

:= k�kL1
t

([0,T ))

+ k�kL1
t

([0,1))

+ k�kL2
t

([0,T );L6
x

)

+ k�kL1
t

([0,1);H1
x

)

.

From (3.2.6), we compute

k�kL1
t

([0,T ))

. ⌫ + kN⇢(v)kL1
t

([0,T ))

+ kN⇢(v)kL1
t

([0,1))

.
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The last term is O(⌫2) by (3.2.23) while for the other term, one can show that

kN⇢(v)kL1
t

([0,T ))

 kN(v)kL1
t

([0,T );L2
x

)

. ⌫2 + k(�, �)k2X
T

,

which implies k�kL1
t

([0,T ))

. ⌫ + k(�, �)k2X
T

. Similarly,

k�kL2
t

([0,T );L6
x

)

. ⌫ + k(�, �)k2X
T

,

and hence
k(�, �)kX

T

. ⌫ + k(�, �)k2X
T

.

A continuity argument then implies k(�, �)kX
T

. ⌫ and hence

k�kL1
t

([0,T ))

. ⌫, k�kL2
t

([0,T );L6
x

)

. ⌫, for any T > 0.

Fatou’s lemma now gives

k�kL1
t

([0,1))

 lim inf
T!1

k�
[0,T )

kL1
t

([0,1))

. ⌫.

The same holds for � and thus (�, �) 2 X. This completes the proof of invariance and the proof
of Theorem 3.4.

3.3 The stable and unstable manifolds

Corollary 3.5. Let ⌫ be as given in Theorem 3.4. Then there exists a smooth, one dimensional
manifold W s ⇢ B⌫(Q, 0) such that

(i) If (u
0

, u
1

) 2 B⌫(Q, 0) with ~u(t) ! (Q, 0) in H as t ! 1, then ~u(t) 2 W s for all t � 0,
(ii) W s is tangent to the line

T s := {(Q, 0) + �(⇢,�k⇢) |� 2 R}. (3.3.1)

Moreover, W s \ {(Q, 0)} = W s
+

[W s�, W s
+

\W s� = ;, where W s± each consist of a single solution
trajectory which approaches (Q, 0) exponentially fast and any two solutions starting on one of
W s± di↵er only by a time translation.

We also have the unstable manifold W u which is tangent to the line

T u := {(Q, 0) + �(⇢, k⇢) |� 2 R},

and thus transverse to T . This definition will be made clearer in the coming proof.

Proof. Notice firstly that for any (u
0

, u
1

) 2 B⌫(Q, 0) with ~u(t) ! (Q, 0) in H as t ! 1 stays in
B⌫(Q, 0) for all su�ciently large t � 0. This implies that u(t) does not have any exponentially
growing modes and so must satisfy (3.2.8). By the invariance statement in Theorem 3.4,
(u(t), @tu(t)) 2 M for all t � 0. We also have that v(t) := u(t)�Q scatters to some �1(t). By
the convergence to the ground state and energy conservation, E(~u) = J(Q) and hence ~�1 ⌘ 0.
Since fixing (�1(0), @t�1(0)) = (0, 0) is equivalent to fixing (�

0

, �
1

), we see that any solution
to NLKG that tends to (Q, 0) in H forward in time is only parametrised by �(0), and this
dependence is smooth. We then set

W s := {(Q+ v
0

, v⇤
1

) 2 M| ~u(t) ! (Q, 0), t ! 1}.
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The invariance under time translations follows from the invariance property of M. As W s is
solely parametrized by �(0) it is natural to define the subspaces

W s
+

:= {(Q+ v
0

, v⇤
1

) 2 W s |�
0

:= hv
0

|⇢i > 0},
W s

� := {(Q+ v
0

, v⇤
1

) 2 W s |�
0

:= hv
0

|⇢i < 0}.

Notice that �
0

= 0 corresponds to u = Q. For the tangency property (3.3.1), Theorem 3.4 implies
that W s is tangent to T at (Q, 0). The subsets

T s := {(Q+ v
0

, v
1

) 2 T | (Q+ v
0

, v⇤
1

) 2 W s}
= {(Q+ �

0

⇢+ �
0

(�
0

),�k�
0

⇢+ �
1

(�
0

)) |�
0

2 R},
Ls := {(Q+ �

0

⇢,�k�
0

⇢) |�
0

2 R},

both belong to T and it is clear that T s is tangent to W s and to Ls at (Q, 0). This implies the
tangency of Ls to W s at (Q, 0).
To see that W s

+

consists of a single solution trajectory, consider two points (Q + v
0

, v⇤
1

), (Q +

ṽ
0

, ṽ⇤
1

) 2 W s
+

. The case for W� is analogous. We may suppose that �
0

> �̃
0

> 0. We construct,

using the fixed point argument, NLKG solutions of the form u = Q+ �⇢+ � and ũ = Q+ �̃⇢+ �̃.
As �(t) is continuous, �(0) = �

0

and, by Theorem 3.4, �(t) ! 0 as t ! 1, there exists t
0

> 0
such that �(t

0

) = �̃
0

. The translate u(t
0

+ t) is determined uniquely by the data �(t
0

) and hence
u(t

0

+ t) = ũ(t) verifying the claim for W s
+

.
Finally to deduce the exponential decay, we can take any (Q+ v

0

, v⇤
1

) 2 W s
+

and solve (3.2.6)
and (3.2.7) by a fixed point argument in the space

k(�, �)kY := sup
t>0

ekt [|�(t)|+ k(�(t), @t�(t)kH] .

As such a solution decays exponentially, by virtue of being in the space Y , it also belongs to the
space X from Theorem 3.4, and thus coincides with the solution constructed in X.

3.4 Wave operators

The goal of this section is to justify the Strichartz estimates for L
+

that were used in the proof
of Theorem 3.4; this is the result of Corollary 3.9. The key idea is to somehow relate the linear

group eit
p

L+ to the linear KG group eit
p��+ so as to be able to make use of the Strichartz

estimates for the latter group. A useful relationship is obtained through the theory of wave
operators. This theory is fundamental in the study of scattering for dispersive PDE. We only
briefly discuss it here. The essential pieces are the aforementioned relation, namely(3.4.3), and a
theorem of Yajima [22] (Theorem 3.8).

Proposition 3.6. Define H̃ := �� + V and H̃
0

:= �� and suppose V 2 L2(R3). Then the
wave operator

W̃ := s- lim
t!1 e�itHeitH0 , (3.4.1)

is a bounded operator on L2(R3) to itself, where s- limt!1 denotes the strong limit in L2(R3).

Proof. Let s, t 2 R and suppose that s < t. Then for any f 2 S(R3), we can write

e�it ˜Heit
˜H0f � e�is ˜Heis

˜H0f =

Z t

s

d

d⌧
e�i⌧ ˜Hei⌧

˜H0f d⌧ = �i

Z t

s
e�i⌧ ˜HV ei⌧

˜H0f d⌧.
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Taking the L2 norm of both sides, using the unitarity of e�i⌧ ˜H and the assumption V 2 L2(R3),
we obtain

ke�it ˜Heit
˜H0f � e�is ˜Heis

˜H0fkL2  kV kL2

Z t

s
kei⌧ ˜H0fkL1d⌧.

Recall the pointwise decay estimate for the Schrödinger evolution, kei⌧ ˜H0fkL1 . h⌧i�3/2 2
L1((0,1)) and let {tn}n2N be some sequence of times such that tn ! 1 as n ! 1 and put
t = tn and s = tm, m < n. Then, by monotone convergence, the right hand side tends to zero
as n ! 1 and thus the sequence of bounded operators {e�it

n

˜Heitn
˜H0}n2N is Cauchy and hence

converges. Whence (3.4.1) is well defined on S(R3), which is dense in L2(R3) so W̃ extends
uniquely to a bounded operator on L2(R3).

Proposition 3.7. (Properties of wave operators) The wave operators W satisfy the following
properties:

(i) W is an isometry on L2(R3) to Ran(W ),
(ii) WW ⇤ is an orthogonal projection onto Ran(W ) and W ⇤W = Id,
(iii) Let H := ��+ 1 + V and H̃

0

:= ��+ 1 where V 2 L2(R3). Then the wave operator W ,
associated to (H,H

0

), exists and is bounded on L2(R3) and furthermore W = W̃ , in the
sense that Wf = W̃f for all f 2 L2(R3),

(iv) For ‘suitable’ V , WW ⇤ = Pc(H) = Id� Ppp(H), where Ppp is the projection onto the space
spanned by the eigenfunctions of H.

(v) For any bounded continuous f , we have the identity

f(H)Pc(H) = Wf(H
0

)W ⇤. (3.4.2)

In particular, V = �3Q2 is ‘suitable’ and so WW ⇤ = P?
⇢ and

f(L
+

)P?
⇢ = Wf(��+ 1)W ⇤, (3.4.3)

for any such f as above.

Proof. (i) Observe that ke�itHeitH0fkL2 = kfkL2 for all f 2 L2 and for all t.
(ii) Applying (i) to the sum of functions f + g we obtain hWf,Wgi = hf, gi, which gives

W ⇤W = Id. Thus (WW ⇤)⇤ = WW ⇤ and (WW ⇤)2 = WW ⇤, verifying the projection claim.
(iii) Using that e�iteit = 1, we can construct the wave operator W as we did in Proposition

(3.6). Then

W̃ = s- lim
t!1 e�it( ˜H+1)eit(

˜H0+1) = s- lim
t!1 e�itHeitH0 = W.

(iv) A proof and some of many possible conditions can be found in Reed and Simon [19].
(v) We deduce (3.4.2) from the property

eisHW = WeisH0 , ) E(·)W = WE
0

(·),

where E and E
0

are the spectral projections of H and H
0

, respectively. The proof of this
is straightforward after making the observation

s- lim
t!1 e�itHeitH0 = s- lim

t!1 e�i(t+s)Hei(t+s)H0 .

Using this property, (iv) and the spectral theorem, we have

f(H)Pc(H) =

Z
f(�)E(d�)Pc(H) =

Z
f(�)E(d�)WW ⇤

=

Z
f(�)WE

0

(d�)W ⇤

= W

✓Z
f(�)E

0

(d�)

◆
W ⇤ = Wf(H

0

)W ⇤.
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For H = L
+

, we know that L
+

has only one eigenfunction ⇢, so Ppp(L+

) = P⇢. Thus
(3.4.3) follows from (3.4.2).

We refer to the threshold of the spectrum of an operator as the edge of the continuous spectrum.
A regular threshold can be characterised as

sup
Imz>0

khxi��(H � z2)�1Pc(H)hxi��kL2!L2 < 1,

where � > 0 is su�ciently large. For an explanation of the relevance of this condition for
dispersive estimates we refer to Section 3.4 in [5].

Theorem 3.8. (Yajima [22] Let V be real-valued and |V (x)| . hxi�⌫ where ⌫ > 5. Assume
furthermore that the threshold for H̃ = �� + V is regular. Then the wave operator W from
(3.4.1) is bounded on Lp(R3) for all 1  p  1.

It is beyond the scope of this report to detail the proof of Yajima’s theorem. We simply seek
to apply it to H̃ = �� + V where V = �3Q2, which is real-valued. Then by property (iv)
of Proposition (3.7), we will deduce Lp boundedness for W the wave operator associated to
H = L

+

. The exponential decay for Q ensures the decay condition for V is satisfied, while the
gap property for L

+

ensures that the spectral assumptions are satisfied.

Corollary 3.9. Any solution of

@2t � + L
+

� = F, ~�(0) = (�(0), @t�(0))

in [0, T ]⇥ R3

x satisfies the estimate

k�kSt(0,T )

. k~�(0)kH + kFkL1
t

L2
x

, (3.4.4)

where
St(0, T ) := (L2

tL
6

x \ L1
t H1

x)([0, T ]⇥ R3).

Proof. We recall the Duhamel formula

�(t) = cos(t
p
L
+

)�(0) +
sin(t

p
L
+

)p
L
+

@t�(0) +

Z t

0

sin((t� s)
p
L
+

)p
L
+

P?
⇢ N(v)(s) ds.

It su�ces to estimate for the operator eit
p

L+ . Consider firstly the linear estimate

keit
p

L+fkSt(0,T )

. kfkH1 .

Using (3.4.3) we write

keit
p

L+fkSt(0,T )

= kWeit
p��+1W ⇤fkSt(0,T )

.

By the Lp boundedness of the wave operator W and the Strichartz estimates for the ordinary
Klein-Gordon group eit

p��+1, we obtain

kWeit
p��+1W ⇤fkSt(0,T )

. keit
p��+1W ⇤fkSt(0,T )

. kW ⇤fkH1 . kfkH1 .

In deriving the last inequality, we have used the easy fact that hri commutes with W . For the
middle term, we use the boundedness of the multiplier corresponding to

p
��+ 1/

p
L
+

. For

the non-linear term, we make use of the non-linear Strichartz estimates for eit
p��+1.
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Chapter 4

Above the ground state

In the previous chapter, we studied the stable dynamics close to the ground states (±Q, 0).
Theorem 3.4 introduced us to the new type of behaviour in this regime (3.0.1) which is trapping
by the ground state. What occurs for non-trapped trajectories? As the energy is not too far from
that of the ground state, we might reasonably expect to be able to mimic the Payne-Sattinger
theory giving a scattering, blow-up dichotomy. This would require us to control the sign of K

0

eventually, which a priori is not obvious. The key ingredients are the following three facts:

1. The sign of K
0

can only change if you enter a small 2✏-ball about (±Q, 0) (Proposition 4.9)
2. Solutions not trapped by the 2✏-balls are ejected to a much greater distance (Ejection

Lemma 4.4)
3. Upon exit from the 2✏-ball, the solution cannot re-enter (One-Pass Theorem 4.12).

Combining these three results leads to the full characterisation of the behaviour slightly above
the ground state.

4.1 Nonlinear distance function

In this subsection, we define the nonlinear distance function which is designed to measure a notion
of distance from on of the fixed ground states (±Q, 0). With u = �(Q+ v), with v = �⇢+ � and
� = ±, we define the linearized energy as

k~vk2E :=
1

2

h
k2hv|⇢i2 + k!P?

⇢ vk2L2 + k@tvk2L2

i

=
1

2

h
k2|�|2 + |�̇|2 + k!�k2L2 + k@t�k2L2

i
.

(4.1.1)

The name is motivated by the fact that we have the exact decomposition of the energy

E(~u)� J(Q) + k2�2 = k~vk2E � C(v), C(v) := hQ|v3i+ kvk4
4

/4. (4.1.2)

Lemma 4.1. We have the equivalence

k~vk2E ' k~vk2H = kvk2H1 + kv̇k2L2 . (4.1.3)

Proof. By Lemma 3.1, we have

k~vk2E ' 1

2

h
k2|�|2 + |�̇|2 + k�k2H1 + k@t�k2L2

i
.
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It su�ces to show that kvk2H1 ' |�|2 + k�k2H1 . Using L
+

⇢ = �k2⇢, we find

kvk2H1 = k⇢k2H1 |�|2 + k�k2H1 + 2�h3Q2⇢|�iL2 .

As an upper bound here is trivial we focus on the lower bound. We have

kvk2H1 � k⇢k2H1 |�|2 + k�k2H1 � |�|2k3Q2⇢k2L2 � k�k2L2 ,

kvk2H1 � kvk2L2 = |�|2 + k�k2H1 .

Combining these, we obtain

kvk2H1 � (1� ✓ + ✓(k⇢k2H1 � k3Q2⇢k2L2))|�|2 + ✓kr�k2L2 + (1� ✓)k�k2L2 ,

for ✓ 2 [0, 1]. If k⇢k2H1 � k3Q2⇢k2L2 � 0 we are done, else we may choose ✓ 2 (0, 1) such that the
first term vanishes. This furnishes the desired lower bound.

For small enough k~vkH1 , we expect to be able to control the non-linearity C(v). A precise
statement of this is that there exists a fixed 0 < �E ⌧ 1 such that when

k~vkE  4�E , then |C(v)|  k~vk2E/2. (4.1.4)

To see this, we use Sobolev embedding and (4.1.2) to obtain, for some constant C depending on
norms of Q,

|C(v)|  (C(Q)�E + C
0

�2E)k~vk2E  k~vk2E/2,

by choosing �E su�ciently small. We can now define the nonlinear distance function

d�(~u) :=
q
k~vk2E � �(k~vkE/2�E)C(v), (4.1.5)

where � is a smooth cut-o↵ on R such that �(r) ⌘ 1 when |r|  1 and �(r) ⌘ 0 for |r| � 2.

Lemma 4.2. The nonlinear distance function satisfies the following properties:

k~vkE/2  d�(~u)  2k~vkE (4.1.6)

d�(~u) = k~vkE +O(k~vk2E), (4.1.7)

d�(~u)  �E =) d2�(~u) = E(~u)� J(Q) + k2�2. (4.1.8)

Proof. The proof of (4.1.6) follows easily by splitting into the cases k~vkE > �E and so forth. For
(4.1.7), we notice that in deriving (4.1.4), we could have made the finer estimate of |C(v)| . k~vk3E .
Then

d�(~u)� k~vkE
k~vk2E

=

q
1� �(k~vkE/2�E)C(v)/(k~vk2E)� 1

k~vkE
⇠ k~vkE +O(k~vk2E),

when 0 6= k~vkE ⌧ 1. Finally to obtain (4.1.8), we notice that d�(~u)  �E implies k~vkE  2�E in
which case d�(~u) = k~vk2E � C(v).

In order to di↵erentiate between the two possible ground states (±Q, 0), we define the

dQ(~u) := min
�2{±}

d�(~u) ' min± k~u± (Q, 0)kH.

When dQ(~u)  2�E , then (4.1.6) and (4.1.3) imply that k~vkH . 4�E . As k~vkH is either one of
k~u± (Q, 0)kH, so

min± k~u± (Q, 0)kH . 4�E .

However, k(~u+ (Q, 0))� (~u� (Q, 0))kH = 2k(Q, 0)kH so having chosen �E su�ciently small, we
can make a unique choice for �, allowing us to write dQ(~u) = d�(~u).
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4.2 Ejection Lemma

In order to study the blow-up behaviour contained within the mode � it is more natural to also
consider the quantities

�
+

:=
1

2

✓
�+

1

k
�̇

◆
, �� :=

1

2

✓
�� 1

k
�̇

◆
. (4.2.1)

In the case of the linear version of (3.1.6) (setting N⇢(v) ⌘ 0), we have that when �± = 0,
�(t) = �(0)e⌥kt, indicating that �� should correspond to the stable mode and �

+

to the unstable
mode. Inverting (4.2.1) gives

� = �
+

+ ��, �̇ = k(�
+

� ��), (4.2.2)

and this shows that the � ODE in (3.1.6) becomes the system

�̇
+

= �k�� � 1

2k
N⇢(v), �̇� = k�

+

+
1

2k
N⇢(v). (4.2.3)

Lemma 4.3. For any ~u 2 H satisfying

E(~u) < J(Q) + d2Q(~u)/2, dQ(~u)  �E , (4.2.4)

then dQ(~u) ' |�| and � has a fixed sign within each connected component of the region given by
(4.2.4).

Proof. By the assumption, (4.1.8) implies

dq(~u) = E(~u)� J(Q) + k2�2 < d2Q(~u) + k2�2,

and hence k2�2/16  k~vk2E/8  d2Q(~u)/2 < k2�2. Fix a connected component of (4.2.4) and
suppose that the sign of � does change. Then, by the intermediate value theorem, there is some
time t = T for which �(T ) = 0, but this is a contradiction for then dQ(~u) = 0 giving u = ±Q
while E(~u) < J(Q).

The following result, which is known as the Ejection Lemma, essentially formalizes our expectation
that the unstable dynamics are caused by the exponentially growing mode of � which is in turn
due to the fact that the ground state is unstable.

Lemma 4.4. (Ejection Lemma) There exists a constant 0 < �X ⌧ �E with the following property:
Let u(t) be a local solution to NLKG on its maximal time of existence [0, T ] satisfying

0 < R := dQ(~u(0))  �X , E(~u) < J(Q) +R2/2 (4.2.5)

and alternatively one of
(
for some t

0

2 (0, T ), dQ(~u(t)) � R for all t 2 (0, t
0

),
d
dtdQ(~u(t))|t=0

� 0,
(4.2.6)

Then dQ(~u(t)) monotonically increases until reaching �X , while the following hold:

dQ(~u(t)) ' �s�(t) ' �s�
+

(t) ' Rekt,

|��(t)|+ k~�(t)kE . R+ d2Q(~u(t)),

min
j=0,2

sKj(u(t)) & dQ(~u(t))� C⇤dQ(~u(0)),
(4.2.7)

where s 2 {±1} is a fixed sign and C⇤ > 1 is an absolute constant.
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Chapter 4 4.2. EJECTION LEMMA

Proof. Lemma (4.3) gives dQ(~u) ' |�| as long as R  dQ(~u)  �E . By (4.1.8), (3.1.6) and energy
conservation we obtain

@tdQ(~u) = 2k2��̇, @2t dQ(~u) = 2k4|�|2 + 2k2|�|2 + 2k2�N⇢(v). (4.2.8)

Now |�̇|2 . |�|2 as long as dQ(~u) ' |�| ⌧ 1, and |N⇢(v)| . kvk2H1 so that

@2t d
2

Q(~u) ' d2Q(~u). (4.2.9)

Choosing �X  �E to be small enough so that we can ensure kvk3H1 . kvk2H1 and dQ(~u) ⌧ 1, then
we have that dQ(~u(t)) � R monotonically increases until hitting �X exponentially as in (4.2.7).
Note that u must hit �X in finite time, since otherwise once it nears the end of its maximal time
of local existence, its H1 norm must blow-up guaranteeing that it will hit �X anyway. As we have
remained within a connected component of the region in Lemma (4.3), dQ(~u) ' s�. Furthermore,
(4.2.9) implies @tdQ(~u(t)) � 0 and hence � and �̇ have the same sign. Now from (4.2.1), we have
� ' �

+

. Next we integrate (4.2.3) for �
+

and use that |�
+

| ' |�| ⌧ 1 to obtain

|�
+

(t)� �
+

(0)ekt| .
Z t

0

ek(t�s)|�
+

(s)|2ds . ekt.

Hence we conclude that dQ(~u(t)) ' |�
+

(t)| ' Rekt. A similar argument gives the claimed bound
for ��. For the bound on �, we take (4.1.2) and add and subtract C(�⇢), di↵erentiate in time
and use energy conservation to arrive at

|@t(k~�k2E + C(�⇢)� C(v))| =
����@t
✓
�1

2
k2�2 +

1

2
�̇2 � C(�⇢)

◆ ����.

For the right hand side, we make use of the equation for �, �-dominance and the easy to verify
fact that @tC(�(t)⇢) = N⇢(�⇢)�̇, to obtain

|@t
✓
�1

2
k2�2 +

1

2
�̇2 � C(�⇢)

◆
| . |N⇢(v)�N⇢(�⇢)||�|.

Since k~�kE . |�| ⌧ 1, Sobolev embedding and the exponential decay of Q, yield |N⇢(v) �
N⇢(�⇢)| . k�kH1 |�|. Inserting this bound into (4.2) and using (4.1.4), we infer

k~�k2L1
t

E(0,T )

. R2 + ~�kL1
t

E(0,T )

R2e2kT ,

which can be worked to give the desired estimate on �. For the estimates on K
0

and K
2

we
recall that we have

K
0

(u) = �k2�hQ|⇢i � h2Q3|�i+O(kvk2H1),

K
2

(u) = �(k2/2 + 2)�hQ|⇢i � h2Q+Q3|�i+O(kvk2H1).

Multiplying both sides by s, using dQ(~u) ' �s� and that Q, ⇢ > 0, we obtain the desired
estimates, where C⇤ will depend on norms of Q and ⇢, but is otherwise fixed.

The following corollary gives some conditions for which ejection is ensured. The conditions agree
with our intuition; the unstable dynamics should dominate if it initially dominates. The proof of
both statements just require one to show that (4.2.5) and (4.2.6) hold.

Corollary 4.5. Suppose that ~u(0) 2 H satisfies one of the following:

(i) ~u(0) satisfies (4.2.5) and |�
+

(0)| � |��(0)|,
(ii) k��(0)|+ k~�(0)kH1⇥L2 ⌧ |�

+

(0)| ⌧ �X .
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Chapter 4 4.3. VARIATIONAL CHARACTERISATION

Then the ejection lemma applies.

The next two results are powerful consequences of the Ejection Lemma. The first rules out the
existence of circulating trajectories outside the 2✏�ball. This result then implies (2) on our list
above, that non-trapped trajectories are ejected to �X .

Lemma 4.6. There does not exist an NLKG solution with E(~u) < J(Q) + ✏2 and the following
properties: u exists for all t � 0 and 2✏ < dQ(~u) < �X for all t � 0.

Proof. Suppose, in order to obtain a contradiction, that such a solution does exist. Set �
0

:=
inft�0

dQ(~u(t)). If the infimum is attained, there exists some T
0

such that dQ(~u(T0

) = �
0

. Then
for all t � T

0

, dQ(~u(t)) � �
1

and E(~u) < J(Q) + ✏2 < J(Q) + �1
0

/2. Then the Ejection Lemma
applies sarting from t = T

0

and dQ(~u) hits �X in finite time, a contradiction. On the other hand,
suppose �

0

is not attained. Now dQ(~u(t)) cannot attain any local minimum as otherwise the
Ejection Lemma would apply from such a time. Therefore dQ(~u(t)) is monotonically decreasing
and since it cannot hit the 2✏-ball, @tdQ(~u(t)) ! 0 as t ! 1. From (4.2.8), @2t dQ(~u(t)) & ✏2 as
|�| ' dQ(~u) > 2✏. Combining these two estimates yields a contradiction.

Definition 4.7. We say a trajectory ~u(t) is trapped by an R-ball if it exists for all t � 0, and
if dQ(~u(t)) � R for all t � T , where T > 0 is finite. We say that ~u(t), defined on [0, T ) is
ejected from the �X -ball if there exists a time interval [t

0

, t
1

] ⇢ [0, T ) so that dQ(~u(t)) is strictly
increasing on [t

0

, t
1

] and satisfies

E(~u) < J(Q) +
1

2
d2Q(~u(t)),

dQ(~u(t0)) =
�X
10

, dQ(~u(t1)) = �X ,

dQ(~u(t)) ' dQ(~u(0))e
k(t�t0), 8t 2 (t

0

, t
1

),

Kj(u(t)) ' �sign(�(t))dQ(~u(t)) 8t 2 (t
0

, t
1

) and j = 0, 2.

(4.2.10)

Corollary 4.8. Suppose that some solution to the NLKG satisfies

dQ(~u(0)) ⌧ �X , and E(~u) < J(Q) + ✏2, ✏⌧ �X .

and is not trapped by the 2✏-balls around (±Q, 0) as measured relative to the dQ-metric. Then ~u
is ejected from the �X-ball.

Proof. Lemma 4.6 implies that ~u(t) does not circulate between the 2✏ and �X balls. Therefore
dQ(~u) either hits 2✏ or �X at some finite time. Suppose it hits the 2✏-ball at some time T

1

< 1.
Since it is not trapped, there exists a T

3

> T
1

such that dQ(~u(T3

) > 2✏, and hence, by continuity,
there is a T

1

< T
2

< T
3

such that @t|t=T2dQ(~u(T3

) � 0. Applying the ejection lemma at time
t = T

2

implies we are ejected to �X . Now suppose it hits the �X ball. It su�ces to assume dQ(~u(t))
that achieves its infimum otherwise it would enter the 2✏-ball and the preceeding argument will
imply ejection to �X . At its infimum,(4.2.5) holds and hence applying the Ejection Lemma gives
that we hit �X and, meanwhile, after a finite amount of time, we will satisfy all of (4.2.10), giving
ejection.

4.3 Variational characterisation

Far from (±Q, 0) we can control the behaviour by the sign of the functionalsK
0

,K
2

. The following
proposition shows that the signs of K

0

,K
2

cannot change outside a small neighbourhood about
(±Q, 0). This is an analogue of the similar behaviour described by the Payne-Sattinger theory
for energies less than J(Q).
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Chapter 4 4.3. VARIATIONAL CHARACTERISATION

Proposition 4.9. For any � > 0, there exists ✏
0

(�),
1

(�) > 0 and an absolute constant 
0

> 0
such that for any ~u 2 H satisfying

E(~u) < J(Q) + ✏2
0

(�), dQ(~u) � �, (4.3.1)

we have
signK

0

(u) = signK
2

(u).

More precisely, one has either

K
0

(u)  �
1

(�) and K
2

(u)  �
1

(�), (4.3.2)

or
K

0

(u) � min(
1

(�),
0

kuk2H1) and K
2

(u) � min(
1

(�),
0

kruk2L2). (4.3.3)

Proof. We prove (4.3.2) and (4.3.3) by separating the cases for j = 0 and j = 2. For instance,
we pick j = 0 and fix � > 0. Then, in order to obtain a contradiction to (4.3.2) and (4.3.3), we
can find a subsequence ~un 2 H satisfying (4.3.1) with ✏

0

= 1/n, and with 
1

= 1/n we have

� 1

n
 K

2

(un)  min

✓
1

n
,

0

kuk2L2

◆
.

Then K
0

(un) ! 0 and hence, for large enough n, 0  kunk2H1 ⇠ G
0

(un) . J(Q) + ✏2 which
implies kunk2H1 is bounded. Extracting subsequences, we have un converges to a limit u1 weakly
in H1 and strongly in L4. By weak lower semi-continuity of Lp norms and as Kj(un) ! 0, we
get ku1k2H1  ku1k4L4 which implies K(u1)  0. By the strong L4 convergence, we also obtain
G

0

(u1)  J(Q) and J(u1)  J(Q). Proceeding as in Lemma 2.9 in [5], we conclude that un
converges strongly in H1 to 0 or ±Q.
Suppose un ! ±Q. Then by (4.3.1),

�2  lim inf
n!1 d2Q(~un)  C lim inf

n!1 kvnk2L2 + lim inf
n!1 ku̇nk2L2 = 0,

which is a contradiction. If instead un ! 0 in H1, then by the Gagliardo-Nirenberg inequality,
we get, for su�ciently large n,

K
0

(un) � kunk2H1(1� Ckunk2H1) � 
0

kunk2H1

for a fixed 
0

> 0, which is a contradiction. Therefore (4.3.2) and (4.3.3) are verified for K
0

.
We now proceed to show that the signs of K

0

and K
2

agree. The proof is a variation on the
proof of (2.0.3) in Lemma 2.2. We set

K+

j := {~u 2 H |E(~u) < J(Q) + ✏2
0

, dQ(~u) > �, Kj(u) � 0 },
K�

j := {~u 2 H |E(~u) < J(Q) + ✏2
0

, dQ(~u) > �, Kj(u) < 0 },

for j = 0, 2. It is clear that K�
j is open while for K+

j , (4.3.2) allows us to replace Kj(u) � 0

by Kj(u) > �
1

(�) and it is now clear that K+

j is also open. Furthermore, K+

j \ K�
j = ;,

K+

0

[ K�
0

= K+

2

[ K�
2

and 0 2 K+

0

,K+

2

as we must write 0 = Q+ (�Q). In order to show that
K+

0

= K+

2

= {~u 2 H |E(~u) < J(Q) + ✏2
0

, dQ(~u) > �}, it su�ces to show that K+

j , for both
j = 0, 2, are path-connected. This follows from showing that there exists a path from any point
to 0 in these sets.
Fix j = 0, 2. Consider the case when � < dQ(~u) < 2� ⌧ �E . Lemma 4.3 implies dQ(~u) ' |�|.
From the decompositions (4.1.2) and (4.1.8), we see that if we make the transformation ~u⌫ :=
(Q+(1+ ⌫)�⇢+ �, �̇⇢+ �̇), for ⌫ > 0, then the |�| increases implying that dQ(~u⌫) increases while
E(~u⌫) decreases. In particular, taking nu su�ciently large, we can ensure that

E(~u⌫)� J(Q) ⌧ �d2Q(~u
⌫) +O(�2) + o(d2Q(~u

⌫)) ⌧ ��2. (4.3.4)
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Chapter 4 4.3. VARIATIONAL CHARACTERISATION

To arrive at this, we for instance use that k�k2H1 . k~vk2E ' d2Q(~u) ' �2, and that C(v) will

involve terms of lower order. It is clear that this transformation remains in K+

j as E(~u) decreases,
dQ(~u) increases and (4.3.3) implies that Kj remains non-negative. We have thus moved any
point in K+

j \ {dQ(~u)  2�} into

{~u 2 H |E(~u)� J(Q)) ⌧ ��2, Kj(u) � 0}

will remaining in K+

j . This set is indeed a subset of K+

j as in obtaining (4.3.4) we have transformed
so that dQ(~u) � �. Now we can use the transformation

~u⌫ := (u⌫j , ⌫@tu),

with ⌫ decreasing from 1 to 0, which will send ~u to 0. For the details, see the proof of Lemma
2.21 in [5].
In the case where dQ(~u) � 2�, we apply the scaling transformation as above and we either hit
0 or we hit the sphere dQ(~u) = 2�. This follows since we must write, for example, u⌫

0

= ⌫u =
Q+ (⌫ � 1)Q+ ⌫v when considering dQ(~u⌫). In the latter case we contract to 0 in the manner
described for the other region.

Lemma 4.3 implies that the sign of � is fixed close to Q while Proposition 4.9 implies the sign of
K

0

is fixed far from Q. We can combine these results to show that these signs coincide in the
overlap region and the continuity of both sign functions are preserved.

Lemma 4.10. Let �S := �X/(2C⇤) > 0 and for any � 2 (0, �S ], define

H
(�) := {~u 2 H |E(~u) < J(Q) + min(d2Q(~u)/2, ✏

2

0

(�)}, (4.3.5)

with ✏
0

(�) given as in Lemma (4.4).Then there exists a unique continuous function S : H
(�) !

{±1} satisfying
(
~u 2 H

(�), dQ(~u)  �E =) S(~u) = �sign�

~u 2 H
(�), dQ(~u) � � =) S(~u) = signK

0

(u) = signK
2

(u),
(4.3.6)

with the convention sign 0 = +1.

Proof. We will give a sketch of the proof. By Lemma 4.3, sign� is a continuous function when
dQ(~u)  �E , while when dQ(~u) � �, Proposition 4.9 implies that signK

0

= signK
2

is also a
continuous function. It thus su�ces to show that signK

0

agrees with �sign� at dQ(~u) = �S .
For this purpose, one can show that it su�ces to consider ~u(0) 2 H that satisfies the ejection
conditions and dQ(~u(0)) = �S . Using this as initial data for the NLKG evolution, we obtain a
solution which is ejected to �X . At the time of ejection, �sign�(u(t)) = signK

0

(u(t)). By the
constancy of signK

0

above the �-ball, we conclude these signs must have been equal at t = 0.

Lemma 4.11. There exists a constant M⇤ ' J(Q)1/2 such that for all ~u 2 H
(�) with G(~u) = +1,

we have k~ukH  M⇤.

Proof. If dQ(~u)  �S ⌧ 1, then recalling (4.1.3) and (4.1.6), we have

k~ukH  kQkH1 + k~vkH . J(Q)1/2 + dQ(~u)
1/2 . J(Q)1/2.

On the other hand, if dQ(~u) � �S , then by assumption we have K
0

(u) � 0, and hence

k~uk2H  4E(~u)�K
0

(u)  4E(~u)  4
�
J(Q) + ✏2

0

(�S)
�
. J(Q).
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The point of this result is that solutions with S(~u) = +1 are automatically globally well defined,
simply by iterating the local theory. We in fact show that such solutions in fact scatter to zero
in the next chapter. As for the opposite sign S(~u) = �1, such solutions experience finite time
blow-up; paralleling the Payne-Sattinger theory.

4.4 The One-Pass Theorem

Our goal is show that signK
0

(u(t)) stabilizes, that is there exists a T > 0 such that for all t > T ,
signK

0

(u(t)) = signK
2

(u(t)) is constant. As the sign can only change upon entering the 2✏-ball,
then it may be possible a solution exists which oscillates in and out of this ball forever and thus
signK

0

(u(t)) can never be eventually constant. If we could limit the number of times a solution
could enter and exit the ball, the sign of K

0

would stabilize. This is in fact the result of The
One-Pass Theorem.

We make the following choice of small constants ✏⇤, �⇤, R⇤, µ > 0

�⇤  �S , �⇤ ⌧ �X , ✏⇤  ✏
0

(�⇤),

✏⇤ ⌧ R⇤ ⌧ min(�⇤,1(�⇤)1/2,
1/2
0

µ, J(Q)1/2),

µ < µ
0

(M⇤), µ1/6 ⌧ J(Q)1/2.

(4.4.1)

Theorem 4.12. (One-Pass Theorem) Let ✏⇤, R⇤ > 0 be as given in . If a solution u of NLKG
on an interval I satisfies for some ✏ 2 (0, ✏⇤], R 2 (2✏, R⇤], and ⌧1 < ⌧

2

2 I,

E(~u) < J(Q) + ✏2, dQ(~u(⌧1)) < R = dQ(~u(⌧2)),

then for all t 2 (⌧
2

,1) \ I, we have dQ(~u(t)) � R.

Remark We may continue to apply the One-Pass theorem after t = ⌧
1

to conclude the stronger
statement that the solution may no longer return to the distance R⇤, where R⇤ is an absolute
constant independent of the solution.

The proof of the One-Pass Theorem follows in a similar vein to that of the virial argument which
appeared in the scattering proof in Chapter 2. The idea will be to derive a localised virial identity
of the form

V̇w(t) = �K
2

(u) + Error,

for some Vw(t) to be defined. We then integrate this over some time interval and obtain a
contradiction using uniform away from zero bounds obtained from those given by the Ejection
Lemma and Proposition (4.9). However, (4.3.3) does not yield a uniform bound as it could be
that u vanishes at some time. The estimate (2.4.32) in Chapter 2 will not work here as that
required E(~u) < J(Q). In fact, it is clear from the argument there that all that is required is
some control on the time average of the L2 norm of the gradient, see (2.4.34). Such a bound
useful for the One-Pass Theorem is furnished from the following result.

Lemma 4.13. For any M > 0 there exists µ
0

(M) > 0 with the following properties: Let u be a
finite energy solution to NLKG on [0, 2] satisfying

k~ukL1
t

([0,2];H)

 M,

Z
2

0

kru(t)k2L2
x

dt  µ2, (4.4.2)

for some µ 2 (0, µ
0

]. Then u extends to a global solution and scatters to 0 as t ! ±1.
Furthermore, kukL3

t

L6
x

(R⇥R3
)

⌧ µ1/6.
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For the proof of this result, consult Lemma 4.13 in [5]. The point is that any such u satisfying
(4.4.2) will be well approximated by its corresponding linear solution which is already guaranteed
to scatter.

Proof of One-Pass Theorem: Suppose, in order to obtain a contradiction, that there exists a
solution u on its maximal existence interval I, some ✏ 2 (0, ✏⇤], R 2 (2✏, R⇤] and ⌧1 < ⌧

2

< ⌧
3

2 I
such that

E(~u) < J(Q) + ✏2, dQ(~u(⌧1)) < R < dQ(~u(⌧2)) > R > dQ(~u(⌧3)).

By continuity, there exist T
1

2 (⌧
1

, ⌧
2

) and T
2

2 (⌧
2

, ⌧
3

) such that

dQ(~u(T1

)) = R = dQ(~u(T2

))  dQ(~u(t)), for all t 2 (T
1

, T
2

).

The key here is that 0 < T
1

, T
2

< 1.
Step 1: Localised virial identity We define the diamond-like space-time cut-o↵ function by

w(t, x) =

(
�(x/(t� T

1

+ S)) t < (T
1

+ T
2

)/2,

�(x/(T
2

� t+ S)) t > (T
1

+ T
2

)/2,

where � is a smooth cut-o↵ function on R3 satisfying � ⌘ 1 on |x|  1 and � ⌘ 0 on |x| � 2, and
S � 1 is a constant to be determined. We define the virial quantity to be

Vw(t) := hw@tu | (1/2)(x ·r+r · x)uiL2 ,

and with some e↵ort, we obtain

V̇w(t) = �K
2

(u(t)) +O(E
ext

(t)). (4.4.3)

Here E
ext

(t) is the exterior free energy defined by

E
ext

(t) :=

Z

X(t)
e0(u)dx, e0(u) := ((@tu)

2 + |ru|2 + |u|2)/2

x 2 X(t) ()
(
|x| > t� T

1

+ S T
1

< t < (T
1

+ T
2

)/2,

|x| > T
2

� t+ S (T
1

+ T
2

)/2 < t < T
2

.

When t = Tj , j = 1, 2, X(Tj) = {|x| > S} so writing u = Q+ �⇢+ �, and using � dominance,
we find that

E
ext

(Tj) . e�2S +R2.

The exponetial term arises from the exponential decay of Q. Choosing S � | logR| � 1 yields
E

ext

(Tj) . R2. By the finite speed of propagation for NLKG, one can show that

sup
t2[T1,T2]

E
ext

(Tj) . max
j=1,2

E
ext

(Tj),

which implies that E
ext

(t) . R2 for all t 2 [T
1

, T
2

] and hence

V̇w(t) = �K
2

(u(t)) +O(R2), t 2 [T
1

, T
2

]. (4.4.4)

Writing u = Q+ v and Au = (3/2)u+ 2x ·ru, we find

|Vw(t)|T2
T1

. | h�(x/S)@tu |AQi |+ | h�(x/S)@tu |Aui |

. k@tvkL2 + kvk2L2 + k@tvk2L2 + k�(x/S)|x||rv|k2L2

.
X

t=T1,T2

k@tv(t)kL2 + Sk~v(t)k2H

. R+ SR2.
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Figure 4.1: Type I trajectories are initially ejected to the �X ball and do not re-enter the �⇤ ball until
it makes its passage back into the R ball. On the other hand, a type II trajectory can make multiple
passages into the �⇤ ball before the time of re-entry into the R ball.

Choosing S such that | logR| ⌧ S ⌧ 1/R, we obtain the upper bound

|Vw(t)|T2
T1

. R. (4.4.5)

Step 2: Bounding K
2

Lemma 4.10 gives us a fixed sign {±1} 3 s := S(u(t)) on [T
1

, T
2

].
There are two types of orbits that can occur as described in Figure 4.1. We will only consider type
II trajectories as they are slightly more involved. Let tm 2 [T

1

, T
2

] be a time for which dQ(~u(t))
attains a local minima, Rm := dQ(~u(tm)), and Rm 2 [R, �⇤) and set M := #{tm}. Clearly both
T
1

=: t
0

and T
2

=: tM+1

satisfy these conditions. We define the left and right ejection times

tm,l := sup{t < tm | dQ(~u(t)) = �X}, m = 1, 2, . . . ,M + 1

tm,r := sup{t > tm | dQ(~u(t)) = �X}, m = 0, 1, . . . ,M

and the intervals about tm by Im := [tm,l, tm,r] for m = 1, · · · ,M while I
0

:= [T
1

, t
1,r] and

IM+1

:= [tM+1,l, T2

].
We apply the Ejection Lemma to u(tm � t) and u(t � tm) and that we have a fixed sign, we
obtain

dQ(~u(t)) ' Rmek|t�t
m

|, sK
2

(u(t)) � dQ(~u(t))� C⇤Rm, (4.4.6)

for all t 2 Im. Multiplying (4.4.4) by �s, integrating over a single Im and using (4.4.6), we
obtain the lower bound

[�sVw(t)]I
m

&
Z

I
m

⇥
dQ(~u(t))� C⇤Rm �O(R2)

⇤
dt ' �X , (4.4.7)

where we have used the exponential growth from (4.4.6) and that R  Rm  �⇤ ⌧ �X .
As for the remainder portion

I 0 := [T
1

, T
2

] \ [mIm,

we always have dQ(~u(t)) > �⇤ and ✏  ✏
0

(�⇤). Therefore we may apply Proposition 4.9 to deduce

sK
2

(u) � 
1

(�⇤) > 0, (s = �1)

sK
2

(u) � min(
1

(�⇤),0kruk2L2). (s = +1)

Now as dQ(~u(t)) > �⇤ � R, there exists ⌧ > 0 such that for any t 2 I 0, [t� ⌧, t+ ⌧ ] ⇢ [T
1

, T
2

]
for any t 2 I 0. To show this, notice that from Figure 4.1, the ‘worst case’ scenario is when
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t 2 (t
0,r, t

1,l) [ (tM,r, tM+1,l) and hence we should take, say, ⌧ < min{|t
0,r � T

1

|, |T
2

� tM+1,l|}.
Using the exponential growth from ejection (4.4.6), we take

⌧ <
1

k
min
j=1,2

✓
log

✓
�X
CjR

◆◆
,

for some constants C
1

, C
2

coming from (4.4.6).
In the case s = �1, we have

Z t+⌧

t�⌧
sK

2

(u)dt & 
1

(�⇤) � R2

⇤. (4.4.8)

When s = +1, we deal with the potential for ru(t) to vanish at some time by noticing that
Lemma 4.4.2 implies Z t+⌧

t�⌧
kru(s)k2L2ds > µ2.

If this did not hold, then kukL3
t

L6
x

⌧ µ1/6 ⌧ J(Q)1/2 which contradicts dQ(~u(T1

)) = R ⌧ J(Q)1/2.
Therefore we have Z t+⌧

t�⌧
sK

2

(u)dt & min
�

1

(�⇤),0µ2

�
� R2

⇤. (4.4.9)

So (4.4.8) and (4.4.9) imply that, for either sign s, the portion of the integral of (4.4.4) over I 0

is negligible in comparison to that portion over [mIm. Upon summing (4.4.7) over m, we find

[�sVw(t)]
T2
T1

& �X ⇥#{tm} & �X . (4.4.10)

However this contradicts the upper bound (4.4.5) as R⇤ ⌧ �X .
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The full charactersiation

We can now complete the characterisation for solutions with energies

E(~u) < J(Q) + ✏2.

Suppose we have a solution that begins outside the small 2✏-ball about one of the ground states.
It either enters the ball or never does. In the latter case, Lemma 4.6 forbids circulation which
implies the solution hits �X . In doing so the Ejection Lemma would have applied along its path
which means it gets ejected in the sense of Definition 4.2.10, fixing signK

0

at the time of ejection.
The One-Pass Theorem says we cannot even return to a distance R⇤ and thus signK

0

stabilizes.
In the former case, we may either be trapped or not-trapped by the 2✏-ball. If we are trapped,
we hit the center-stable manifold by Theorem 3.4 and are expressible in the long time limit as
Q+ radiation. Else, not trapping implies ejection by Corollary 4.8 and then the same arguments
as above imply that signK

0

stabilizes. This discussion is summarised in Figure 5.1.

Once signK
0

stabilizes, we can mimic the Payne-Sattinger theory to conclude global existence or
finite time blow-up forward in time. The sign may also stabilize backwards in time leading to global
existence or blow-up as t ! �1. It is precisely only solutions with J(Q)  E(~u)  J(Q) + ✏2

that can exhibit a di↵erent behaviour forwards in time as it does backwards in time. The reason
is that such solutions may freely make one pass through the 2✏-ball, keeping their energy fixed
while allowing signK

0

to change. This is not possible for solutions with E(~u) < J(Q).

We are thus led to the 9-set Theorem 1.2. We have not proved here though that solutions with
signK

0

= +1 either for all t > 0 or t < 0, scatter to zero and that each of the nine sets are
non-empty. The scattering statement largely follows that described in Chapter 2 with the crucial
di↵erence being the extraction of the critical element. One needs to ensure that not only does it
have energy slightly below the ground state but also that it remains a distance Rast away from
a ground state. Showing the sets are non-empty amounts to choosing initial data that launch
solutions with a fixed sign for � and that satisfy the Ejection lemma. The details can be found
in Chapter 5 of [5].

We stress here that the results we have described are but the tip of the iceberg for the full
dynamical picture at arbitrary energies. The time-independent NLKG admits a countable
sequence of solutions with increasing energies; the excited states. The analysis here is solely for
energies very close to that of the ground state. At this stage the dynamics, even at the first
excited state, are still conjecture. If these excited states are unstable, then we may expect a
similar blow-up/scattering/trapping trichotomy although it is unclear how the results of Chapter
4 may be generalised to consider dynamics far from the ground state. Such results would be an
important step on the road to resolving The Soliton Resolution conjecture.
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Figure 5.1: Flow chart of behaviour
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Appendix

A.1 Results used in radial scattering proof

Lemma A.1 (Log-convexity of Lq
tL

p
x norms). Let 0 < p

0

< p
1

 1, 0 < q
0

< q
1

 1 and
f 2 Lq0

t Lp0
x \ Lq1

t Lp1
x . Then f 2 Lq

✓

t Lp
✓

x where for any 0  ✓  1,

1

p✓
:=

1� ✓

p
0

+
✓

p
1

,
1

q✓
:=

1� ✓

q
0

+
✓

q
1

, (A.1.1)

and we have
kfkLq

✓

t

L
p

✓

x

 kfk1�✓
L
q0
t

L
p0
x

kfk✓
L
q1
t

L
p1
x

. (A.1.2)

Proof. By the log-convexity for Lp norms, we have

kfkLp

✓

x

 kfk1�✓
L
p0
x

kfk✓
L
p1
x

.

Multiplying both sides by q✓ and integrating over time we obtain

kfkq✓
L
q

✓

t

L
p

✓

x

 kkfk1�✓
L
p0
x

kfk✓
L
p1
x

kq✓
L
q

✓

t

= kkfkq✓(1�✓)
L
p0
x

kfkq✓✓
L
p1
x

kL1
t

.

Applying Hölder’s inequality with

1 =
1
q0

q
✓

(1�✓)
+

1
q1
q
✓

✓

yields (A.1.2).

Lemma A.2. Let B
1

,! B
2

be Banach spaces such that the sequence {fn} ⇢ B
1

weakly converges
to f

1

in B
1

and weakly converges to f
2

in B
2

. Then f
1

= f
2

.

Proof. Notice that any continuous linear functional on B
2

is also a continuous linear functional
on B

1

. Therefore for any l 2 B⇤
2

, l(fn) ! l(f
1

). By uniqueness of weak limits we have the
result.

Lemma A.3. Let {fn} be a radial sequence in Lp(Rd) and fn ! f in Lp(Rd). Then f is radial.
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Proof. For R 2 SO(Rd), we have by the radial assumption on the sequence fn and a change of
variables,

kf(R·)� f(·)kLp  kf(R·)� fn(R·)kLp + kfn(R·)� f(·)kLp

 kf(·)� fn(·)kLp + kfn(·)� f(·)kLp

= 2kfn(·)� f(·)kLp ! 0,

as n ! 0. Therefore f(R·) = f(·) almost everywhere.

Lemma A.4. Suppose that fn * f and gn ! g. Then hfn | gni ! hf | gi.
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