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1 Introduction

The Cauchy problem for the defocusing energy-critical nonlinear Schrödinger equation
(EC-NLS) is {

i∂tu+ ∆u = |u|
4
d−2u

u(t0, x) = u0(x)
(EC-NLS)

where u : R× Rd → C. In general, seminlinear Schrödinger equations are used to model a
number of physical phenomena; for example in Bose-Einstein condensates (see for instance
[3]). Our interest lies in well-posedness of the equation, namely, we wish to answer questions
of the following sort:

(i) whether the solution exists, and if so, whether it exists for globally (i.e for all times
t ∈ R) or just locally (i.e. only a short time interval I);

(ii) whether the said solution is unique;

(iii) whether the solution depends continuously on the initial data, i.e. whether the solu-
tion map u0 7→ u is continuous (with respective to some well-defined topologies).

For this problem, local existence was proved by Cazenave and Weissler in 1989 [5] using
the classical Strichartz estimates and other elementary considerations. As it turns out,
the question of uniqueness and continuous dependence on initial data follow almost im-
mediately from the existence of the solution. The heart of the matter lies in the question
of global existence. Indeed, the process of upgrading local existence to global existence is
highly non-trivial and requires a number of sophisticated mathematical tools from harmonic
analysis. To give a brief historical account of the problem, in 1999, Bourgain [4] proved
that the Cauchy problem (EC-NLS) is globally well-posed for radially symmetric data in
the homogeneuous Sobolev space Ḣ1(R3) in dimension d = 3 using the idea of induction on
energy. Tao [18] built upon this idea and extended Bourgain’s result to dimension d ≥ 5
in 2005. The radial assumption was finally removed in 2008 by Colliander, Keel, Staffilani,
Takaoka, and Tao [7] for dimension d = 3, which further advanced the induction on energy
argument. This global well-posedness result was also extended to dimension d = 4 by
Ryckman and Vişan [16] and to d ≥ 5 by Vişan [20].

This project is a joint work with the fellow MIGSAA student Tolomeo, who is responsi-
ble for part 2 of this report. Our main goal is to understand and expose the proof of global
well-posedness for d = 3. In this report (i.e. part 1), we shall first give a brief review of
basic Strichartz theory and some properties of the general NLS. We then give a proof of
the local well-posedness of (EC-NLS). Once this has been accomplished, we shall discuss
two important analytic results. The first of which is a stability theorem which essentially
states that the (EC-NLS) is stable under perturbation. The second result is a linear profile
decomposition which, heuristically speaking, describes all the defects of compactness of the
Strichartz inequality. These tools are essential to start the induction on energy argument
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in part 2, namely to construct a minimum blow up solution1, which will eventually serve
as a minimal counterexample in the inductive argument.

2 Preliminaries and Notations

Some general notations: We shall always use the letter d to denote the dimension of
the ambient Euclidean space Rd. For real quantities A and B, we use the notation A . B
to mean A ≤ CB for some constant C ∈ (0,∞) which may depend on the dimension d.
We also write A ∼ B to mean A . B and B & A, where & has the obvious meaning. Any
extra dependencies on the implicit constant will be written as subscripts on ., & and ∼.
So for example, A .p,q B means A ≤ CB for some constant C ∈ (0,∞) that may depend
on the parameters d, p and q.

Test functions and distributions: We write C∞(Rd) for the space of all smooth func-
tions f : Rd → C. Certain subspaces of C∞(Rd) form spaces of test functions:

• C∞c
(
R
d
)

=
{
f ∈ C∞(Rd) : supp(f) is compact

}
;

• S(Rd) =

{
f ∈ C∞(Rd) : sup

x∈Rd

∣∣∣xαDβf(x)
∣∣∣ <∞ for all multi-indices α, β

}
.

C∞, C∞c , S instead of C∞(Rd), C∞c (Rd), S(Rd). We shall do the same for other function
spaces as well.

The dual space of S is the space of tempered distributions S ′ = S ′(Rd), which consists
of all continuous linear functionals of S (with respect to the topology of the Schwartz
space). More concretely, a linear functional of S is in S ′ if there exists N ∈ N0 and a
constant C > 0 such that

|〈T, ϕ〉| ≤ C
∑

|α|,|β|≤N

sup
x∈Rd

∣∣∣xα∂βf(x)
∣∣∣ ,

for all ϕ ∈ S, where 〈T, ϕ〉 denotes the action of T on ϕ. Note that for p ∈ [1,∞], any
f ∈ Lp = Lp(Rd) (with Lebesgue measure) forms a tempered distribution through the
action

〈f, ϕ〉 =

∫
Rd

fϕ.

We caution that this is slightly different from the L2 inner product, given by

〈f, g〉L2 =

∫
Rd

fḡ.

1the precise meaning of a minimum blow up solution in this context will be explained in part 2
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for f, g ∈ L2, so in particular, 〈f, g〉 = 〈f, ḡ〉L2 .

Fourier transform: We use the following convention of Fourier transform:

Ff(ξ) = f̂(ξ) :=
1

(2π)
d
2

∫
Rd

e−ix·ξf(x) dx.

Recall that F is invertible on S and L2, with the inverse Fourier transform given by

F−1f(x) = f̌(x) :=
1

(2π)
d
2

∫
Rd

eix·ξf(ξ) dξ.

In particular, F defines a unitary operator on L2. This is implied by Parseval’s Theorem:

〈f, g〉L2 =
〈
f̂ , ĝ
〉
L2

and

∫
Rd

f̂g =

∫
Rd

fĝ.

Parseval’s Theorem also motivates the definition of Fourier transform for tempered distri-
butions: for v ∈ S ′, we define v̂ to be the tempered distribution given

〈v̂, ϕ〉 = 〈v, ϕ̂〉 .

Sobolev Spaces: The primary spaces we will be working on are (fractional) Sobolev
spaces. Recall that the derivative of a tempered distribution is defined as follows: for
v ∈ S ′, define ∂αv (for α ∈ N0) by

〈∂αv, ϕ〉 = (−1)|α| 〈v, ∂αϕ〉 .

It is easy to show that

F∂αv = (iξ)α∂αv̂ and ∂αv̂ = F((−ix)αv).

Now let f ∈ L2 and k ∈ N, and consider

∥∥∥∇kf∥∥∥
L2

=

 d∑
j=1

∫
Rd

∣∣∣∂kxjf ∣∣∣2
 1

2

.

Applying Plancherel’s Theorem, and the property of differentiating Fourier transform, we

obtain
∥∥∇kf∥∥

L2 =
∥∥∥F−1

(
|ξ|kf̂

)∥∥∥
L2

. Motivated by this, we define for s ∈ R the fractional

differentiation operators |∇|s and | 〈∇〉s | by

|∇s|f := F−1
(
|ξ|sf̂

)
and 〈∇〉s f = F−1

((
1 + |ξ|2

) s
2 f̂
)
.
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We note that for ϕ ∈ S, 〈∇〉s ϕ is well-defined for all s ∈ R, and |∇|sϕ is well-defined for
s > −d (because the function |ξ|s is locally integrable for such s). On the other hand,
for s ≤ −d, |∇|sϕ is only defined for certain Schwartz functions. Since we will never use
operators of such low order, we shall ignore this technicality.

For p ∈ (1,∞), these operators give rise to the Sobolev norms

‖f‖W s,p(Rd) = ‖〈∇〉s f‖Lp(Rd) and ‖f‖Ẇ s,p(Rd) = ‖|∇|s f‖Lp(Rd) .

These are the non-homogeneous and homogeneous Sobolev norms respectively. We shall
then define the non-homogeneous spaceW s,p(Rd) and homogeneous Sobolev spaces Ẇ s,p(Rd)
to be the completion of S(Rd) with their respective norms. When p = 2 we shall write

Hs(Rd) = W s,2(Rd) and Ḣs(Rd) = Ẇ s,2(Rd).

Note that Hs and Ḣs are Hilbert spaces with inner products

〈f, g〉Hs =

∫
X
〈ξ〉2s f̂(ξ)ĝ(ξ) dξ and 〈f, g〉Ḣs =

∫
Rd

|ξ|2s f̂(ξ)ĝ(ξ) dξ.

In general, these Sobolev spaces are spaces of tempered distributions. However, we have
the following characterisation:

W s,p = Ẇ s,p ∩ Lp for s > 0;

W s,p = Ẇ s,p + Lp for s < 0.

Of course, for s = 0 we simply have W 0,p = Ẇ 0,p = Lp. Note that for s = k ∈ N0, the
inhomogeneous spaces W k,p coincide with the classical Sobolev spaces, in the sense that
the W k,p norm is equivalent to the classical Sobolev norm:

‖f‖Wk,p ∼k,p
d∑
j=0

∥∥∂xjf∥∥Lp .
Mixed Spaces: For p, q ∈ [1,∞], T ⊆ Rd1 and X ⊆ Rd2 , we define the mixed Lebesgue
space2 LptL

q
x(T ×X) to be the space of all complex valued function f on T ×X such that

‖f‖LptLqx(T×X) :=

(∫
t∈T

(∫
x∈X

|f(t, x)|q dx
) p
q

dt

) 1
p

<∞.

As one might expect, these spaces enjoy many nice properties of the usual Lebesgue spaces.
For example, LptL

q
x(T ×X) is a Banach space with the above norm; and the (continuous)

dual space is (isometrically isomorphic to) Lp
′

t L
q′
x (T ×X) where p′ and q′ are the Hölder

2also known as Strichartz spaces in literature
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conjugates of p and q respectively, and a linear functional g acts on f ∈ LptL
q
x(T ×X) in

the expected way:

〈f, g〉 =

∫
T×X

gf.

We also record the Minkowski integral inequality: for 1 ≤ p < q ≤ ∞, we have

‖f‖LptLqx(T×X) ≤ ‖f‖LqtLpx(X×T ) . (2.1)

Note that when p = q = 2 we simply have the above space is simply L2
t,x(T × X), and

is of course a Hilbert space. Usually, T is the “time” domain R while X is the “spatial”
domain Rd. In this case we shall, unless otherwise stated, write LptL

q
x instead of the more

cumbersome notation LptL
q
x(R×Rd). The subscripts of dummy variables t and x, while not

necessary, are nonetheless helpful for clarity.
Similarly, we may also define other “mixed spaces”. For example, LptW

s,q
x (R × Rd)

denotes (for s > 0, p ∈ (0,∞)) the space of all measurable functions f : R× Rd → C such
that the f(t, ·) ∈ W s,p for all t ∈ R and f̃ given by f̃(t) = ‖f(t, ·)‖W s,q

x (Rd) is an Lp(R)
function.
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3 The Energy-Critical Schrödinger Equation

The Cauchy problem for the general nonlinear Schrödinger Equation given by{
i∂tu+ ∆u = F (u)

u(t0, ·) = u0
(NLS)

where u : R × Rd → C. We use the letters t and x to denote the time (R) and spatial
(Rd) variables respectively. The Laplacian is on spatial variable only, i.e. ∆ =

∑d
i=1 ∂

2
xi .

The nonlinearity F is some function F : C→ C. We will be concerned with the particular
nonlinearity F (u) = µ|u|pu where µ ∈ {−1, 1}. The cases µ = 1 and µ = −1 are called
defocusing and focusing respectively. For our final goal of global well-posedness (in part
2), we will eventually restrict our attention to the defocusing case only. But most of our
results here in part 1 will still hold for the focusing case.

At a formal level, the PDE can be turned into an integral equation using Fourier
transform in a standard way. Indeed, suppose that u satisfies (NLS). By taking Fourier
transform in x, we have{

∂tû(t, ξ) + i|ξ|2û(t, ξ) = −iF̂ (u)(t, ξ)
û(t0, ξ) = û0(ξ)

For each ξ ∈ Rd, this is an ODE in t, and can be easily solved by multiplying by the
integrating factor ei|ξ|

2t, giving

ûei|ξ|
2t − û0e

i|ξ|2t0 = −i
∫ t

t0

F̂ (u)(s, ξ)ei|ξ|
2s ds.

Rearranging and reverting the Fourier transform, we obtain the Duhamel formula:

u = S(t− t0)u0 − i
∫ t

t0

S(t− s)F (s, ξ) ds, (3.1)

where S(t) is the Schrödinger propagator, given by

S(t)f(x) = eit∆f(x) = F−1(e−i|·|
2tf̂)(x).

Note that all steps in the above computation are justified provided u0(x) and u(x) are
sufficiently nice functions so that there is no problem reverting the Fourier transform. In
particular, for the linear equation with F ≡ 0, and say with Schwartz initial data u0, the
equation is solved by S(t− t0)u0.

Proposition 3.1 (Basic Properties of Schrödinger Propagator). Let I ⊆ R be an interval
that is not necessarily finite. Then
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(i) S(t)f = S(−t)f ;

(ii) S(t1)S(t2) = S(t1 + t2);

(iii) For each t ∈ R, S(t) is a unitary operator on Hs and Ḣs for any s ∈ R..

(iv) If f ∈ Ḣs, then S(t)f ∈ CtḢs
x(R× Rd);

(v) If F ∈ CtḢs
x(R× Rd), then

∫ t

t0

S(t− t′)F (t′) dt′ ∈ CtḢs
x(R× Rd).

Here, CtḢ
s
x(R× Rd) consists of all space-time functions u such that each u(t, ·) ∈ Ḣs and

each u(·, x) is continuous.

We can in fact compute S(t)f explicitly, at least for f ∈ S. Indeed, by the properties
of Fourier transform,

S(t)f(x) = F−1(e−i|·|
2tf̂)(x)

=
1

(2π)
d
2

F−1(e−i|·|
2t) ∗ f(x).

Note that the function e−i|·|
2t is not even in L1, so the above inverse Fourier transform is

taken in the sense of a tempered distribution. To compute F−1(e−i|·|
2t), we exploit the

well-known fact that

Fe−z|·|2(ξ) =

(
1

2z

) d
2

e−
|ξ|2
4z

for z ∈ C with Re (z) > 0. In particular, we have for ε > 0,

F−1
(
e−(ε+it)|·|2

)
(x) =

(
1

2(ε+ it)

) d
2

e
− |x|2

4(ε+it) →
(

1

2it

) d
2

e−
|x|2
4it .

as ε→ 0. We thus yield the explicit formula

S(t)f(x) =
1

(4πit)
d
2

e
i|·|2
4t ∗ f(x). (3.2)

By appying Young’s inequality for convolution, we immediately get the following particular
dispersive estimate

‖S(t)f‖L∞x .
1

|t|
d
2

‖f‖L1
x

(3.3)

for all f ∈ S. Since S is dense in L∞, we may extend S(t) to a bounded linear operator
from L∞ to L1. By interpolation, we have the following extension:
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Proposition 3.2 (Dispersive Estimate). Let p ∈ [2,∞]. For any f ∈ Lp′,

‖S(t)f‖Lp .p |t|
d
2

(
1
p
− 1
p′

)
‖f‖Lp′

Proof. By the unitarity of S(t) in L2, we have ‖S(t)f‖L2 = ‖f‖L2 . The result then follows
from an application of Riesz-Thorin interpolation Theorem.

Theorem 3.3 (Strichartz Estimates [17]). A pair (q, r) ∈ [2,∞]2 is said to be (Schrödinger)
admissible if (q, r, d) 6= (2,∞, 2) and

2

q
+
d

r
=
d

2
. (3.4)

Suppose that (q, r), (q̃, r̃) are admissible pairs, and that I ⊆ R is an interval containing t0
that is not necessarily finite, then the following estimates hold:

(i) The homogeneous Strichartz estimate:

‖S(t)f‖LqtLrx(R×Rd) .q,r ‖f‖L2
x(R×Rd) .

(ii) The dual homogeneous Strichartz estimate:∥∥∥∥∫
R

S(−t′)F (t′) dt′
∥∥∥∥
L2
x(R×Rd)

.q,r ‖F‖Lq′t Lr′x (R×Rd)
.

(iii) The nonhomogeneous Strichartz estimate:∥∥∥∥∫ t

t0

S(t− t′)F (t′) dt′
∥∥∥∥
LqtL

r
x(R×Rd)

.q,r,q̃,r̃ ‖F‖Lq̃′t Lr̃′x (R×Rd)
.

We now return to (NLS) with nonlinearity F (u) = µ|u|pu where µ ∈ {−1, 1}. This
problem has a natural scaling symmetry. Indeed, for simplicity, let us assume u is a
solution to (NLS) in the classical sense. Then

uλ(t, x) = λ
− 2
pu

(
t

λ2
,
x

λ

)
is also a solution to (NLS) with initial data uλ0(x) := u0(λx).

Now suppose that the a initial data u0 belongs in the homogeneous Sobolev space Ḣs

for some s ∈ R. A simple calculation shows that∥∥∥uλ∥∥∥
Ḣs

= λ
d
2
− 2
p
−s ‖u‖Ḣs .
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It follows that we have scale invariance if s = scrit := d
2 −

2
p . We thus call the initial value

problem (NLS) is (scaling) critical if the initial data belongs in Ḣscrit .
The energy is the quantity

E(u(t)) :=
1

2
‖u(t, ·)‖2

Ḣ1 + µ
d− 2

2d
‖u(t, ·)‖

d−2
2d

L
2d
d−2

.

By differentiating in time, one can show that the energy is conserved, meaning that it is
invariant in time:

E(u(t)) = E(u(0))

for any t ∈ R. If p = 2d
d−2 , we have scrit = 1. By a change of variable and the preceding

discussion, this value of p renders the energy invariant under scaling. The energy-critical
NLS is then given by {

i∂tu+ ∆u = µ|u|
4
d−2u

u|t=t0 = u0
(EC-NLS)

where the initial data u0 ∈ Ḣ1.
For ease of exposition, we shall restrict attention to dimension d = 3. Many of the

proofs here can in fact be adapted to higher dimension d, but doing so will introduce
strange fractions in terms of d, which, in our opinion, obscure the underlying ideas of the
proofs. Note that for d = 3, we would have p = 6, and the (EC-NLS) becomes the quintic
NLS. We now define precisely what we mean by a solution.

Definition 3.4 (Solution). Let I ⊆ R be a (not necessarily finite) interval. A function
u : I × R3 → C is a (strong) solution to (EC-NLS) if u ∈ CtḢ1

x ∩ L10
t,x(K × R3) for each

compact K ⊆ I and satisfies satisfies the Duhamel formula

u(t, x) = S(t− t0)u0 − iµ
∫ t

t0

S(t− s)
(
|u|4u

)
(s, x) ds. (3.5)

The interval I is called the lifespan of u. If u cannot be extended to a larger interval than
I, then I is called the maximum lifespan. We say u is a global solution if its maximum
lifespan is R, otherwise u is called a local solution.

We will explain the reason for the presence of the strange looking space L10
t,x(K×R) in due

course. Note that a solution is a fixed point of the operator Γ = Γu0 , where

Γ(u) = RHS(3.5).

Thus the contraction mapping theorem is useful tool to prove the existence and uniqueness
of a solution, at least locally. We will need to show that Γ is a contraction on some complete
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subspace of CtḢ
1
x ∩ L10

t,x(I × R3). In fact, we shall prove this on a closed ball of the space

Ṡ(I) defined by the norm

‖u‖Ṡ(I) := sup
(q,r) admissible

‖u‖
Lqt Ẇ

1,r
x (I×R3)

= max
(
‖u‖L∞t L2

x(I×R3) , ‖u‖L2
tL

6
x(I×R3)

)
.

The second equality infers that the above norm is determined by the “endpoint” spaces,
and follows from Hölder interpolation. Indeed, for any admissible (q, r), one has

‖u‖LqtLrx(I×R3) ≤ ‖u‖
1−θ(q)
L∞t L

2
x(I×R3)

‖u‖θ(q)
L2
tL

6
x(I×R3)

≤ max
(
‖u‖L∞t L2

x(I×R3) , ‖u‖L2
tL

6
x(I×R3)

)
≤ ‖u‖Ṡ(I) ,

where the first inequality needs some further justification. Here, 0 ≤ θ(q) ≤ 1 needs to
satisfy

1

q
=
θ(q)

∞
+

1− θ(q)
2

and
1

r
=
θ(q)

2
+

1− θ(q)
6

for the interpolation to work. Let θ(q) be defined by the first expression above. Then the
second equality follows immediately from the admissibility relation:

1

r
=

1

2
− 2

3q
=

1

2
− 1− θ(q)

3
=
θ

2
− 1− θ(q)

6
.

By Sobolev inequality (with the numbers 1
3 = 13

30 −
1
10), and that the pair

(
10, 30

13

)
is

admissible, one has the embedding

‖u‖L10
t,x(I×R3) . ‖u‖

L10
t Ẇ

1, 3013 (I×R3)
x

≤ ‖u‖Ṡ(I) . (3.6)

Moreover, the admissible pair (2,∞) gives

‖u‖L∞t Ḣ1(I×R3) ≤ ‖u‖Ṡ(I) . (3.7)

The inequalities (3.6) and (3.7) show that the space Ṡ(I) embed (continuously) into L∞t Ḣ
1
x∩

L10
t,x(I × R3). If Γ is a contraction on a closed ball of Ṡ(I), then the unique fixed point u

recovered from contraction mapping theorem is indeed a solution in the sense of Definition
3.4 (noting that u is automatically continuous in time in light of Proposition 3.1 (iv) and
(v)).

Theorem 3.5 (Local Wellposedness[5]). Let I be a (not necessarily finite) interval con-
taining t0. There exists η1 > 0, such that if the initial data u0 ∈ Ḣ1(Rd) and I satisfy

‖S(t− t0)u0‖Ṡ(I) ≤ η

for some 0 < η ≤ η1, then a unique solution u to (EC-NLS) exists in the closed ball

B2η :=
{
u ∈ Ṡ(I) : ‖u‖Ṡ(I) ≤ 2η

}
.
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Proof. For this proof, all space-time norms are defined on I × Rd. We shall first try to get
some control over ‖Γ(u)− Γ(v)‖Ṡ(I) for u, v ∈ Ṡ(I). First note the following crude estimate∣∣|u|4u− |v|4v∣∣ . |u− v|(|u|4 + |v|4),

(see Lemma A.13). We thus obtain the following bounds:

‖Γ(u)− Γ(v)‖Ṡ(I) .
∥∥|u|4u− |v|4v∥∥

L2
t Ẇ

1, 65
x

(Strichartz)

.
∥∥(|u|4 + |v|4

)
|u− v|

∥∥
L2
t Ẇ

1, 65
x

≤
(
‖u‖4L10

t,x
+ ‖v‖4L10

t,x

)
‖u− v‖

L10
t L

30
13
x

(Hölder)

.
(
‖u‖4

Ṡ(I)
+ ‖v‖4

Ṡ(I)

)
‖u− v‖Ṡ(I) . (Sobolev)

To make Γ into a contraction, we want the factor on ‖u− v‖Ṡ(I) to be less than 1, so we

need some control over the Ṡ(I) norms on u and v. Thus we shall consider u and v in
some closed ball B2η in the Ṡ(I) norm where η is ranged over 0 < η < η1 for some suitably
chosen η1. To find such R, observe that by Strichartz we have

‖Γ(u)‖Ṡ(I) ≤ ‖S(t− t0)u0‖Ṡ(I) + C
∥∥|u|4u∥∥

L2
t Ẇ

1, 65
x

(Strichartz)

for some constant C > 0. The second term can be further refined by distributing the
gradient over each factor in |u|4u = u3ū2:∥∥|u|4u∥∥

L2
t Ẇ

1, 65
x

∼
∥∥u4∇u

∥∥
L2
tL

6
5
x

(Product Rule)

≤ ‖u‖4L10
t,x
‖∇u‖

L10
t L

30
10
x

(Hölder)

. ‖u‖5
Ṡ(I)

. (Sobolev)

Summarising, we have the two inequalities

‖Γ(u)− Γ(v)‖Ṡ(I) ≤ C1

(
‖u‖4

Ṡ(I)
+ ‖v‖4

Ṡ(I)

)
‖u− v‖Ṡ(I) ;

‖Γ(u)‖Ṡ(I) ≤ ‖S(t− t0)u0‖Ṡ(I) + C2 ‖u‖5Ṡ(I)
.

We now assume ‖S(t− t0)u0‖Ṡ(I) < η. Looking at the second inequality, we have

‖Γ(u)‖Ṡ(I) ≤ η + C2 (2η)5

for u ∈ B2η. The right hand side is ≤ 2η provided C2(2η)5 < η. If we further ensure that
2 (2η)4C1 ≤ 1

2 , then the first inequality implies that Γ is a contraction from B2η to itself.
Both of these conditions are satisfied if η ≤ η1 for some sufficiently small η1 that depends
on the harmless constants C1 and C2. Contraction mapping theorem then implies that Γ
has a unique fixed point u in B2η.
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Remark 3.6. The above local wellposedness result has the following implications:

(i) Short time existence: By dominated convergence theorem. given any u0 ∈ Ḣ1
x, one

can always choose a sufficiently small interval I containing t0 such that the condition
‖S(t)u0‖Ṡ(I) ≤ η holds. The above theorem then implies that one can always obtain

a short time solution given any initial data u0 ∈ Ḣ1
x.

(ii) Small data global wellposedness: By (homogeneous) Strichartz estimate, one has
‖S(t)u0‖Ṡ(R) ≤ ‖u0‖Ḣ1

x
. Therefore, if ‖u0‖Ḣ1

x
≤ η, we can invoke the local wellposed-

ness result to get global existence of a solution u.

13



4 Perturbation Theory

Consider the following perturbed energy-critical NLS:{
i∂tũ+ ∆ũ = µ|ũ|4u+ e
ũ(t0, x) = ũ0(x)

(P-EC-NLS)

where e : R×R3 → C is a small function in some sense. Suppose that ũ is a solution to (P-
EC-NLS) with initial data ũ0, where the precise definition of a solution is as in Definition
3.4 with the Duhamel formula in (3.5) replaced by

u(t, x) = S(t− t0)u0 − iµ
∫ t

t0

S(t− s)
(
|u|4u+ e

)
(s, x) ds. (4.1)

For initial u0 ∈ Ḣ1
x close to ũ0, we would like to show that there is a unique solution u to

(EC-NLS) that stays close to ũ. More precisely, one can show the following stability result.

Theorem 4.1 (Energy-critical Stability Result [7]). Suppose that ũ : I → R3 is a solution
to (P-EC-NLS) where I ⊆ R be a compact interval and contains t0. Assume that we have
the following bounds:

‖ũ‖L∞t Ḣ1
x(I×R3) ≤ E (4.2)

‖ũ‖L10
t,x(I×R3) ≤ L (4.3)

for some constant E,L > 0. Then there exists a small ε1 = ε1(E,L) > 0 such that if a
function u0 ∈ Ḣ1 and the error e satisfy the bounds

‖ũ(t0)− u0‖Ḣ1
x(R3) < ε (4.4)

‖e‖
L2
t Ẇ

6
5
x (I×R3)

< ε (4.5)

for some 0 < ε < ε1, then there is a unique solution u : I × R3 → C to (EC-NLS) with
initial data u(t0, ·) = u0 such that

‖u− ũ‖L10
t,x(I×R3) ≤ C(E,L)ε (4.6)

‖u− ũ‖Ṡ(I) ≤ C(E,L)ε (4.7)

‖u‖Ṡ(I) ≤ C(E,L) (4.8)

for some constant C(E,L) > 0.

Proof. Without loss of generality, we may assume t0 = inf I. By the local wellposedness
result (or more precisely, Remark 3.6 (ii)), there is a solution u : I0 × R3 to (EC-NLS)
with initial data u(t0) = u0. For the time being, we shall make the following additional
assumptions:

14



(i) The lifespan of u is at least as long as the lifespan of ũ. Thus we may assume I0 = I;

(ii) ‖ũ‖
L10
t Ẇ

1, 3013
x (I×R3)

≤ ε.

Let v = u− ũ, and define for each t ∈ I the function

A(t) :=
∥∥|u|4u− |ũ|4ũ∥∥

L2
t Ẇ

1, 65
x ([t0,t]×R3)

.

Note that A is a continuous in t. We shall use a common trick called continuity argument
to show that A(t) can be made uniformly small in t by possibly decreasing the size of ε̄.
The first step is to attempt to bound A(t) by itself in some “non-trivial way”. We first
note that by the Duhamel’s formula,

|∇|v = S(t− t0)|∇|v − µi
∫ t

t0

S(t− t′)|∇|
(
|u|4u− |ũ|4ũ− e

)
dt′.

Therefore,

‖v‖
L10
t Ẇ

1, 3013
x ([t0,t]×R3)

. ‖v(t0)‖Ḣ1
x

+
∥∥|u|4u− |ũ|4ũ∥∥

L2
t Ẇ

1, 65
x ([t0,t]×R3)

+ ‖e‖
L2
t Ẇ

1, 65
x ([t0,t]×R3)

. ε+A(t), (†)

where the first inequality is obtained by Duhamel’s formula and estimating each term by
Strichartz, and the last inequality is due to (4.4). On the other hand, since∣∣∇ (|u|4u− |ũ|4ũ)∣∣ . |u|4 |∇u|+ |ũ|4 |∇ũ|

= |v + ũ|4 |∇(v + ũ)|+ |ũ|4 |∇ũ| .

Hence we can estimate using Hölder, Sobolev, (†) and assumption (ii), we have (after
suppressing the cumbersome [t, t0]× R3 in the notation)

A(t) . ‖v + ũ‖4L10
t,x
‖v + ũ‖

L10
t Ẇ

1, 3013
x

+ ‖ũ‖4L10
t,x
‖ũ‖

L10
t Ẇ

1, 3013
x

. ‖v + ũ‖5
L10
t Ẇ

1, 3013
x

+ ‖ũ‖5
L10
t Ẇ

1, 3013
x

.

(
‖v‖

L10
t Ẇ

1, 3013
x

+ ‖ũ‖
L10
t Ẇ

1, 3013
x

)5

≤ (A(t) + 2ε)5

We now claim that for sufficiently small ε, we in fact have

A(t) ≤ ε (4.9)
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for all t ∈ I. Indeed, for a fixed ε, let tε = sup{t ∈ I : A(t) ≤ ε}. We note that A(t0) = 0,
hence tε ≥ 0. Now suppose that tε < sup I. Then by the continuity of A, we must have
A(tε) = ε. The above bound on A(t) then implies

ε ≤ C(3ε)5 ⇐⇒ ε−4 ≤ 35C (4.10)

for every n. Clearly this cannot hold for every ε > 0. Hence there exists ε0 > 0 such that
tε0 = sup I. In particular, (4.10) cannot hold for any 0 < ε ≤ ε0 and hence tε = sup I
whenever 0 < ε ≤ ε0. We deduce that A(t) ≤ ε whenever ε ∈ (0, ε0).

We are now ready to prove (4.6) to (4.8) under said assumptions. (4.6) now follows
easily from Sobolev and (†):

‖v‖L10
t,x(I×R3) . ‖v‖

L10
t Ẇ

1, 3013
x (I×R3)

. A(t∗) + ε . ε.

For (4.7), we use Duhamel and Strichartz in the same manner as in (†), followed by the
smallness of A(t∗):

‖v‖Ṡ(I) . ‖v(t0)‖Ḣ1
x

+A(t∗) + ‖e‖
L2
t Ẇ

1, 65
x ([t0,t]×R3)

. ε.

For (4.8), we expand u with Duhamel and estimate each term the usual way (as in the
proof of local wellposedness) to get

‖u‖Ṡ(I) . ‖u(t0)‖Ḣ1
x

+ ‖u‖5
L2
t Ẇ

1, 65
x (I×R3)

. ‖ũ(t0)‖Ḣ1
x

+ ‖v(t0)‖Ḣ1
x

+

(
‖ũ‖

L10
t Ẇ

1, 3013
x (I×R3)

+ ‖v‖
L10
t Ẇ

1, 3013
x (I×R3)

)5

. E + ε+ (2ε)5

. E

where we used (4.2), (4.4), and reduced the size of ε0 = ε0(E) if necessary so that ε+(2ε)5 ≤
E for all ε ≤ ε0.

Let us now summarise what we have proved so far. By having the extra assumptions
(i) and (ii), we have shown that provided 0 < ε ≤ ε0(E), one has

‖u− ũ‖L10
t,x(I×R3) ≤ C(I)ε (4.11)

‖u− ũ‖Ṡ(I) ≤ C(I)ε (4.12)

‖u‖Ṡ(I) ≤ C(I)E (4.13)∥∥|u|4u− |ũ|4ũ∥∥
L2
t Ẇ

1, 65
x (I×R3)

≤ ε. (4.14)

We now proceed to remove assumption (ii). The idea is to partition the interval I so

that on each piece, ũ has its L10
t Ẇ

1, 30
13

x norm controlled by ε. This will allow us to apply
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what we proved so far on each piece and then assemble everything back together. In order
to do this, we need to check that at least ũ ∈ Ṡ(I).

To do so, we first partition I into N0 subintervals Jk so that

‖ũ‖L10
t,x(Jk×R3) ≤ η

for each k ≤ N0, where η > 0 is some small quantity to be chosen later. This is possible
because of (4.3), which in particular implies that the number of intervals we need is at

most
(
L
η + 1

)10
. For a fixed k, we use Duhamel again to estimate

‖ũ‖Ṡ(Jk) . ‖ũ‖L∞t Ḣ1
x(I×R3) + ‖ũ‖Ṡ(Jk) ‖ũ‖

4
L10
t,x(Jk×R3) + ‖e‖

L2
tL

6
5
x (I×R3)

. E + η4 ‖ũ‖Ṡ(Jk) + ε,

where we invoked (4.2) and (4.5) to get the last inequality. By a continuity argument, we
may choose η sufficiently small to get that ‖ũ‖Ṡ(Jk) . E + ε. Summing over the k’s, we
obtain

‖ũ‖Ṡ(I) ≤ C(E,L).

Now that we have control over ‖ũ‖Ṡ(Jk), we can partition I into N1 = N1(E,L) intervals

Ik = [tk, tk+1] so that
‖ũ‖

L10
t Ẇ

1, 3013
x (Ik×R3)

≤ ε

for each k. If we can verify that the condition (4.4) holds for each interval, namely

‖u(tk)− ũ(tk)‖Ḣ1
x
< ε (††)

for each k, then we have (4.11) to (4.14) for each interval Ik, but noting that the constants
in those inequalities depend on k. One can then obtain (4.6), (4.7) and (4.8) by summing
over k on (4.11), (4.12) and (4.13) respectively (Note that the dependency on E and L on
the constants will come from the number of intervals N1 which depend on E and L). We
shall verify (††) inductively. The case k = 0 holds by assumption. Assume that (††) holds
for some k ≥ 0. Then by Duhamel and Strichartz,

‖v(tk+1)‖Ḣ1
x
. ‖v(t0)‖Ḣ1

x
+
∥∥|u|4u− |ũ|4ũ∥∥

L2
t Ẇ

1, 65
x ([t0,tk+1]×R3)

+ ‖e‖
L2
t Ẇ

1, 65
x (I×R3)

≤ ε+
k∑
j=0

∥∥|u|4u− |ũ|4ũ∥∥
L2
t Ẇ

1, 65
x ([tj ,tj+1]×R3)

+ ε

≤ (k + 3)ε.

Namely, ‖v(tk+1)‖Ḣ1
x
≤ C(k)ε := εk for some constant C(k) > 0. By reducing the size of

ε1 = ε1(k) if necessary, we can make ε ≤ ε1 arbitrarily small, and hence ensure εk < ε0(E)
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which allows us to continue the induction. Note that the final version of ε1 will depend on
L and E since ε1 depends on N1(L,E). This proves the theorem assuming (i).

Finally, to remove the assumption (i), let I0 be the maximum lifespan of u and T :=
sup I0. Suppose for a contradiction that T < sup I := T̃ . What we have proved so far
holds in the interval I0. In particular, we have ‖u‖Ṡ1(I0) ≤ C(E,L). Now, the Duhamel

formula starting from some t′0 < T reads

u(t) = S(t− t′0)u(t′)− iµ
∫ t

t′0

S(t− s)|u|4u(s) ds.

Hence ∥∥S(t− t′0)u(t′0)
∥∥
Ṡ1([t′,T ))

≤ ‖u(t)‖Ṡ1([t′0,T )) + ‖u‖Ṡ1([t′0,T )) ‖u‖
4
L10
t,x([t′0,T )×R3) .

The RHS can be made to be less than η1
2 by choosing t′0 sufficiently close to T , where η1

is the local existence threshold in Theorem 3.5. Since the LHS is a continuous function in
T , there exists δ > 0 such that∥∥S(t− t′0)u(t′0)

∥∥
Ṡ1([t′,T+δ))

≤ η1.

But then by local well-posedness, there is a solution on [t′0, T ) with initial data u|t=t′0 =
u(t′0), and hence the solution can be extended beyond T , contradicting the maximality of
I0.

Remark 4.2.

(i) Unconditional uniqueness: Note that in the local well-posedness result, we only
proved uniqueness in a closed ball. One can use the above stability result to upgrade
this to unconditional uniqueness (in the sense of Definition 3.4) by simply taking
e = 0 and u0 = ũ0. Though one can also prove this without the stability result using
a continuity argument.

(ii) Continuous dependence on initial data: The continuous dependence on initial
data is implied by the stability result corresponding to the case when e = 0. Namely,
if we have initial datum u0 and ũ0 sufficiently close to each other in the sense of
(4.4), then the corresponding solutions u and ũ remain close in L10

t,x ∩L∞t Ḣ1
x(I ×R3)

by the virtue of (4.6) and (4.7).
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5 Concentration compactness

In this section, we take a digression from well-posedness and prove a linear profile de-
composition for the Schrödinger propagator. As we mentioned in the introduction, such
a decomposition is essentially a statement that captures all defects of compactness in the
Strichartz inequality. Unfortunately, its statement and proof are rather long and involved.
As such, we have decided to first study the profile decomposition for the easier L2 based
Gagliardo-Nirenberg inequality, which states that for a function f ∈ H1(Rd),

‖f‖Lp .p ‖f‖θḢ1 ‖f‖1−θL2 , (5.1)

where

1 < p < 2, θ =
d(p− 2)

2p

(see also Lemma A.1 in the Appendix). Note that the RHS of the inequality is bounded
above by ‖f‖H1 . This implies the continuity of the embedding H1 ⊆ Lp, or equivalently,
the continuity of the identity operator Id : H1 → Lp. To go one step further, can we show
that this operator is compact?

To motivate why one might want compactness, let us consider the problem of showing
the existence of an extremiser in the inequality (5.1). That is, we want to show that the
the best constant of inequality (5.1), given by

S := sup

{
J(f) :=

‖f‖Lp
‖f‖θ

Ḣ1 ‖f‖1−θL2

: f ∈ H1

}
(5.2)

is attained at some f ∈ H1. This is easy to prove if compactness holds. Indeed, let fn
be a sequence in H1 such that J(fn) → S as n → ∞. By first rescaling the values of fn,
we may assume each ‖fn‖Ḣ1 = 1. If we also apply an appropriate Ḣ1-preserving scaling,
we may assume that each ‖fn‖L2 = 1. By compactness, we may pass to a subsequence so
that fn converges in Lp to some f ∈ Lp. Since ‖fn‖Ḣ1 = 1 = ‖fn‖L2 , we may (by Banach

Alaoglu’s Theorem) pass to another subsequence so that fn converges weakly in L2 and Ḣ1

to f . Note that we also have ‖fn‖L2 → ‖f‖L2 and ‖fn‖H1 → ‖f‖H1 , and hence fn in fact
converges strongly in the same spaces. Uniqueness of limits then imply that fn converges
to f in Lp, L2 and Ḣ1 sense, and so f is our extremiser.

Unfortunately, compactness does not hold in this setting3. This can be seen by consid-
ering the unitary group of translations in H1. Indeed, for any non-zero φ ∈ H1, consider
the “travelling profile”

fn := φ(· − xn)

3Though one can still show that the space of radial functions in H1 can be embedded compactly into Lp.
One can then use the same argument as in the preceding paragraph to show the existence of an extremiser.
But we shall not pursue this further here.
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where xn ∈ Rd converges to ∞. Clearly, ‖fn‖H1 = ‖φ‖H1 = C > 0. On the other hand,
it is easy to see that fn ⇀ 0 in Lp (the half arrow denotes weak convergence here). And
hence fn has no convergent subsequence in Lp.

More generally, one can construct examples of sequences in H1 with no convergent sub-
sequences by considering a “superposition of travelling profiles”. Suppose that φ1, ..., φJ ∈
H1 are non-zero. Consider

fn :=

J∑
j=1

φj(· − xjn)

where each xjn → ∞ as n → ∞. Again, this implies that the above sequence converges
weakly to 0 in Lp. This time, the norms ‖fn‖H1 need not stay constant. In fact, the
travelling profiles might end up cancelling each other as n → ∞. To prevent this from
happening, one can impose the asymptotic orthogonality condition that |xjn−xkn| → ∞ for
each j 6= k which ensures that the travelling profiles stay “far” from each other. In fact,
we have the asymptotic decoupling

‖fn‖2H1 =

J∑
j=1

∥∥φj∥∥2

H1 + on(1)

as n → ∞. Hence ‖fn‖H1 is once again away from 0 and so fn has no convergent subse-
quence in Lp.

The concentration compactness phenomenon, in this setting, tells us that these are
essentially the only ways in which compactness fails. Loosely speaking, a profile decompo-
sition tells us that if {fn}∞n=1 is a bounded sequence in H1 that fails to have any convergent
subsequence in Lq, then fn at least has a subsequence that “converges” to a superposition
of concentrating or travelling profiles of the form above.

Theorem 5.1 (Profile Decomposition for Gagliardo-Nirenberg Inequality [9]).
Let d ≥ 3. Suppose that {fn}∞n=1 is a bounded sequence in H1. Then after possibly passing
to a subsequence of {fn}∞n=1, there exists J∗ ∈ N0∪{∞} such that for each finite 0 ≤ J ≤ J∗
and each n ∈ N, we have the decomposition

fn =

J∑
j=1

φj(· − xjn) + rJn (5.3)

where the profiles φj ∈ H1 are non-zero, the remainders
{
rJn
}∞
n=1
⊆ H1, and the translation

parameters {xjn}∞n=1 ⊆ Rd, such that for any p ∈ (2, 2∗) where 2∗ = 2d
d−2 ,

(i) lim
J→J∗

lim sup
n→∞

∥∥rJn∥∥Lp = 0;

(ii) ‖fn‖2H1 =
∑J

J=1

∥∥φJ∥∥2

H1 +
∥∥rJn∥∥2

H1 + on(1) as n→∞;
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(iii) lim
J→J∗

lim sup
n→∞

(
‖fn‖pLp −

∑J
j=1

∥∥φj∥∥p
Lp

)
= 0;

(iv) rJn(·+ xJn) ⇀ 0 in H1 as n→∞;

(v) lim
n→∞

|xkn − x
j
n| =∞ whenever j 6= k.

Here, on is the usual little-o notation, that is on(1) is a quantity that converges to 0 as
n→∞. Also, if J∗ is finite, the limit lim

J→J∗
a(J) is simply taken to mean a(J∗).

Proof. We first fix some notations. For a bounded sequence v = {vn}∞n=1 ∈ H1, let

W(v) =
{
w ∈ H1 : up to a subsequence, vn(·+ xn) ⇀ w for some {xn}∞n=1 ⊆ Rd

}
be the set of profiles of v. This set is non-empty since every bounded sequence in a normed
space has a weakly convergent subsequence. We also let

η(v) = sup
w∈W(v)

‖w‖H1 .

Note that this quantity is finite since η(v) ≤ lim supn→∞ ‖vn‖H1 .
We first recursively extract a large “bubble of concentration” φJ from the remainder

term and then check at each step J that Properties (ii) to (v) hold, with Property (iii)
replaced with

lim
n→∞

‖fn‖pLp − J∑
j=1

∥∥φj∥∥p
Lp
−
∥∥rJn∥∥pLp

 = 0. (iii∗)

for any p ∈ (2, 2∗). This of course implies (iii) once we have established (i), for which we
shall verify last.

To start, we set r0
n := fn. Assume that we have completed step K for some K ≥ 0

so that Properties (ii) to (v) hold for each J ≤ K, and wish to find φK+1,
{
rK+1
n

}∞
n=1

and {xK+1
n }∞n=1. If η(r) = 0, we terminate the iteration as before and set J∗ = K + 1.

Otherwise we have η(rK) > 0 and we find some φK+1 ∈ W(r) such that
∥∥φK+1

∥∥
H1 >

1
2η(r).

By definition, this means that after passing to a subsequence, there exists {xK+1
n }∞n=1 ⊆ Rd

such that
rKn (·+ xK+1

n ) ⇀ φK+1 as n→∞.

Let rK+1
n := fn −

∑K+1
j=1 φj(· − xjn). Note that by construction in the previous step, we

have
rK+1
n = rKn − φK+1(· − xK+1

n ).

In particular, this means (iv) holds at the (K + 1)-th level.

rK+1
n (·+ xK+1

n ) ⇀ 0 as n→∞. (5.4)
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Turning to (ii), we have, by the translation invariance of the H1 norm,∥∥rK+1
n

∥∥2

H1 =
〈
rKn (·+ xK+1

n )− φK+1, rKn (·+ xK+1
n )− φK+1

〉
H1

=
∥∥rKn ∥∥2

H1 + 2Re
〈
rKn (·+ xK+1

n ), φK
〉
H1 +

∥∥φK∥∥2

H1

=
∥∥rKn ∥∥2

H1 +
∥∥φK∥∥2

H1 + on(1)

as n→∞. Hence by induction,

‖f‖2 =
K∑
j=1

∥∥φj∥∥2

H1 +
∥∥rKn ∥∥2

H1 + on(1)

=

K+1∑
j=1

∥∥φj∥∥2

H1 +
∥∥rK+1
n

∥∥2

H1 + on(1),

proving (ii). To prove (iii∗), we first restrict our attention to the cube [−R,R]d ⊆ Rd

for some R > 0. By the Rellich Kondrachov Theorem, we may pass to a subsequence so
that wK := {rK(· + xK+1

n )n}∞n=1 is (strongly) convergent in L2
(
[−R,R]d

)
. By a diagonal

argument, we may pass to a subsequence so that wK converges in the whole L2(Rd). Passing
to a subsequence once more, we have that wK converges almost everywhere to some L2(Rd)
function. Note that this function coincides with φK+1. Hence we may apply the lemma of
Brézis-Lieb (Lemma A.8) to obtain for p ∈ (2, 2∗),∥∥rKn ∥∥pLp =

∥∥rKn (·+ xK+1
n )− φK+1

∥∥p
Lp

+
∥∥φK+1

n

∥∥p
Lp

+ on(1)

=
∥∥rK+1
n

∥∥p
Lp

+
∥∥φK+1

n

∥∥p
Lp

+ on(1).

By induction, we thus have

‖fn‖pLp =
K∑
j=1

∥∥φjn∥∥pLp +
∥∥rKn ∥∥pLp + on(1)

=
K+1∑
j=1

∥∥φjn∥∥pLp +
∥∥rK+1
n

∥∥p
Lp

+ on(1).

This proves (iii∗). We now check (v). By induction, we just need to show that for any
J ≤ K, |xJn − xK+1

n | → ∞ as n→∞. Suppose not, and let J be the largest J ≤ K so that
|xJn − xK+1

n | 6→ ∞. Then xJn − xK+1
n must have a bounded subsequence in n, and hence

by passing to a subsequence, lim
n→∞

xJn − xK+1
n = x0 for some x0 ∈ R and some J ≤ K.

Decomposing fn at levels J and K + 1, we find

J∑
j=1

φj(· − xjn) + rJn =
K+1∑
j=1

φj(· − xjn) + rK+1
n ,
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and hence

rJn(·+ xK+1
n ) =

K+1∑
j=J+1

φj(· − xjn + xK+1
n ) + rK+1

n (·+ xK+1
n ),

We see LHS converges weakly to 0 in H1 by writing rJn(·+xK+1
n ) = rJn(·+xJn+(xK+1

n −xJn)).
On RHS, we see that every term except φK+1(·) converges weakly to 0. But this implies
that φK+1 ≡ 0, which is a contradiction. This proves (v).

We finally turn our attention to (v). We first note that by construction, η(rJ) vanishes
as J → J∗. Indeed, if J∗ is finite, then we have η(rJ

∗
) = 0. For J∗ = ∞, (iii) implies

that the series
∑∞

j=1

∥∥φj∥∥
H1 converges, and in particular,

∥∥φj∥∥
H1 → 0 as j → ∞. By

construction, we have
η(rj) < 2

∥∥φj∥∥
H1 → 0 as j →∞. (5.5)

This fact will be needed later to control rJn on low frequencies. Indeed, we shall consider
the frequency cutoff

Q̂Rf(ξ) := 1|ξ|≤R(ξ)f̂(ξ).

Note that QRf = KR ∗ f where K̂Rf = 1[−R,R]. We shall split∥∥rJ∥∥
Lp
≤
∥∥QRrJn∥∥Lp +

∥∥(id−QR)rJn
∥∥
Lp
.

We estimate the second term as follows. Let s be the real number satisfying s
d = 1

2 −
1
p .

Note that p < 2∗ implies that s < 1. An application of Sobolev embedding followed by
Plancherel’s Theorem gives∥∥(id−QR)rJn

∥∥
Lp

.p

∥∥(id−QR)rJn
∥∥
Ḣs

=

(∫
|ξ|>R

|ξ|2s|r̂Jn(ξ)|2 dξ

)1/2

≤

(∫
|ξ|>R

|ξ|2

R2−2s
|r̂Jn(ξ)|2 dξ

)1/2

≤ Rs−1
∥∥rJn∥∥H1 ,

where the penultimate inequality follows from multiplying the integrand by
(
|ξ|
R

)2−2s
,

which is greater than 1. For the first term, observe that by interpolation followered by
Plancherel’s Theorem,∥∥QRrJn∥∥Lp ≤ ∥∥QRrJn∥∥2/p

L2

∥∥QRrJn∥∥1−2/p

L∞
≤
∥∥rJn∥∥2/p

L2

∥∥QRrJn∥∥1−2/p

L∞

≤
∥∥rJn∥∥2/p

H1

∥∥QRrJn∥∥1−2/p

L∞
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Now, we may rewrite lim supn→∞
∥∥QRrJn∥∥L∞ as sup

(
lim supn→∞ |QRrJn (xn) |

)
, where the

supremum is taken over all Rn sequences {xn}∞n=1. We have the estimate

lim sup
n→∞

|QRrJn | (xn) = lim sup
n→∞

|KR ∗ rJn(xn)|

= lim sup
n→∞

∣∣∣∣∫ KR(−x)rJn(x+ xn) dx

∣∣∣∣
≤ sup

{∣∣∣∣∫ KR(−x)w(x) dx

∣∣∣∣ : w ∈ W(rJ)

}
≤ ‖KR‖L2 η

(
rJ
)
,

where the last inequality follows from Cauchy Schwartz. Putting everything together,

lim sup
n→∞

∥∥rJn∥∥Lp . lim sup
n→∞

(
Rs−1

∥∥rJn∥∥H1 +
∥∥rJn∥∥2/p

H1

(
‖KR‖L2 η

(
rJ
))1−2/p

)
.

The first term on RHS can be made arbitrarily small by choosing R large. For the second
term, we recall that η(rJ) → 0 as J → J∗. Hence choosing J large will also ensure that
the second term is small. It then follows that

lim sup
n→∞

∥∥rJn∥∥Lp → 0 as J → J∗.

As a small application, one can use the profile decomposition as a replacement for
compactness to prove the existence of an extremiser.

Corollary 5.2. The Gagliardo-Nirenberg inequality (5.1) has an extremiser.

Proof. As in our argument above, let {fn}∞n=1 ⊆ Ḣ1(Rd) be an optimising sequence, for
which we may assume ‖f‖Ḣ1 = ‖fn‖L2 = 1 for each n. We now decompose a subsequence
of fn as in Theorem 5.3. Let S be the best constant of the inequality as in (5.2). By
property (iv) we obtain

Sp = lim
n→∞

‖fn‖pLp =
J∗∑
j=1

∥∥φj∥∥p
Lp
≤ Sp

J∗∑
j=1

∥∥φj∥∥pθ
Ḣ1

∥∥φj∥∥p(1−θ)
L2 ≤ Sp

J∗∑
j=1

∥∥φj∥∥p
H1 ,

Now property (iii) and our choice of fn implies that
∑J∗

j=1

∥∥φj∥∥2

H1 ≤ 1. Moreover, since
p > 2, we in fact have

Sp ≤ Sp
J∗∑
j=1

∥∥φj∥∥p
H1 ≤ Sp

J∗∑
j=1

∥∥φj∥∥2

H1 ≤ Sp,

which can only mean J∗ = 1 and that
∥∥φ1

∥∥
Ḣ1 = 1. Our decomposition then reads fn =

φ1(·−x1
n)+r1

n. Property (ii) then implies that fn(·+x1
n) ⇀ φ1 inH1. This weak convergence

can be upgraded to strong convergence as ‖fn‖H1 =
∥∥φ1

∥∥
Ḣ1 = 1. Since translation leaves

the L2, H1 and Lp norms invariant, we may use φ1 as our extremiser.
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One can also form a profile decomposition for the Sobolev inequality (Theorem A.3):

‖f‖L2∗ . ‖f‖Ḣ1 . (5.6)

For convenience later on, let us fix the notations

τyf(x) = f(x− y) (5.7)

δλf(x) = λ−
d−2
2 f

(
λ−1x

)
(5.8)

for spatial translation and scaling parameters y ∈ Rd, λ ∈ (0,∞), and a function f : Rd →
C. Note that τ−1

y = τ−y and δ−1
λ = δλ−1 .

The identity operator Id : Ḣ1 → L2∗ is not compact. We have seen how the translation
group {τy}y∈Rd causes a lack of compactness in Gagliardo-Nirenberg inequality. For the
Sobolev inequality, the translation group is once again a culprit. Since we are now working
on the critical space Ḣ1, we also have the unitary group of Ḣ1-preserving scaling to worry
about. Indeed, it is not difficult to see that if we have a sequence of scaling parameters
{λn}∞n=1 that converges to ∞, then δλnf ⇀ 0 in L2∗ . If f ∈ Ḣ1 is non-zero, then δλnf has
no convergent subsequence in L2∗ since

∥∥δλnf∥∥Ḣ1 = ‖f‖Ḣ1 > 0.
The profile decomposition for Sobolev inequality is given as follows:

Theorem 5.3 (Profile Decomposition for Sobolev Inequality [10][13]).
Let d ≥ 3. Suppose that {fn}∞n=1 is a bounded sequence in Ḣ1. Then after possibly passing
to a subsequence of {fn}∞n=1, there exists J∗ ∈ N0∪{∞} such that for each finite 0 ≤ J ≤ J∗
and each n ∈ N, we have the decomposition

fn =

 J∑
j=1

τ
xjn
δ
λjn
φj

+ rJn (5.9)

where the profiles φj ∈ Ḣ1 are non-zero, the remainders
{
rJn
}∞
n=1
⊆ Ḣ1, and the translation

and scaling parameters
{(
xjn, λ

j
n

)}∞
n=1
⊆ Rd × (0,∞) satisfy

(i) lim
J→J∗

lim sup
n→∞

∥∥rJn∥∥L2∗ = 0;

(ii) ‖fn‖2Ḣ1 =
∑J

j=1

∥∥φj∥∥2

Ḣ1 +
∥∥rJn∥∥2

Ḣ1 + on(1) as n→∞;

(iii) lim
J→J∗

lim sup
n→∞

(
‖fn‖2

∗

L2∗ −
∑J

j=1

∥∥φj∥∥2∗

L2∗

)
= 0;

(iv) δ−1

λjn
τ−1

xjn
rJn ⇀ 0 in Ḣ1 as n→∞;

(v) lim
n→∞

(
|xkn − x

j
n|2

λjnλkn
+
λkn

λjn
+
λjn
λkn

)
=∞ whenever j 6= k.
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We shall omit the proof for this result since it is very similar to the proof of the profile
decomposition for Schrödinger propagator, which we shall present shortly.

We finally move onto our last profile decomposition, and indeed, the one we need for
the induction on energy argument. We shall once again restrict our attention to dimension
d = 3 (the proof for higher dimensions is almost the same, but this restriction will let us
avoid nasty fractions in terms of d). The inequality for which we shall study is

‖S(t)f‖L10
t,x

. ‖S(t)f‖
L10
t Ẇ

1, 3013
x

. ‖f‖Ḣ1
x
, (5.10)

which follows from Sobolev and Strichartz inequalities. This gives rise to the continuous
operator T : Ḣ1

x → L10
t,x defined by Tf = S(t)f . In addition to spatial translation and

Ḣ1-preserving scaling, the unitary group of time translation is also causing compactness to
fail in this setting. By time translation, we mean the action of symmetry group {S(t′)}t′∈R
on Ḣ1

x. Indeed, it is easy to see that if tn →∞, then S(t− tn)f converges weakly to 0 in
L10
t,x for any f ∈ Ḣ1. In fact, one can show something slightly stronger:

Lemma 5.4. Suppose that {(xn, tn)}∞n=1 ⊆ Rd × R satisfy |xn| → ∞ or |tn| → ∞. Then
for any f ∈ Ḣ1, S(tn)τxnf ⇀ 0 in Ḣ1 as n→∞.

Proof. By a density argument, it suffices to assume f ∈ C∞c (R3), and to prove
∣∣〈S(tn)τxnf, ϕ

〉
Ḣ1

∣∣→
0 as n→∞ for every ϕ ∈ C∞c (R3). Assume |tn| → ∞. Then∣∣〈S(tn)τxnf, ϕ

〉
Ḣ1

∣∣ ≤ ∥∥S(tn)τxnf
∥∥
L6
x

∥∥|∇|2ϕ∥∥
L

6
5
x

.
1

|tn|
‖f‖

L
6
5
x

∥∥|∇|2ϕ∥∥
L

6
5
x

→ 0

as n → ∞, where we used by Hölder and dispersive estimate above. Now assume that
|tn| 6→ ∞ but |xn| → ∞. Take a subsequence {(xnk , tnk)}∞k=1 so that

lim sup
n→∞

∣∣〈S(tn)τxnf, ϕ
〉
Ḣ1

∣∣ = lim
k→∞

∣∣∣〈S(tnk)τxnk
f, ϕ

〉
Ḣ1

∣∣∣ .
By passing to a subsequence once more (which we still denote by {(xnk , tnk)}∞k=1), we may
assume tnk → t∞ ∈ R as k →∞. Then∣∣∣〈S(tnk)τxnk

f, ϕ
〉
Ḣ1

∣∣∣ =
∣∣∣〈τxnk f, S(−tnk)ϕ

〉
Ḣ1

∣∣∣
≤
∣∣∣〈τxnk f, S(−t∞)ϕ

〉
Ḣ1

∣∣∣+ ‖f‖Ḣ1
x
‖S(−tnk)− S(−t∞)‖op ‖ϕ‖Ḣ1

x

where the last inequality results from triangle and Cauchy Schwartz inequalities. The first
quantity on the RHS converges to 0 because |xn| → ∞, while the second quantity also
converges to 0 because S(−tnk)→ S(−t∞) as operators on Ḣ1.
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The profile decomposition for Schrödinger propagator reads as follows, and its proof
will occupy the rest of this section.

Theorem 5.5 (Profile decomposition for Schrödinger propagator[14][19]).
Suppose that {fn}∞n=1 is a bounded sequence in Ḣ1. Then after possibly passing to a sub-
sequence of {fn}∞n=1, there exists J∗ ∈ N0 ∪ {∞} such that for each finite 0 ≤ J ≤ J∗ and
each n ∈ N, we have the decomposition

fn =

 J∑
j=1

τ
xjn
δ
λjn
S(tjn)φj

+ rJn (5.11)

where the profiles φj ∈ Ḣ1 are non-zero, the remainders
{
rJn
}∞
n=1
⊆ Ḣ1, and the symmetry

parameters {
(
λjn, t

j
n, x

j
n

)
}∞n=1 ⊆ (0,∞)× R× Rd satisfy

(i) lim
J→J∗

lim sup
n→∞

∥∥S(t)rJn
∥∥
L10
t,x

= 0;

(ii) ‖fn‖2Ḣ1 =
∑J

j=1

∥∥φj∥∥2

Ḣ1 +
∥∥rJn∥∥2

Ḣ1 + on(1) as n→∞;

(iii) ‖fn‖6L6
x
−
∑J

j=1

∥∥∥S(tjn)φj
∥∥∥6

L6
x

+
∥∥rJn∥∥6

L6
x

+ on(1) as n→∞;

(iv) lim sup
J→J∗

lim
n→∞

‖S(t)fn‖10
L10
x
−

J∑
j=1

∥∥S(t)φj
∥∥10

L10
x

 = 0;

(v) S(−tJn)δ−1
λJn
τ−1
xJn
rJn ⇀ 0 in Ḣ1 as n→∞;

(vi) lim
n→∞

(
λkn

λjn
+
λjn
λkn

+
|xkn − x

j
n|2

λjnλkn
+
|tjn(λjn)2 − tkn(λkn)2|

λjnλkn

)
=∞ whenever j 6= k;

(vii) for each fixed j, either tjn ≡ 0, or lim
n→∞

tjn ∈ {∞,−∞}.

Remark 5.6. The asymptotic decouplings in Ḣ1
x and L6

x topologies in (ii) and (iii) an be
combined to give energy decoupling:

lim
n→∞

E(fn)−
J∑
j=1

E(S(tjn)φj)− E(rJn)

 = 0

We first prove a refinement of our inequality (5.10).
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Lemma 5.7 (Refined Strichartz Inequality). For f ∈ Ḣ1(R3),

‖S(t)f‖L10
t,x

. ‖f‖
1
5

Ḣ1
sup
N∈2Z

‖S(t)PNf‖
4
5

L10
t,x
.

Proof. We shall first write down the following long chain on inequalities and only justify
the steps afterwards. Here, we write fN to mean the Littlewood-Paley projection PNf .
All summations on capital letters are over the dyadic numbers 2Z.

‖S(t)f‖10
L10
t,x

(i)∼

∥∥∥∥∥∥∥
∑
N∈2Z

|S(t)fN |2
1/2

∥∥∥∥∥∥∥
10

L10
t,x

=

∫
R×Rd

5∏
i=1

 ∑
Ni∈2Z

|S(t)fNi |2


(ii)

.
∑

N1≤N2≤N3≤N4≤N5

∫
R×Rd

5∏
i=1

|S(t)fNi |2

(iii)

≤

(
sup
L∈2Z

‖S(t)fL‖L10
t,x

)8 ∑
N1≤...≤N5

‖S(t)fN1‖Lq1t Lr1x ‖S(t)fN5‖Lq2t Lr2x

(iv)

.

(
sup
L∈2Z

‖S(t)fL‖L10
t,x

)8 ∑
N1≤...≤N5

N c1
1 N c2

5 ‖S(t)fN1‖Lq1t Lp1x ‖S(t)fN5‖Lq2t Lp2x

(v)

.

(
sup
L∈2Z

‖S(t)fL‖L10
t,x

)8 ∑
N1≤...≤N5

N c1
1 N c2

5 ‖fN1‖L2
x
‖fN5‖L2

x

.

(
sup
L∈2Z

‖S(t)fL‖L10
t,x

)8 ∑
N1≤N5

N c1−1
1 N c2−1

5 ‖fN1‖Ḣ1‖fN5‖Ḣ1

∑
N1≤N2,N3,N4≤N5

1

.

(
sup
L∈2Z

‖S(t)fL‖L10
t,x

)8 ∑
N1≤N5

N c1−1
1 N c2−1

5

(
log2

(
N5

N1

))3

‖fN1‖Ḣ1‖fN5‖Ḣ1 .

(i) See the square function estimate in Lemma A.6.

(ii) We break the summation as follows:

∑
N1

...
∑
N5

≤
∑

all permutations
of (N1,...,N5)

∑
N1

∑
N2

N2≥N1

...
∑
N5

N5≥N4

 = 5!
∑

N1≤N2≤N3≤N4≤N5
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where the second equality is possible because the summand
∏5
i=1 |S(t)fNi |2 is sym-

metric in each argument.

(iii) We break the integral with Hölder, where the parameters 1 ≤ q1, q2, r1, r2 ≤ ∞ are
chosen later. Of course they satisfy

8

10
+

1

q1
+

1

q2
= 1 =

8

10
+

1

r1
+

1

r2
. (5.12)

(iv) We use Bernstein estimate (see Lemma A.5) first to gain a factor of N c1
1 and N c2

5 ,
where c1 and c2 are chosen later. This means we want

3

p1
− 3

r1
= c1

3

p2
− 3

r2
= c2 (5.13)

(v) We want to use Strichartz here, so we want the pairs (q1, p1) and (q2, p2) to be
admissible:

2

q1
+

3

p1
=

3

2
=

2

q2
+

3

p2
(5.14)

For reasons that will be clear later, we also want the exponents c1−1 = −(c2−1). It turns
out that one can choose parameters

c1 =
1

2
, c2 =

3

2
, p1 =

30

11
, p2 = 2, q1 = 5, q2 =∞, r1 = 5, r2 =∞

(these numbers are not unique nor important, but one should of course ensure that these
parameters satisfy the constraints). Thus the LHS is controlled by(

sup
L∈2Z

‖S(t)fL‖L10
t,x

)8 ∑
N1≤N5

(
N1

N5

) 1
2
(

log2

(
N5

N1

))3

‖fN1‖Ḣ1‖fN5‖Ḣ1 .

Observe that
(
N1
N5

) 1
2
(

log2

(
N5
N1

))3
.ε

(
N1
N5

) 1
2
−ε

for any ε > 0. Applying Cauchy Schwartz

on the sum over N5, we have

∑
N5

∑
N1

N1≤N5

(
N1

N5

) 1
2
−ε
‖fN1‖Ḣ1‖fN5‖Ḣ1 ≤

∥∥‖fN5‖Ḣ1

∥∥
`2N5

(2Z)

∥∥∥∥∥∥∥∥
∑
N1

N1≤N5

(
N1

N5

)1−2ε

‖fN5‖Ḣ1

∥∥∥∥∥∥∥∥
`2N5

(2Z)

To close the argument, we want to show that the integral operator T defined by

T (aN5) =
∑
N1

N1≤N5

(
N1

N5

)1−2ε

aN5
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is bounded from `2(2Z) → `2(2Z). This can be seen to be the case by Schur’s test (see

Lemma A.7). Indeed, the integral kernel here is K(N1, N5) = 1N1≤N5

(
N1
N5

)1−2ε
, and the

use of Schur’s test is justified by the uniform bounds∑
N1

K(N1, N5) =
∑
N1

N1≤N5

(
N1

N5

)1−2ε

=
∞∑
m=0

2m(2ε−1) . 1 ∀N5 ∈ 2Z,

∑
N5

K(N1, N5) =
∑
N5

N5≥N1

(
N1

N5

)1−2ε

=
∞∑
m=0

2m(2ε−1) . 1 ∀N1 ∈ 2Z

provided ε = 1
1000 , say. Thus

‖S(t)f‖10
L10
t,x

.

(
sup
L∈2Z

‖S(t)fL‖L10
t,x

)8 ∥∥‖fN‖Ḣ1

∥∥2

`2N (2Z)

∼

(
sup
L∈2Z

‖S(t)fL‖L10
t,x

)8

‖f‖Ḣ1
2

by the square function estimate.

Before we continue on with the gory details of the proof, let us first record the following
easily verified relations between the symmetries:

τyδλf = δλτ y
λ
f and δλτyf = τλyδλf (5.15)

S(t′)δλf = δλS
(
λ−2t′

)
f and δλS(t′)f = S

(
λ2t′

)
δλf (5.16)

τyS(t′)f = S(t′)τy (5.17)

As in the proof of the profile decomposition for Gagliardo-Nirenberg inequality, the main
idea of the proof of Theorem 5.5 will be to recursively extract a large bubble of concen-
tration from fn. The asymptotic decoupling in Ḣ1 is nothing more than a consequence of
weak convergence and the fact that Ḣ1 is a Hilbert space, and the former is built into our
construction of φJ and rJn . That the remainder rJn vanishes asymptotically in L10

t,x topology
is a bit more subtle, and requires the help of Lemma 5.7. For decoupling in L6 and L10

t,x

topologies, we will once again appeal to Brezis-Lieb lemma; the tricky part will be to prove
the almost sure convergence required to apply this lemma.

Proposition 5.8 (Inverse Strichartz Inequality). Suppose that {fn}∞n=1 is a bounded se-
quence in Ḣ1 satisfying

lim
n→∞

‖fn‖Ḣ1 = A and lim
n→∞

‖S(t)fn‖L10
t,x

= ε

for some A ≥ 0 and ε > 0. Then up to a subsequence of {fn}∞n=1, there exist φ ∈ Ḣ1 and
sequences {xn}∞n=1 ⊆ Rd, {tn}∞n=1 ⊆ R, and {λn}∞n=1 ⊆ (0,∞), such that
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(i) S(−tn)δ−1
λn
τ−1
xn
fn ⇀ φ in Ḣ1;

(ii) ‖fn‖2Ḣ1 =
∥∥fn − τxnδλnS(tn)φ

∥∥2

Ḣ1 + ‖φ‖2
Ḣ1 + on(1) as n→∞;

(iii) ‖φ‖2
Ḣ1 & A2

(
ε
A

) 15
4 ;

(iv) ‖S(t)fn‖10
L10
t,x

=
∥∥S(t)fn − S(t+ λ2

ntn)τxnδλnφ
∥∥10

L10
t,x

+ ‖S(t)φ‖10
L10
t,x

+ on(1)
as n→∞;

(v) ‖S(t)φ‖10
L10
t,x

& ε10
(
ε
A

) 35
4 ;

(vi) ‖fn‖6L6
x

=
∥∥fn − τxnδλnS(tn)φ

∥∥6

L6
x

+ ‖S(tn)φ‖6L6
x

+ on(1) as n→∞.

Proof. We first note that (i) and (ii) actually hold for any choice of {λn}∞n=1, {tn}∞n=1 and
{xn}∞n=1. Indeed, let gn := S(−tn)δ−1

λn
τ−1
xn
fn. Then ‖gn‖Ḣ1 = ‖fn‖Ḣ1 and so {gn}∞n=1

is bounded in Ḣ1, Hence there is some φ ∈ Ḣ1 such that up to subsequence, gn ⇀ φ.
Property (ii) then follows from the identity∥∥fn − τxnδλnS (tn)φ

∥∥
Ḣ1 = ‖gn − φ‖Ḣ1

and the Hilbert space fact

gn ⇀ φ =⇒ ‖gn‖2Ḣ1 − ‖gn − φ‖2Ḣ1 → ‖φ‖2H1 as n→∞.

The proof then boils down to choosing xn, tn and λn appropriately so that the remaining
properties hold.
Using Lemma 5.7, we have the estimate

‖S(t)fn‖L10
t,x

. ‖fn‖
1
5

Ḣ1
sup
N∈2Z

‖S(t)PNfn‖
4
5

L10 ,

for each n ∈ N. By choosing Nn ∈ 2Z so that

‖S(t)PNnfn‖L10
t,x
>

1

2
sup
N∈2Z

‖S(t)PNfn‖L10
t,x
,

we have the estimate

ε
5
4A−

1
4 = lim

n→∞
‖S(t)fn‖

5
4

L10
t,x
‖fn‖

− 1
4

Ḣ1
. lim

n→∞
‖S(t)PNnfn‖L10

t,x

≤ lim
n→∞

‖S(t)PNnfn‖
1
3

L
10
3
t,x

‖S(t)PNnfn‖
2
3
L∞t,x
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where we used Hölder interpolation on the last inequality. Using Strichartz estimate (the
pair

(
10
3 ,

10
3

)
are admissible), followed by Bernstein’s Lemma, we have

‖S(t)PNnfn‖
L

10
3
t,x

. ‖PNnfn‖L2 ∼
1

Nn
‖PNn |∇|fn‖L2 ≤

1

Nn
‖fn‖Ḣ1 .

A

Nn
.

It follows that the above inequality reduces to

ε
5
4A−

1
4 . lim

n→∞

(
A

Nn

) 1
3

‖S(t)PNnfn‖
2
3
L∞t,x

.

Set λn := N−1
n , and choose for each n ∈ N some xn ∈ Rd and tn ∈ R to approximate the

L∞t,x norm, in the sense that

lim
n→∞

N
− 1

2
n

∣∣S(−λ2
ntn)PNnfn(xn)

∣∣ & A
( ε
A

) 15
8
.

Having chosen our parameters, we may pass to a subsequence if necessary so that gn =
S (−tn) δ−1

λn
τ−1
xn
fn = δ−1

λn
τ−1
xn
S
(
−λ2

ntn
)
fn is weakly convergent to some φ ∈ Ḣ1. As said at

the start, (i) and (ii) are immediate. To see (iii), we let KN be the convolution kernel of
PNf . Explicitly, KN = F−1

[
ψ
( ·
N

)]
where ψ is as defined in the definition of PN . Then

|〈K1, φ〉L2 | = lim
n→∞

|〈K1, gn〉|

= lim
n→∞

∣∣∣∣∫ N− 1
2

n S(−λ2
ntn)fn

(
x

Nn
+ xn

)
K1(x) dx

∣∣∣∣
= lim

n→∞

∣∣∣∣N− 1
2

n

∫
S(−λ2

ntn)fn (x)N3
nK1(Nn(x− xn)) dx

∣∣∣∣
= lim

n→∞

∣∣∣∣N− 1
2

n

∫
S(−λ2

ntn)fn (x)KNn(x− xn) dx

∣∣∣∣
= lim

n→∞
N
− 1

2
n |PNnS(−λ2

ntn)fn(xn)|.

On the other hand, an application of Hölder followed by Sobolev inequality gives

|〈φ,K1〉L2 | ≤ ‖φ‖L2∗ ‖K1‖L(2∗)′ . ‖φ‖Ḣ1 .

Putting everything together then gives ‖φ‖Ḣ1 & A
(
ε
A

) 15
8 , proving (iii). The above also

implies that

A
( ε
A

) 15
8
. |〈K1, φ〉L2 | = |〈S(t)K1, S(t)φ〉L2 | ≤ ‖S(t)φ‖L10

x
‖S(t)ψ‖

L
10
9
x

≤ |t|
6
5 ‖S(t)φ‖L10

x
‖K1‖L10

x
. ‖S(t)φ‖L10

x
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provided |t| ≤ 1, where we used dispersive estimate in the penultimate inequality. Inte-
grating over 0 ≤ t ≤ 1 gives

A
( ε
A

) 15
8
. ‖S(t)φ‖L10

t,x([0,1]×R3) ≤ ‖S(t)φ‖L10
t,x
,

which is equivalent to (v).
We now turn to (vi). Passing to a subsequence, we have that tn → t∞ for some

t∞ ∈ [−∞,∞]. Suppose that t∞ ∈ {∞,−∞}. By dispersive estimate, we have for any
Schwartz function ψ ∈ S(R3),

‖S(tn)ψ‖L6
x
.

1

|tn|
‖ψ‖

L
6
5
x

→ 0 as n→∞.

Moreover,

‖S(tn)φ‖L6
x
≤ ‖S(tn)φ− S(tn)ψ‖L6

x
+ ‖S(tn)ψ‖L6

x

. ‖φ− ψ‖Ḣ1 + ‖S(tn)ψ‖L6
x
.

By a density argument, we deduce that ‖S(tn)φ‖L6
x
→ 0 as n→∞. One can then deduce

property (vi). For the case when t∞ ∈ R, we claim that δ−1
λn
τ−1
xn
fn ⇀ S(t∞)φ in Ḣ1.

Indeed, testing hn := δ−1
λn
τ−1
xn
fn against ϕ ∈ Ḣ1,

〈hn, ϕ〉Ḣ1 = 〈S(−tn)hn, S(−tn)ϕ〉Ḣ1

= 〈S(−tn)hn, S(−t∞)ϕ〉Ḣ1 + 〈S(−tn)hn, S(−tn)ϕ− S(−t∞)ϕ〉Ḣ1 .

The second term vanishes as n → ∞ by an application of Cauchy-Schwartz and the fact
that S(−tn) → S(−t∞) in operator norm. By weak convergence, the first term converges
to

〈φ, S(−t∞)ϕ〉Ḣ1 = 〈S(t∞)φ, ϕ〉Ḣ1 .

This proves our claim. Now by Rellich Kondrachov Theorem, we may infer that for any
compact set K, a subsequence of hn converges in L2(K). A diagonal argument then shows
that hn → G for some G ∈ L2(R3). Passing to a subsequence once more, we get that
hn → G almost everywhere. But since hn is weakly convergent to S(t∞)φ in Ḣ1, we may
conclude that G = S(t∞)φ almost everywhere. Finally, applying Brezis-Lieb Lemma shows
that

‖hn‖6L6
x

= ‖hn − S(t∞)φ‖6L6
x

+ ‖S(t∞)φ‖6L6
x

+ on(1).

To see that this implies (vi), we note that ‖S(t∞)φ‖L6
x

= limn→∞ ‖S(tn)φ‖L6
x

and ‖hn‖L6
x

=
‖fn‖L6

x
. Moreover, we also have

‖hn − S(t∞)φ‖L6
x

= ‖hn − S(tn)φ‖L6
x

+ on(1)

We now turn to (iv). We again want to apply Brezis-Lieb Lemma to S(t)gn and S(t)φ.
We thus want to show that
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(†) {S(t)gn}∞n=1 is a bounded sequence in L10
t,x that converges pointwise to S(t)φ for a.e.

(t, x) ∈ R× Rd.

Once we prove (†), the conclusion of Brezis-Lieb Lemma then tells us that

‖S(t)gn‖10
L10
t,x
− ‖S(t)gn − S(t)φ‖10

L10
t,x
− ‖S(t)φ‖10

L10
t,x
→ 0

as n→∞. By applying the change of variable (t, x) 7→
(

t
λ2n
− tn, x−xnλn

)
, we get that

‖S(t)gn‖10
L10
t,x

= ‖S(t)fn‖10
L10
t,x

‖S(t)gn − S(t)φ‖10
L10
t,x

=
∥∥S(t)fn − S(t+ λ2

ntn)τxnδλnφ
∥∥10

L10
t,x
,

which then yield (iv).
To prove the claim (†), we notice that the boundedness of S(t)gn in L10

t,x follows from
the uniform bound by Sobolev Inequality:

‖S(t)gn‖L10
t,x

. ‖gn‖Ḣ1 = ‖fn‖Ḣ1 = A <∞.

For almost everywhere convergence, we need to work a bit harder. We first restrict our
attention to the closed cube Qk ⊆ Rd of length k centred at the origin. Let χk ∈ C∞c so
that χk(x) = 1 on Qk and χk = 0 outside 2Qk. We use the corollary of Ries-Komorogorov
Theorem to show that F := {χkS(t)gn}∞n=1 is relatively compact in L2

t,x. Thus we need to
show that F is bounded in L2(R3) and for all ε > 0, there exists R > 0 such that for all
f ∈ F ,∫

|(t,x)|>R
|χkS(t)gn(x)|2 d(x, y) +

∫
|(τ,ξ)|>R

|Ft,x(χkS(t)gn)(τ, ξ)|2 d(τ, ξ) < ε.

That F is bounded follows from the chain of inequality

‖χkS(t)gn‖L2
t,x

. ‖S(t)gn‖L10
t,x

. ‖gn‖Ḣ1
x
. A,

where we first used Hölder and ditched the cutoff χk in the implicit constant, followed by
(5.10). Next, the L2 norm of the tail,∫

|(t,x)|>R
|χkS(t)gn(x)|2 dx

vanishes for large R, since χkS(t)gn is supported on Qk. It remains to estimate the tail of
the Fourier side. Observe that

|(τ, ξ)| > R =⇒ τ2 + ξ2 > R2
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=⇒ τ2 >
R2

2
or ξ2 >

R2

2
=⇒ |τ |+ |ξ|2 & R (provided R > 1).

Therefore, ∫
|(τ,ξ)|>R

|Ft,x(χkS(t)gn)(τ, ξ)|2 d(τ, ξ)

. R−
1
2

∫
R×Rd

∣∣∣√|τ |+ |ξ|2Ft,x(χkS(t)gn)(τ, ξ)
∣∣∣2 d(τ, ξ)

= R−
1
2

(∥∥∥∥|∇ 1
2
t |χkS(t)gn

∥∥∥∥2

L2
t,x

+ ‖|∇x|χkS(t)gn‖2L2
t,x

)
.

This is small for large R, provided of course we show that the two norms above are finite.
To see this, we use product rule to estimate

‖|∇x|χkS(t)gn‖L2
t,x

. ‖χk‖L2
tL
∞
x
‖|∇x|S(t)gn‖L∞t L2

x
+ ‖|∇x|χk‖

L
d+2
2

t,x

‖S(t)gn‖
L

2(d+2)
d−2

t,x

. ‖|∇x|χk‖L2
tL
∞
x
‖gn‖Ḣ1

x
+ ‖|∇x|χk‖

L
d+2
2

t,x

‖gn‖Ḣ1
x
<∞

where we used Strichartz and (5.10) on the second inequality. The other term is similar,
but we need to use fractional Leibniz rule to estimate

∥∥∥|∇t| 12χkS(t)gn

∥∥∥
L2
t,x

. ‖χk‖L2
tL
∞
x

∥∥∥|∇t| 12S(t)gn

∥∥∥
L∞t L

2
x

+
∥∥∥|∇t| 12χk∥∥∥

L
5
2
t,x

‖S(t)gn‖L10
t,x
.

By testing against functions in S(R × Rd), we see that |∇t|
1
2S(t) = |∇x|S(t) as tempered

distributions. It follows by the same argument for the x derivative that
∥∥∥|∇t| 12χkS(t)gn

∥∥∥
L2
t,x

is finite.
All this work has shown that the conditions of Riesz-Kolmorogorov Theorem are satisfied.
Thus {χkS(t)gn}∞n=1 is relatively compact in L2

t,x for each k ∈ N, and hence relatively
compact in L2

t,x(Qk). Since {χkS(t)gn}∞n=1 = {S(t)gn}∞n=1 in Qk, we may infer using a
diagonal argument that {S(t)gn}∞n=1 is relatively compact in L2

t,x. Going one step further,
we may pass to a subsequence so that {S(t)gn}∞n=1 is pointwise convergent a.e. to some
G ∈ L2

t,x. It remains to show that G(t, x) = S(t)φ(x) for a.e. (t, x).

We notice that since gn converges weakly to φ in Ḣ1, gn also converges weakly to L2.
We now claim that S(t)gn converges to S(t)φ as a tempered distribution in S ′(R × Rd).
This will allow us to infer that G = S(t)φ a.e. Indeed, testing against a ϕ ∈ S(R×Rd), we
have

〈S(t)(gn − φ(t, ·)), ϕ〉t,x =

〈
gn − φ,

∫
R

S(−t)ϕ(t, ·) dt
〉
x
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=

〈
gn − φ,

∫
R

S(−t)ϕ(t, ·) dt
〉
L2
x

.

The right hand side tends to 0 as n→∞ once we show that
∫
R
S(−t)ϕ(t, ·) dt belongs in

L2
x. But this is true because∥∥∥∥∫

R

S(−t)ϕ(t, ·) dt
∥∥∥∥
L2
x

≤
∫
R

‖ϕ(t, ·)‖L2
x
dt = ‖ϕ‖L1

tL
2
x
<∞

where the first inequality follows from Minkowski integral inequality and the unitarity of
S(−t) in L2. This completes the proof of (†).

We finally proceed prove the profile decomposition for Schrödinger propagator.

Proof of Theorem 5.5. We shall recursively apply Proposition 5.8 so that Properties (ii)
and (v) are built into our construction. The rest of the properties will be verified separately.
We first set up the following notations:

gjn := τ
xjn
δ
λjn
S
(
tjn
)

;

hjn := τ
xjn
δ
λjn
.

Note that gjn = hjnS(tjn) and(
gjn
)−1

= S(−tjn)
(
hjn
)−1

= S
(
−tjn

)
δ−1

λjn
τ−1

xjn
= δ−1

λjn
τ−1

xjn
S
(
−(λjn)2tjn

)
fn.

To start the construction, we let r0
n := fn. Suppose that we have constructed the decom-

position up to the level J ≥ 0 so that properties (ii) and (v) are satisfied. Since {fn}∞n=1 is
bounded in Ḣ1, we may pass to a subsequence so that the limits

lim
n→∞

∥∥rJn∥∥Ḣ1 := AJ and lim
n→∞

∥∥S(t)rJn
∥∥
L10
t,x

:= εJ

exist. If εJ = 0, we may stop there and set J∗ = J . Otherwise we apply Proposition
5.8 on rJn to get a profile φJ+1 ∈ Ḣ1, and a sequence

{
(λJ+1
n , tJ+1

n , xJ+1
n )

}∞
n=1
⊆ (0,∞) ×

R× Rd satisfying the conditions of Proposition 5.8. Namely, φJ+1 is the Ḣ1 weak limit of(
gJ+1
n

)−1
rJn . We now set

rJ+1
n = rJn − gJ+1

n φJ+1.

Then
(
gJ+1
n

)−1
rJ+1
n converges weakly to 0 in Ḣ1 as n→∞, that is, (v) is proved for the

J + 1-th step. Nest, (ii) from Proposition 5.8 implies that∥∥rJn∥∥2

Ḣ1 =
∥∥rJn − gJ+1

n φJ+1
∥∥2

Ḣ1 +
∥∥φJ+1

∥∥2

Ḣ1 + o(1)

=
∥∥rJ+1
n

∥∥2

Ḣ1 +
∥∥φJ+1

∥∥2

Ḣ1 + o(1)
(†)
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as n→∞. Thus according to our inductive hypothesis (for (ii)), we have

‖fn‖2Ḣ1 =

J∑
j=1

∥∥φj∥∥2

Ḣ1 +
∥∥rJn∥∥2

Ḣ1 + o(1)

=
J+1∑
j=1

∥∥φj∥∥2

Ḣ1 +
∥∥rJ+1
n

∥∥2

Ḣ1 + o(1)

as n→∞. Similarly, one obtains

‖fn‖6L6
x

=
J+1∑
j=1

∥∥S(tjn)φj
∥∥6

L6
x

+
∥∥rJ+1
n

∥∥6

L6
x

+ on(1);

‖S(t)fn‖10
L10
x

=

J+1∑
j=1

∥∥S(t)φj
∥∥10

L10
x

+
∥∥S(t)rJ+1

n

∥∥10

L10
x

+ on(1),

from the decoupling statements (vi) and (iv) from Proposition 5.7 respectively. This proves
(iii), and also (iv) once we have proved (i). We now turn to (iii). Looking back at our
construction, if J∗ is finite, then the construction was stopped at the point J∗, which can
only happen if εJ∗ = 0, and so (iii) holds. Now assume that J∗ =∞. At the J-th step, we
have

ε10
J+1 = lim

n→∞

∥∥S(t)rJ+1
n

∥∥10

L10
t,x
≤ ε10

J

(
1− Cd

(
εJ
AJ

) 21
4

)
for some constant C depending only on d Also,

AJ+1
2 = lim

n→∞

∥∥rJ+1
n

∥∥2

Ḣ1 ≤ AJ2

(
1−Kd

(
εJ
AJ

) 15
4

)
≤ A2

J ,

where the second inequality follows from (†) and (iii) from Proposition 5.8. This implies
that εJ → 0 as J →∞. Indeed, if εJ → ε > 0, then εJ/AJ ≥ εJ/A1 since AJ is decreasing
in J . Consequently, the ratio AJ+1/AJ is uniformly bounded above by a constant less than
1; more specifically,

AJ+1

AJ
≤

(
1−Kd

(
ε

A1

) 15
4

) 1
2

< 1,

which is a contradiction. This completes the proof of (v). It remains to prove (i), and we
shall do so by contradiction. Suppose that there is a minimal counterexample (j, k) for (i)
with j < k, in the sense that (i) fails for (j, k) but (i) holds for (j, l) whenever j < l < k.
Then we may pass to a subsequence so that

λkn

λjn
+
λjn
λkn
→ λ̄;

xkn − x
j
n√

λjnλkn

→ x̄;
tjn(λjn)2 − tkn(λkn)2

λjnλkn
→ t̄ (††)
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as n → ∞, for some (λ̄, x̄, t̄) ∈ (0,∞) × R3 × R. By construction φk is the Ḣ1 weak limit

of
(
gkn
)−1

rk−1
n . Note that φk is non-trivial. Our goal is to show that (††) implies that the

Ḣ1 weak limit of (
gkn

)−1
rk−1
n =

(
gkn

)−1
rjn −

k−1∑
l=j+1

(
gkn

)−1
glnφ

l († † †)

is in fact 0, hence obtaining a contradiction.

Observe that for a sequence {un}∞n=1 ∈ Ḣ1,(
gkn

)−1
un =

(
gkn

)−1
gjn

[(
gjn
)−1

un

]
= S

(
−tkn

)(
hkn

)−1
hjnS

(
tjn
) [(

gjn
)−1

un

]
=
(
hkn

)−1
hjnS

(
tjn − tkn

(
λkn

λjn

)2
)[(

gjn
)−1

un

]
= τ

xkn−x
j
n

λ
j
n

δλkn
λ
j
n

S

(
tjn − tkn

(
λkn

λjn

)2
)[(

gjn
)−1

un

]
.

Now, the operator acting on
(
gjn
)−1

un converges in B(Ḣ1). This follows from that

tjn − tkn
(
λkn

λjn

)2

=
tjn
(
λjn
)2
− tkn

(
λkn
)2

λjnλkn
· λ

k
n

λjn
→ t̄

λ̄

xkn − x
j
n

λjn
=
xkn − x

j
n√

λknλ
j
n

√
λkn

λjn
→ x̄λ̄−

1
2

as n → ∞. Thus by Lemma A.11, proving
(
gjn
)−1

un ⇀ 0 implies
(
gkn
)−1

un ⇀ 0. For

un = rjn, we clearly have
(
gjn
)−1

rjn ⇀ 0 as n→∞ by construction. Hence the first term on

(† † †) converges weakly to 0. For the second term, we will need to show this for un = glnφ
l

for each j < l < k, that is, to show

In :=
(
gjn
)−1

glnφ
l ⇀ 0 as n→∞.

In the same spirit as above, we may unpack In as

In = τ
x
j
n−xln
λln

δ
λ
j
n
λln

S

tln − tjn
(
λjn
λln

)2
φl. (5.18)
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By a density argument, it suffices to show this for the case when φl ∈ C∞c (Rd). Recall that
(i) holds (j, l). Thus we shall split into three cases.

Case 1:
λjn
λln

+
λln

λjn
→∞ as n→∞.

Let ψ ∈ C∞c (Rd). By Cauchy-Schwartz inequality,

〈In, ψ〉Ḣ1 ≤ min
{
‖In‖Ḣ2

x
‖ψ‖L2

x
, ‖In‖L2

x
‖ψ‖Ḣ2

x

}
.

By a change of variables,

‖In‖Ḣ2
x

=
λjn
λln

∥∥∥φl∥∥∥
Ḣ2
x

and ‖In‖L2
x

=
λln

λjn

∥∥∥φl∥∥∥
L2
x

.

It follows that 〈In, ψ〉Ḣ1 → 0 as n→∞. By Lemma A.12, we have In ⇀ 0 in Ḣ1.

Case 2:
λjn
λln
→ λ̄1 ∈ (0,∞) and

|tln
(
λln
)2 − tjn (λjn)2

|

λlnλ
j
n

→∞.

We claim that

Jn := τ
x
j
n−xln
λln

δλ1S

tln − tjn
(
λjn
λln

)2
φl

is weakly convergent to 0. Indeed, since

tln − tjn

(
λjn
λln

)2

=
|tln
(
λln
)2 − tjn (λjn)2

|

λlnλ
j
n

· λ
j
n

λln
→∞.

In view of (5.18), Lemma 5.4 then implies that In ⇀ 0.

Case 3:
λjn
λln
→ λ̄1 ∈ (0,∞),

|tjn
(
λjn
)2
− tkn

(
λkn
)2 |

λjnλkn
→ t̄1 and

|xjn − xln|2

λjnλln
→∞.

We note that
τ
x
j
n−xln
λln

δλ̄1S
(
t̄1λ̄1

)
φl

converges weakly to 0. This follows from Lemma 5.4 that

xjn − xln
λln

=
xjn − xln√
λjnλln

√
λjn
λln
→∞.

Similar to Case 2, this implies that In converges weakly to 0.
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We finally show that our decomposition may be altered if necessary to satisfy (vii). By
passing to a subsequence, we may assume lim

n→∞
tjn exists and lies in [−∞,∞]. We are done

if this limit is either ∞ or −∞. Suppose that the limit is a real number tj . Then we set
each tjn = 0 and replace each profile φj by S(tj)φj . More precisely, we rewrite fn as

fn =

 J∑
j=1

τ
xjn
δ
λjn
νj

+ wJn

where νj = S(tj)φj and wJn =
∑J

j=1 τxjnδλjn

(
S(tjn)− S(tj)

)
φj + rJn . It remains to show

that this change does not cause any trouble for (i) to (vi). Indeed, we note that∥∥∥τxjnδλjn (S(tjn)− S(tj)
)
φj
∥∥∥
Ḣ1
x

→ 0 as n→∞ (5.19)

since S(tjn) converges to S(tj) in operator norm. Thus (ii) holds immediately, (iii) and
(iv) also hold by applying (5.10) and Sobolev inequality respectively. (i) also holds by the

convergence of S(tjn) to S(tj). (v) also holds since δ−1

λjn
τ−1

xjn
wjn =

∑J
j=1

(
S(tjn)− S(tj)

)
φj +

δ−1

λjn
τ−1

xjn
rJn and both terms converge weakly to 0 by (v) for the original decomposition and

that tjn converges to tj . Finally for (i), we have nothing to prove unless one of {tjn}∞n=1 or
{tkn}∞n=1 is bounded, so assume the former is bounded. If

λkn

λjn
+
λjn
λkn

+
|xkn − x

j
n|2

λjnλkn
6→ ∞,

then
|tjn(λjn)2 − tkn(λkn)2|

λjnλkn
→∞

would imply that |t
k
n|λkn
λjn
→∞. Hence (v) holds. This completes the proof of the theorem.
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A Appendix

In this appendix, we gather some important theorems from harmonic analysis which are
used throughout the report. Most of the proofs can be found in the MIGSAA Dispersive
Equations course in [?].

We first record some estimates related to Sobolev norms.

Lemma A.1 (Gagliardo-Nirenberg inequality). Let s > 0 and 1 < p < q ≤ ∞ satisfy

1

p
=

1

q
+
θs

d

for some 0 < θ < 1. Then for any f ∈W s,p,

‖f‖Lq .p,q,s ‖f‖θẆ s,p ‖f‖1−θLp .

One can deduce Lemma A.1 using the interpolation property of homogeneous Sobolev
spaces. Alternatively, one can prove this directly using Littlewood-Paley theory (see [17,
Appendix]).

Theorem A.2 (Hardy-Littlewood-Sobolev inequality [12]). Suppose that p, q ∈ (1,∞)
satisfy 1

p + α
d = 1

q + 1 for some α ∈ (0, d). Then for any f ∈ Lp, we have∥∥∥∥f ∗ 1

| · |α

∥∥∥∥
Lq

.p,q ‖f‖Lp .

Theorem A.3 (Sobolev Inequalities). Let 1 < p < q <∞ and s > 0.

(i) Homogeneous Sobolev inequality: Suppose that s
d = 1

p −
1
q . Then

‖f‖Lq .p,q ‖f‖Ẇ s,p .

(ii) Inhomogeneous Sobolev inequality: Suppose that s
d ≥

1
p −

1
q . Then

‖f‖Lq .p,q,s ‖f‖W s,p .

Note that the inhomogeneous Sobolev inequality follows directly from the homogeneous
version since ‖f‖Ẇ s,p ≤ ‖f‖W s,p . One can also show (see [?]) that the homogeneous Sobolev
inequality is in fact equivalent to Theorem A.2.

In our analysis, we often have to decompose our functions into different frequencies and
analyse each piece separately. This is achieved by considering the Paley-Littlewood projec-
tions.
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To continue, we fix a radial4 bump function ϕ : Rd → R satisfying5{
ϕ(ξ) = 1 if |ξ| ≤ 1;
ϕ(ξ) = 0 if |ξ| ≥ 2.

For each dyadic interger N ∈ 2Z = {2z : z ∈ Z}, we also define ϕN := ϕ
( ·
N

)
and

ψN := ϕN − ϕN/2. The point here is that ϕN and ψN are supported on frequencies

|ξ| ≤ 2N and N
2 ≤ ξ ≤ 2N respectively. We now define the Fourier multipliers

(i) P̂≤Nf := ϕN f̂ ;

(ii) P̂Nf := ψN f̂ ;

(iii) P̂>Nf := (1− ϕN )f̂ .

Thus P≤Nf , PNf and P̂>Nf are essentially frequency localisations onto |ξ| ≤ N and
|ξ| ∼ N and |ξ| > N respectively.

Remark A.4. The following are immediate consequences of the definitions

(i) PNf = P≤Nf − PN
2
f ;

(ii) P≤Nf =
∑

M≤N PM ;

(iii) f = lim
N→∞

P≤Nf =
∑

N PNf .

Theorem A.5 (Bernstein Inequalities [?]). For 1 ≤ p ≤ q ≤ ∞,

(i) ‖P≤N |∇|sf‖Lp . N s ‖P≤Nf‖Lp provided s ≥ 0;

(ii) ‖PN |∇|sf‖Lp ∼ N s ‖PNf‖Lp for all s ∈ R;

(iii) ‖P≤Nf‖Lq . N
d
p
− d
q ‖P≤Nf‖Lp ;

(iv) ‖PNf‖Lq . N
d
p
− d
q ‖PNf‖Lp.

These Bernstein inequalities are essentially proved by writing out the Paley Littlewood
projections as convolutions and then apply Young’s inequality.

Theorem A.6 (Square Function Estimate). Let p ∈ (1,∞). Then

‖f‖Lp ∼

∥∥∥∥∥∥∥
∑
N∈2Z

|PNf |2
1/2

∥∥∥∥∥∥∥
Lp

.

4A function f : Rd → C is radial if there exists f0 : R+
0 → C such that f(x) = f0(|x|) for all x ∈ R

d. In
other words, the f(x) only depends on |x|.

5We need not specify the exact values of ϕ, as this turns out to be unimportant
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The function
(∑

N |PNf |
2
)1/2

is called the square function of f . The special case p = 2

can be easily proved with Plancherel’s Theorem. The proof of the general case requires
Calderon-Zygmund theory; see for example [?, Chapter 7].

Lemma A.7 (Schur’s test [12]). Let (X,µ) and (Y, ν) be σ−finite measure spaces and that
K : X × Y → R be a locally integrable function. Suppose that

sup
x∈X

∫
Y
|K(x, y)| dν(y) <∞;

sup
y∈Y

∫
Y
|K(x, y)| dµ(x) <∞.

Then T defined by

T (f)(x) =

∫
Y
K(x, y)f(y) dν(y)

is a bounded linear operator from Lp(Y ) to Lp(X).

An extremely useful tool in proving profile decompositions is the following lemma due to
Brézis-Lieb, which is essentially an improvement of Fatou’s Lemma.

Lemma A.8 (Brézis-Lieb [2]). Let p ∈ [1,∞), and {fn}∞n=1 ⊆ Lp is a bounded sequence.
If f is some measurable function and either

(i) p = 2 and fn ⇀ f in L2; or

(ii) fn converges to f almost everywhere.

Then ∫
Rd

||fn|p − |fn − f |p − |f |p| → 0

as n→∞. This in particular implies that ‖fn‖pLp − ‖fn − f‖
p
Lp → ‖f‖

p
Lp as n→∞.

The Kolmorogorov-Riesz Theorem is a useful characterisation of precompactness in Lp

space; this is essentially the Lp version of the Arzela-Ascoli Theorem. We will only need
the special case in L2, which we give below:

Theorem A.9 (Kolmorogorov-Riesz, L2 version [8]). A family F of functions is precom-
pact in L2 if and only if we have the uniform bound supf∈F ‖f‖L2 <∞ and that for every
ε > 0, there exists R = R(ε) such that∫

|x|>R
|f(x)|2 dx+

∫
|ξ|>R

|f̂(ξ)| dξ < ε.

When dealing with an Lp norm of the derivative of a product of functions, one might
want to use product rule then use Hölder to bound each individual part. The fractional
Liebniz rule essentially says that one can also use this trick for fractional derivatives:
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Lemma A.10 (Fractional Liebniz rule). Let s ∈ (0, 1]. If 1 < r, p1, p2, r1, r2 < ∞ satisfy
1
r = 1

p1
+ 1

q1
= 1

p2
+ 1

q2
, then

‖|∇|s(fg)‖Lr . ‖f‖Lp1 ‖|∇|
sg‖Lq1 + ‖|∇|sf‖Lp2 ‖g‖Lq2 .

Lemma A.11. Let H1, H2 be Hilbert spaces. Suppose that {Tn}∞n=1 is a sequence of bounded
operators from H1 to H2 convergent to T ∈ B(H1, H2). If {vn}∞n=1 ⊆ H1 is weakly conver-
gent to v ∈ H1, then {Tnvn}∞n=1 is weakly convergent to Tv ∈ H2.

Proof. Let u ∈ H2. By writing

〈Tnvn, u〉H2
= 〈vn, T ∗nu〉H1

= 〈vn, T ∗u〉H1
+ 〈vn, (Tn − T )∗u〉H1

,

we have that∣∣〈Tnv, u〉H2
− 〈Tv, u〉H2

∣∣ ≤ ∣∣〈vn, T ∗u〉H1
− 〈v, T ∗u〉H1

∣∣+ ‖vn‖H1
‖(Tn − T )∗‖H1

,

which tends to 0 as n → ∞, since vn ⇀ v in H1, ‖vn‖H1 is uniformly bounded, and
‖(Tn − T )∗‖H1

= ‖Tn − T‖H1
→ 0.

Lemma A.12. Let {vn}∞n=1 ⊆ Ḣs be a bounded sequence and v ∈ Ḣs. Suppose that
〈vn − v, ϕ〉Ḣs → 0 for every ϕ ∈ C∞c . Then vn ⇀ v in Ḣs.

Proof. Let φ ∈ Ḣs and ϕ ∈ S. Then

|〈vn − v, φ〉| ≤ |〈vn − v, ϕ〉|+ |〈vn − v, φ− ϕ〉|
≤ |〈vn − v, ϕ〉|+ ‖vn − v‖Ḣs ‖φ− ϕ‖Ḣs

Since {vn}∞n=1 is bounded in Ḣs, ‖vn − v‖Ḣs is uniformly bounded. The hypothesis and

the density of S in Ḣs show that the right-hand side can be made arbitrarily small.

Lemma A.13 (A crude estimate). For any u, v ∈ C, and p > 1, we have∣∣|u|p−1u− |v|p−1v
∣∣ .p |u− v|(|u|p−1 + |v|p−1).

Proof. We may assume without loss of generality that |u| > |v|. By dividing the inequality
by |v|p−1 and rotating u and v by the same factor so that v = |v| (i.e. multiply the inside
of each modulus by some eiθ), it suffices to prove the inequality∣∣|w|p−1w − 1

∣∣ ≤ (p− 1)|w − 1|(|w|p−1 + 1).

for |w| > 1. Now, ∣∣|w|p−1w − 1
∣∣ ≤ ∣∣|w|p−1w − |w|p−1

∣∣+
∣∣|w|p−1 − 1

∣∣ .
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For the first term, we have |w|p−1|w− 1| which is clearly bounded above by the right-hand
side. For the second term, we let r = |w| and note that by mean-value theorem, and the
fact that the function f(r) = rp−1 is increasing, we have

rp−1 − 1

r − 1
≤ (p− 1)rp−2 ≤ (p− 1)rp−1,

that is, we have

|w|p−1 − 1 ≤ (p− 1)(|w| − 1)|w|p−1 ≤ (p− 1)|w − 1||w|p−1,

which is also bounded by our right-hand side. This proves the complex inequality.
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